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INVARIANT SUBMANIFOLDS OF NORMAL CONTACT

METRIC MANIFOLDS

BY MASAHIRO KON

Introduction. Yano and Ishihara [8] have obtained conditions for an invariant
submanifold of a normal contact metric manifold to be totally geodesic in the case
of codimension 2.

In this connection, the purpose of the present note is to obtain some conditions
for an invariant submanifold of codimension p^2 in a normal contact metric
manifold to be totally geodesic. In §1, we shall recall notations and formulas for
submanifolds and, in § 2, definitions and some properties of a normal contact metric
manifold. In § 3, we shall give basic formulas for later use and obtain conditions
for an invariant submanifold of a normal contact metric manifold to be totally
geodesic under some additional conditions. In the last section, invariant submani-
folds satisfying the condition R(X, f) α=0 will be studied in a normal contact
metric manifold. For tensor calculus we follow to notations employed in [1].

The author wishes to express his gratitude to Professor T. Adati for his
suggestions.

§ 1. Submanifolds.

Let M be a manifold immersed in a Riemannian manifold M. Because we
shall describe only local properties, we may assume that M is small enough to be
imbedded in M as a proper submanifold. Let X{M) be the Lie algebra of vector
fields on M and 2£(M)λ the set of all vector fields perpendicular to M. We denote
by g the metric tensor field on M and g the metric induced on M. V denotes the
covariant differentiation in M and V the covariant differentiation in M determined
by the induced metric g.

Let a be the second fundamental form of M. Then the formulas of Gauss and
Weingarten are given by

(1. 1) FχY=FxY+a(X, Y), X,

(1.2) FχN=-AN(X)+DxN,

where g(AN(X), Y) = g(a(X, Y), N) and DXN denotes the covariant derivative of
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a cross section N of the normal bundle T(M)1 in the direction of X with respect
to the connection in T(M)1.

For a normal bundle valued 2-form β, we define the covariant derivative,
denoted by Pxβ, to be

(1. 3) (Pzβ)(Y, Z)=Dx(β(Y, Z))-β(FxY, Z)-β(Y, VXZ\

X, F, Z G ^ ( M ) (cf. [2] and [3]).

A submanifold M of M is, by definition, totally geodesic if and only if its
second fundamental form a is identically zero.

The curvature transformations of M and M will be denoted by R(X, Y)
= Wx, FY]-FίX,Yly X, Y$X(M) and R(X, f)=[Γ2,p]-Γβ P l F ], X, ΫzX{M), respec-
tivelly.

Using the formulas (1.1) and (1. 2) of Gauss and Weingarten, we obtain for
any vector fields X, Y and Z tangent to M

(1. 4) R(X, Y)Z^R(X} Y)Z-Aa(rts>(X) + Aaijr.n(Y) + (Pza)(Y, Z)-(Pτa)(X, Z).

Thus, if W is tangent to M, then we get the equation of Gauss

(1. 5) 0(R(X, Y)Z9 W)=g(R(X, Y)Z, W) + g{a{Y, W)9 a{X, Z))-g(a(X, W), a(Y, Z)).

§2. Normal contact metric manifolds.

Now we recall definitions and some properties of a normal contact metric
manifold (cf. [5]).

Let M be a C°°-manifold and φ a tensor field of type (1, 1) on M such that

(2.1) ψ2=-I+y®ξ,

where / denotes the identity tensor of type (1, 1), ξ a vector field and η a 1-form
on M satisfying

(2.2) #=0, v(ψX)=0, y(ξ) = l, XtX{M).

Then M is said to have an almost contact structure (φ, ξ, η). The almost contact
structure is said to be normal if N+dη(g)ξ=0, where N is the Nijenhuis tensor of
φ. Suppose that a Riemannian metric tensor g is given in M and satisfies the
condition

(2. 3) g{φX, φY)=g{X, Y)-η{X)η{Y\ η{X)=g{X, £).

Then (φ, ξ, η, g)-structure is called an almost contact metric structure. Define a
tensor field Φ of type (0,2) by Φ(X, Y)=g(φX, Y). If dη=Φ, an almost contact
metric structure is called a contact metric structure. If moreover N+dη®ξ=0, a
contact metric structure is said to be a normal contact metric structure (Sasakian
structure), which satisfies
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(2. 4) (Vxφ)Y=η{Y)X-g{Xy Y)ξ,

where V indicates the Riemannian connection for g.

§3. Invariant submanifolds in normal contact metric manifolds.

A submanifold M=M2n+ι of a normal contact metric manifold M — M*TJΛ

(r—n=p>0) with structure tensors (φ, f, η, g) is said to be invariant if

(i) I is tangent to M everywhere on M,
(ii) φ(X) is tangent to M for any tangent vector X to M.

An invariant submanifold M has the induced structure tensors (φ, ξ, η, g). An
invariant submanifold M{φ> ξ, η, g) of a normal contact metric manifold M(φy I, fj, g)
is also normal [7].

The formulas given in the following lemma have been proved by Yano and
Ishihara [7].

LEMMA 3.1. Let M be an invariant submanifold of a normal contact metric
manifold A/. Then we have

(3.1) a(X,φY)=φ(a(X, Y)),

(3.2) a(φX9φY)=-a(X, F),

(3.3) a(X,ξ)=0

for any vector fields X and Y on M.

Let M=M2n+1 be an invariant submanifold of a normal contact metric manifold
M—M2rΛl and R, R be the Riemannian curvature tensors of M and M respectively.
Then, using (1. 5), we have

(3. 4) R(X, φX, X, φX) = R(X, φXy X, φX)-2g(a{Xy X), a(Xy X))

for any vector field X on M.
Let K (resp. K) be a φ (resp. ^)-sectional curvature of M (resp. M). Then as

the immediate consequence of (3. 4), we get

PROPOSITION 3. 2. Let M be an invariant submanifold of M. Then the φ and
φ-sectional curvature satisfy the inequality K^K, with equality holding if and only
if M is totally geodesic.

Let S be the Ricci tensor of M. Since M is an invariant submanifold of M,
we can, choose a ^-basis (VΊ, * ,Fi , φVΊ, •••, φVTi I) such that Vi, --',Vn are tangent
to M. Then (Vu •••, Vn, φVΊ, •••, φVn, ξ) is an orthonormal basis in TX(M).

If M is of constant φ -sectional curvature k, then for any X, Ϋ,
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, Z)X-g(X, Z)Ϋ} + (k-l){rj(X)η{Z)Ϋ

(3. 5) -fj(Ϋ)τj(Z)X + g(X, Z)η{Ϋ)ξ-g(γy Z)η{X)ξ

+ g(φΫ, Z)φX + g(φZ, X)φΫ-2g(ψX, Ϋ)φZ),

[4]. Thus, if (M, g) is of constant ^-sectional curvature 1, it is of constant cur-
vature 1.

Using (1. 5), (3. 1), (3. 2) and (3. 5), we have by a straitforward calculation

PROPOSITION 3. 3. Let M2r+ί be a normal contact metric manifold of constant
φ-sectional curvature k and M 2 w + 1 be an invariant submanifold of M. Then we get

S(X, F)= # ± 3 ) + ( ^ l ) giX, F ) _ ^

(3.6)

-2Σΰ(.a(VuX)MV» Y))
7 = 1

for any X, YeTx(M), where (Vu •••, Vr,φVu •••, φVr, I) is a φ-basis for TX(M)
such that Vi, •••, VnsTx(M).

Now, we prove

THEOREM 3. 4. If there is an invariant Einstein submanifold M in M of
constant φ-sectional curvature k, then k^l. When and only when k = l, Mis totally
geodesic.

Proof By the assumption, we have S(X, Y)=2ng(X, Y) for any X, YtTx{M)y

from which, S(VJf Vj)=2n. On the other hand, by means of (3. 6), we obtain

(3. 7) S( VJt Vj)= rc(

for any V3 O ' = l , •••, w). Hence we get

which proves our assertion. Q.E.D.

Theorem 3. 4 has been given by Yano and Ishihara [8] in the case of codi-
mension 2. If M is of constant curvature and if M is Einsteinian, then, by
Theorem 3. 4, M is of constant curvature.

Let Sc denote the scalar curvature of an invariant submanifold M2a x of a
normal contact metric manifold M2r+1. Then, using (3. 7), we obtain

PROPOSITION 3. 5. Let M2r]1 be a normal contact metric manifold of constant
φ-sectional curvature k and M2ritl be an invariant submanifold of M. Then the
scalar curvature Sc of M is given by
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Sc = n*(k + 3) + n(k + l)-i Σ 0HV%, Vj), a(Vt, Vj)).

From Proposition 3. 5, we have

THEOREM 3. 6. Let M2r+1 be a normal contact metric manifold of constant
φ-sectional curvature k and M2 r ι * be an invariant submanifold of M. Then M is
totally geodesic if and only if

If M is of constant ^-sectional curvature k, then Sc = n\k + 3)-\-n(k+l), [4].
Therefore, we see that, if M is of constant ^-sectional curvature k> by Proposition
3.5,

4 »

§4. Invariant submanifold satisfying R(X, Y) a=0.

In this section, we shall give some conditions for an invariant submanifold of
a normal contact metric manifold to be totally geodesic. First, we prove

PROPOSITION 4.1. Let M be an invariant submanifold of a normal contact
metric manifold M. Then M is totally geodesic if and only if (FχFγa)(ς, ?) = 0 for
any vector fields X and Y on M.

Proof. Taking account of (1. 3) and Lemma 3.1, we have

a(X, φY)=Dγ(a(X, ξ))-(Fγa)(X, ζ)-a{FγX, ξ)

(4.1)
= -(Pτa)(X,ξ).

Using (4. 1), we obtain

a(φX,φY)=-(Pγa)(φX,ξ)

= -Dx((Fγa)(ξ, ξ)) + (FxFγa)(ξ, ξ) + (Fγa)(Fxξ, ξ)

(4.2)
ξ, ξ)-a(φX, φY)

Thus, by Lemma 3. 1,

a(X, Y)= - ~(γzVγά)(ξ, ξ) for any X,

which proves our assertion. Q.E.D.
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We now put R(X, Y) β=[Fx, Fγ]β-FίX,FYlβ for a normal bundle valued sym-
metric 2-form β, where Vx being defined by (1. 3). Then we have

(4. 3) (R(X, Y)-a)(V, W) = Rλ(X, Y)(a(V, W))-a(R(X, Y)V, W)-a(V, R(X, Y)W)

for any vector fields X, Y, V and W on M, where R\Xy Y) = [DX, DY]-DLX,Yy

PROPOSITION 4. 2. Let M be an invariant submanifold of a normal contact
metric manifold M. Then M is totally geodesic if and only if R(X, ξ) a = 0 for any
vector field X on M.

Proof. If M is totally geodesic, then, by (4. 3), R(X, ξ)-a=0 for any Xe3C(M).
Conversely, if R(X,ξ)>a = 0 for any Xs2C(M), then we have

R\X, ξ)(a(V, W)) = a(R(X, ζ)V, W) + a(V, R(X, ξ)W).

If we put V=ζ, then, from Lemma 3. 1, we get

a(ξ, W) = 0, a(ζ, R(X, ξ) W) = 0.

That is, we get

(4.4) a(R(X,ξ)ξ, W) = 0.

On the other hand, M being a normal contact metric manifold, we have

(4.5) R(X,ξ)ξ = X-g(X,ξ)ξ.

From (4. 4) and (4. 5), we conclude that

a(X, W) = g(X,ξ)a(ξ, W) = 0,

which shows that M is totally geodesic. Q.E.D.

THEOREM 4. 3. Let M be an invariant submanifold of a normal contact metric
manifold M. Then the following conditions are equivalent.

( i ) M is totally geodesic, (ii) (FxFγa)(ξ, ξ) = 0,

(iii) β(X,ζ) a = 0, (iv) ί(I, 7) α = 0,

X and Y being arbitrary vector fields on M.
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