QUATERNION KÄHLERIAN MANIFOLDS AND FIBRED RIEMANNIAN SPACES WITH SASAKIAN 3-STRUCTURE

By Shigeru Ishimara

In a previous paper [6], we have studied fibred Riemannian spaces with Sasakian 3 -structure and showed that there appears a kind of structure in the base space of a fibred Riemannian space with Sasakian 3 -structure. In the present paper, we shall show that this kind of structure is what is called a quaternion Kählerian structure (See [1], [2], [3], [5], [7] and [9]).

In §1, we recall definitions and some properties of a fibred Riemannian space with Sasakian 3 -structure for later use. In $\S 2$, we show that the base space of a fibred Riemannian space with Sasakian 3 -structure admits a quaternion Kählerian structure defined in [5]. The last section is devoted to state some properties of a quaternion Kählerian manifold. Quaternion Kählerian manifolds will be studied a little bit in detail in [5].

Manifolds, mappings and geometric objecrs we consider are assumed to be differentiable and of class C^{∞}. The indices h, \imath, \jmath, k run over the range $\{1,2, \cdots, n\}$, the indices a, b, c, d, e over the range $\{1,2, \cdots, n-3\}$ and the indices $\alpha, \beta, \gamma, \delta, \varepsilon$ over the range $\{1,2,3\}$. The summation convention will be used with respect to these three systems of indices.

§ 1. Fibred Riemannian spaces with Sasakian 3-structure.

In a Riemannian manifold ($\tilde{M}, \tilde{g})$ of dimension n with metric tensor \tilde{g}, let there be given a Killing vector ξ of unit length satisfying the condition

$$
\begin{equation*}
\tilde{V}_{j} \tilde{\tilde{V}}_{i} \xi^{h}=\xi_{i} \delta_{j}^{h}-\xi^{h} \tilde{g}_{j i}, \tag{1.1}
\end{equation*}
$$

ξ^{h} being components of $\hat{\xi}$ and $\tilde{g}_{j i}$ components of \tilde{g}, where $\xi_{i}=\xi^{h} \tilde{g}_{h i}$ and $\tilde{V_{j}}$ denote the Riemannian connection of (\tilde{M}, \tilde{g}). Then ξ is called a Sasakian structure or a normal contact metric structure in ($\tilde{M}, \tilde{g})$ (See [4] and [8]).

We now assume that (\tilde{M}, \tilde{g}) admits three Sasakian structures ξ, η and ζ which are mutually orthogonal and satisfy the conditions

$$
[\eta, \zeta]=2 \xi, \quad[\zeta, \xi]=2 \eta, \quad[\xi, \eta]=2 \zeta .
$$

Received September 19, 1972.

Then the set $\{\underset{\sim}{\xi}, \eta, \zeta\}$ is called a Sasakian 3 -structure or a normal contact metric 3 -structure in (\tilde{M}, \tilde{g}). In such a case, \tilde{M} is necessarily of dimension $n=4 m+3(m \geqq 0)$. Moreover, the distribution D spanned by ξ, η and ζ is integrable and every integral manifold of D is totally geodesic and of constant curvature 1 (See [6]).

Next, we assume that in (\tilde{M}, \tilde{g}) with Sasakian 3 -ststructure $\{\xi, \eta, \zeta\}$ the distribution D is regular. Then, denoting by M the set of all maximal integral submanifolds of D and by $\pi: \tilde{M} \rightarrow M$ the natural projection, we see that M becomes a differentiable manifold of dimension $4 m(=n-3)$, if M is naturally topologized. That is to say, M is the quotient space \tilde{M} / D and $\pi: \tilde{M} \rightarrow M$ is differentiable and of rank $4 m$ everywhere. In such a case, (\tilde{M}, \tilde{g}) is called a fibred Riemannian space with Sasakian 3 -structure $\{\xi, \eta, \zeta\}$ and each of maximal integral manifold of D is called a fibre. Then each fibre is coonected. In the sequel, let (\tilde{M}, \tilde{g}) be a fibred Riemannian space with Sasakian 3 -structure $\{\xi, \eta, \zeta\}$ and assume that $\operatorname{dim} M \geqq 7$ (i.e., $m \geqq 1$.

We take coordinate neighborhoods $\left\{\tilde{U} ; x^{h}\right\}$ of \tilde{M} such that $\pi(\tilde{U})=U$ are coordinate neighborhoods of M with local coordinates (v^{a}). Then the projection π : $\tilde{M} \rightarrow M$ may be expressed, with respect to $\left\{\tilde{U} ; x^{h}\right\}$ and $\left\{U ; v^{a}\right\}$, by certain equations of the form

$$
\begin{equation*}
v^{a}=v^{a}\left(x^{1}, \cdots, x^{n}\right), \tag{1.2}
\end{equation*}
$$

$v^{a}\left(x^{1}, \cdots, x^{n}\right)$ denoting coordinates in U of the projection $P=\pi(\sigma)$ of a point σ with coordinates x^{h} in \tilde{U}, where $v^{a}\left(x^{1}, \cdots, x^{n}\right)$ are differentiable functions of variables x^{h} with Jacobian $\left(\partial v^{a} / \partial x^{h}\right)$ of the maximum rank $4 m(=n-3)$. We take a fibre F such that $F \cap \tilde{U} \neq \phi$. Then we may assume that $F \cap \tilde{U}$ is connected. We can introduce local coordinates $\left(u^{\alpha}\right)$ in $F \cap \widetilde{U}$ in such a way that $\left(v^{a}, u^{\alpha}\right)$ is a system of local coordinates in $\tilde{U},\left(v^{a}\right)$ being coordinates of $\pi(F)$ in U. Differentiating (1.2) with respect to x^{2}, we put $E_{\imath}{ }^{a}=\partial_{i} v^{a}$, where $\partial_{i}=\partial / \partial x^{2}$. We denote by E^{a} local covector fields with components $E_{\imath}{ }^{a}$ in \tilde{U}. On the other hand, $C_{\alpha}=\partial / \partial u^{\alpha}$ form a natural frame tangent to each fibre F in $F \cap \tilde{U}$. Denoting by $C^{h}{ }_{\alpha}$ components of C_{α} in \tilde{U}, we put $C_{\imath}{ }^{\alpha}=\tilde{g}_{i h} \bar{g}^{\alpha \beta} C^{h}$, where $\tilde{g}_{j i}$ are components of \tilde{g} in $\tilde{U}, \bar{g}_{\gamma \beta}=\tilde{g}_{j i} C^{j} C_{r} C^{i}{ }_{\beta}$ and $\left(\bar{g}^{\gamma \beta}\right)=\left(\bar{g}_{\gamma \beta}\right)^{-1}$. We now denote by C^{α} local covector fields with components $C_{\imath}{ }^{\alpha}$ in \tilde{U}. We next define $E^{h}{ }_{a}$ by $\left(E^{h}{ }_{a}, C^{h}{ }_{\alpha}\right)=\left(E_{\imath}^{a}, C_{\imath}^{\alpha}\right)^{-1}$ and denote by E_{a} local vector fields with components $E^{h}{ }_{a}$ in \tilde{U}. Then $\left\{E_{b}, C_{\beta}\right\}$ is a local frame in \tilde{U} and $\left\{E^{a}, C^{\alpha}\right\}$ the coframe dual to $\left\{E_{b}, C_{\beta}\right\}$ in \tilde{U}. we now obtain

$$
\begin{array}{ll}
\mathcal{L}_{C_{\beta}} E^{a}=0, & \mathcal{L}_{C_{\beta}} E_{b}=-P_{b \beta}{ }^{a} C_{\alpha}, \tag{1.3}\\
\mathcal{L}_{C_{\beta}} C_{\alpha}=0, & \mathcal{L}_{C_{\beta}} C^{a}=P_{\partial \beta}{ }^{\alpha} E^{b},
\end{array}
$$

$\mathcal{L}_{\widetilde{X}}$ denoting the Lie derivation with respect to a vector field \tilde{X} in \tilde{M}, where $P_{b \beta}{ }^{\alpha}$ are local functions given in \tilde{U} by

$$
\begin{equation*}
P_{b \beta}^{\alpha}=\left(\partial_{b} a_{\beta}\right) a^{\alpha}+\left(\partial_{b} b_{\beta}\right) b^{\alpha}+\left(\partial_{b} c_{\beta}\right) c^{\alpha}, \tag{1.4}
\end{equation*}
$$

∂_{b} being defined by $\partial_{b}=E^{i} \partial_{b}$ in \tilde{M}, and $\xi=a^{\alpha} C_{\alpha}, \eta=b^{\alpha} C_{\alpha}, \zeta=c^{\alpha} C_{\alpha}, a_{\beta}=\bar{g}_{\beta \alpha} a^{\alpha}, b_{\beta}=\bar{g}_{\beta \alpha} b^{\alpha}$, $c_{\beta}=\bar{g}_{\beta \alpha} c^{\alpha}$ in \tilde{U} (See [6]).

A tensor field, say \tilde{T} of type (1,2), in \tilde{M} is represented in \tilde{U} as

$$
\begin{aligned}
\tilde{T}= & T_{c b^{a}} E^{c} \otimes E^{b} \otimes E_{a}+T_{c b}{ }^{\alpha} E^{c} \otimes E^{b} \otimes C_{\alpha}+\cdots \\
& +T_{r \beta}{ }^{a} C^{\gamma} \otimes C^{\beta} \otimes E_{a}+T_{r \beta}{ }^{\alpha} C^{\gamma} \otimes C^{\beta} \otimes C_{\alpha}
\end{aligned}
$$

where $T_{c b}{ }^{a}, T_{c b}{ }^{\alpha}, \cdots, T_{r \beta}{ }^{a}$ and $T_{r \beta}{ }^{\alpha}$ are local functions in \tilde{U}. In the right hand side, the first term $T_{c b}{ }^{a} E^{c} \otimes E^{b} \otimes E_{a}$ determines a global tensor field in \tilde{M}, which is called the horizontal part of \tilde{T} and denoted by \widetilde{T}^{H}. When $\widetilde{T}=\widetilde{T}^{H}, \widetilde{T}$ is said to be horizontal. For a function \tilde{f} in \tilde{M}, its horizontal part \tilde{f}^{H} is defined by $\tilde{f} \tilde{f}^{H}=\tilde{f}$.

A tensor field \widetilde{T} in \tilde{M} is said to be projectable if it satisfies $\left(\mathcal{L}_{\tilde{X}} \tilde{T}^{H}\right)^{H}=0$, for any vertical vector field \widetilde{X}, i.e., for any vector field \widetilde{X} tangent to the fibre at each point. Then a tensor field \tilde{T} in \tilde{M} is projectable if $\mathcal{L}_{\xi} \tilde{T}=0, \mathcal{L}_{\eta} \tilde{T}=0$ and $\mathcal{L}_{\xi} \tilde{T}=0$. A function \tilde{f} in \tilde{M} is projectable if $\mathcal{L} \tilde{X} \tilde{f}=0$ for any vertical vector field \tilde{X}. Thus a function \tilde{f} in \tilde{M} is projectable if and only if it is constant along each fibre. A tensor field, say \tilde{T} of type (1,2), in \tilde{M} is projectable if and only if the local functions $T_{c b}{ }^{a}$ are all contant along $F \cap \tilde{U}, F$ being an arbitrary fibre, where \widetilde{T}^{H} $=T_{c b}{ }^{a} E^{c} \otimes E^{b} \otimes E_{a}$ in \tilde{U}. When \tilde{f} is a projectable function in \tilde{M}, there is in M a function f such that $\tilde{f}=f \circ \pi$. The function f is called the proiection of \tilde{f} and denoted by $f=p \tilde{f}$. In the sequel, we identify any projectable function \tilde{f}, local or global, in \tilde{M} with its projection $p \tilde{f}$. When a tensor field, say \tilde{T} of type (1,2), in \tilde{M} is projectable, there is in M a tensor field T of the same type as that of \widetilde{T} with components $T_{c b}{ }^{a}$, which are identified with their projection, where $\tilde{T}^{H}=T_{c b}{ }^{a} E^{c} \otimes E^{b}$ $\otimes E_{a}$ in \tilde{U}. We call the tensor field T the projection of \tilde{T} and denoted it by $T=p \tilde{T}$ (See [6]). Given in \tilde{M} a projectable function \tilde{f}, local or global, the local functions $\partial_{b} \tilde{f}=E^{i}{ }_{b} \partial_{i} \tilde{f}$ in \tilde{U} is projectable and its projection is $\partial_{b} f=\partial f / \partial v^{b}$ in U, where $f=p \tilde{f}$. In the sequel, we put $\partial_{b}=E^{i}{ }_{b}\left(\partial / \partial x^{i}\right)$ in \tilde{U} and $\partial_{b}=\partial / \partial v^{b}$ in U.

Since ξ, η and ζ are Killing vectors in ($\tilde{M}, \tilde{g})$, we have $\mathcal{L}_{\xi} \tilde{g}=0, \mathcal{L}_{\eta} \tilde{g}=0$ and $\mathcal{L}_{\xi} \tilde{g}=0$. Thus \tilde{g} is projectable. We denote by g the projection $p \tilde{g}$ of \tilde{g}. Thus we obtain a Riemannian manifold (M, g), which is called the vase space. If we put $\tilde{g}^{H}=g_{c b} E^{c} \otimes$ E^{b}, then $g_{c b}$ are projectable functions in \tilde{U}. Thus g has components $g_{c b}$ in $\left\{U ; v^{a}\right\}$.

Let \tilde{T} be a projectable tensor field in \tilde{M}. Then $\tilde{V} \tilde{T}$ is projectable, \tilde{V} being the the Riemannian connection of (\tilde{M}, \tilde{g}), and its projection is given by

$$
\begin{equation*}
p(\tilde{\nabla} \tilde{T})=\nabla T, \tag{1.5}
\end{equation*}
$$

where $T=p \tilde{T}$ and Γ denotes the Riemannian connection of the base space (M, g) (See [6]).

We now denote by α, β and γ the 1 -forms associated with ξ, η and ζ respectively, for example $\alpha(\tilde{X})=\tilde{g}(\widetilde{X}, \xi)$ for any vector field \tilde{X} in \tilde{M}. If we put

$$
\begin{array}{llc}
\phi=\tilde{V} \xi, & \psi=\tilde{V} \eta, & \theta=\tilde{V} \zeta \\
\Phi=\tilde{V} \alpha, & \Psi=\tilde{V} \beta, & \Theta=\tilde{V} \gamma
\end{array}
$$

then Φ, Ψ and Θ are skew-symmetric tensor fields, i.e., 2 -forms in \tilde{M}. Moreover, we have

$$
\begin{aligned}
& \phi \xi=0, \quad \phi \eta=0, \quad \theta \zeta=0 \\
& \theta \eta=-\phi \zeta=\xi, \quad \phi \zeta=-\theta \xi=\eta, \quad \phi \xi=-\phi \eta=\zeta,
\end{aligned}
$$

from which,

$$
\begin{equation*}
\phi=\phi^{H}+\gamma \otimes \eta-\beta \otimes \zeta, \psi=\phi^{H}+\alpha \otimes \zeta-\gamma \otimes \xi, \theta=\theta^{H}+\beta \otimes \xi-\alpha \otimes \eta . \tag{1.6}
\end{equation*}
$$

We also have

$$
\begin{equation*}
\left(\phi^{H}\right)^{2}=-I^{H}, \quad\left(\psi^{H}\right)^{2}=-I^{H}, \quad\left(\theta^{H}\right)^{2}=-I^{H}, \tag{1.7}
\end{equation*}
$$

$$
\theta^{H} \psi^{H}=-\psi^{H} \theta^{H}=\dot{\phi}^{H}, \phi^{H} \theta^{H}=-\theta^{H} \phi^{H}=\psi^{H}, \psi^{H} \phi^{H}=-\phi^{H} \psi^{H}=\theta^{H},
$$

where I is the identity tensor field of type (1,1) in M (See [6]). We have obtained in [6]

$$
\begin{align*}
& \left(\mathcal{L}_{\xi} \varphi^{H}\right)^{H}=0, \quad\left(\mathcal{L}_{n} \varphi^{H}\right)^{H}=-2 \theta^{H}, \quad\left(\mathcal{L}_{\zeta} \varphi^{H}\right)^{H}=2 \psi^{H}, \\
& \left(\mathcal{L}_{\xi} \psi^{H}\right)^{H}=2 \theta^{H}, \quad\left(\mathcal{L}_{\eta} \psi^{H}\right)^{H}=0, \quad\left(\mathcal{L}_{\xi} \psi^{H}\right)^{H}=-2 \phi^{H}, \tag{1.8}\\
& \left(\mathcal{L}_{\xi} \theta^{H}\right)^{H}=-2 \psi^{H}, \quad\left(\mathcal{L}_{\eta} \theta^{H}\right)^{H}=2 \phi^{H}, \quad\left(\mathcal{L}_{\xi} \theta^{H}\right)^{H}=0 .
\end{align*}
$$

If we put in \tilde{U}

$$
\begin{equation*}
\phi^{H}=\phi_{b}{ }^{a} E^{b} \otimes E_{a}, \psi^{H}=\psi_{b}{ }^{a} E^{b} \otimes E_{a}, \theta^{H}=\theta_{b}{ }^{a} E^{b} \otimes E_{a}, \tag{1.9}
\end{equation*}
$$

where $\phi_{0}{ }^{a}, \psi_{0}{ }^{a}$ and $\theta_{0}{ }^{a}$ are local functions in \tilde{U}, then we have

$$
\begin{equation*}
\Phi^{H}=\phi_{b a} E^{b} \otimes E^{a}, \Psi^{H}=\psi_{b a} E^{b} \otimes E^{a}, \Theta^{H}=\theta_{b a} E^{b} \otimes E^{a}, \tag{1.10}
\end{equation*}
$$

where $\phi_{b a}=-\phi_{a b}=\phi_{b}{ }^{c} g_{c a}, \psi_{b a}=-\psi_{a b}=\psi_{b}{ }^{c} g_{c a}, \theta_{b a}=-\theta_{a b}=\theta_{b}{ }^{c} g_{c a}$.
We have already proved in [6] the formulas

$$
\left.\tilde{V}_{j} E^{h}{ }_{b}=\left\{\begin{array}{c}
a \\
c
\end{array}\right\}\right\}_{j}{ }^{c} E^{h}{ }_{a}+h_{c b}{ }^{\alpha} E_{j}{ }^{c} C^{h}{ }_{\alpha}-h_{b}{ }^{a}{ }_{\beta} C_{j}{ }^{\beta} E^{h}{ }_{a},
$$

$$
\tilde{V}_{j} C^{h_{\beta}}=-h_{c}{ }^{a}{ }_{\beta} E_{j}{ }^{c} E^{h_{a}}+P_{c \beta}{ }^{\alpha} E_{j}{ }^{c} C^{h_{\alpha}}+\left\{\begin{array}{c}
\alpha \tag{1.11}\\
\gamma
\end{array}\right\} C_{j} C^{\gamma}{ }^{n}{ }_{\alpha}
$$

and

$$
\left.\tilde{\nabla}_{j} E_{i}{ }^{a}=-\left\{\begin{array}{c}
a \tag{1.12}\\
c
\end{array}\right\}\right\}_{j}{ }^{c} E_{i}{ }^{b}+h_{b}{ }^{a}{ }_{\beta}\left(E_{j}{ }^{b} C_{i}{ }^{\beta}+C_{j}{ }^{\beta} E_{i}{ }^{b}\right),
$$

$$
\tilde{\nabla}_{j} C_{i}{ }^{\alpha}=-h_{c b}{ }^{\alpha} E_{j}{ }^{c} E_{i}{ }^{b}-P_{c \beta}{ }^{\alpha} E_{j}{ }^{c} C_{i}{ }^{\beta}-\left\{\begin{array}{c}
\alpha \\
\gamma
\end{array}\right\} C_{j}^{\gamma} C_{i}{ }^{\beta},
$$

where we have put in \tilde{U}

$$
\begin{aligned}
& \left\{\begin{array}{c}
a \\
c
\end{array}\right\}=\frac{1}{2} g^{a e}\left(\partial_{c} g_{b e}+\partial_{b} g_{c e}-\partial_{e} g_{c b}\right), \\
& \left\{\begin{array}{c}
\alpha \\
\gamma \beta
\end{array}\right\}=\frac{1}{2} g^{\alpha c}\left(\partial_{\tau} g_{\beta c}+\partial_{\beta} g_{r c}-\partial_{c} g_{r \beta}\right),
\end{aligned}
$$

∂_{β} being defined by $\partial_{\beta}=C^{i}{ }_{\beta}\left(\partial / \partial x^{i}\right)=\partial / \partial u^{\beta}$ in \tilde{U}, and

$$
\begin{equation*}
h_{c b}{ }^{\alpha}=-\left(a^{\alpha} \phi_{c b}+b^{\alpha} \psi_{c b}+c^{\alpha} \theta_{c b}\right) . \tag{1.13}
\end{equation*}
$$

On the other hand, we have from (1.1)

$$
\begin{equation*}
\tilde{\tilde{V}} \phi=\alpha \otimes I-\tilde{g} \otimes \xi . \tag{1.14}
\end{equation*}
$$

If we substitute (1.6) into (1.14) and use (1.9), (1.11) and (1.12), then we find

$$
\left.\partial_{c} \phi_{b}{ }^{a}+\left\{\begin{array}{c}
a \\
c
\end{array}\right\}\right\}^{2} \phi_{b}{ }^{e}-\left\{\begin{array}{c}
e \\
c
\end{array}\right\} \phi_{e}{ }^{a}=0,
$$

$$
\begin{equation*}
\partial_{r} \phi_{b}{ }^{a}+h_{b}{ }_{r}{ } \phi_{e}{ }^{a}-h_{e}{ }^{a}{ }_{r} \phi_{b}{ }^{e}=0 . \tag{1.15}
\end{equation*}
$$

Similarly, we obtain

$$
\partial_{c} \psi_{b}^{a}+\left\{\begin{array}{c}
a \\
c
\end{array}\right\} \psi^{\}} \psi_{b}^{e}-\left\{\begin{array}{c}
e \\
c
\end{array}\right\}
$$

$$
\begin{equation*}
\partial_{r} \psi_{b}{ }^{a}+h_{b}{ }_{r} \psi_{e}{ }^{a}-h_{e}{ }^{a}{ }_{r} \psi_{b}^{e}=0, \partial_{r} \theta_{b}{ }^{a}+h_{b}{ }_{r}{ }_{r} \theta_{e}{ }^{a}-h_{e}{ }^{a}{ }_{r} \theta_{b}{ }^{e}=0 . \tag{1.16}
\end{equation*}
$$

If we now take account of (1.6), we find

$$
\phi=\phi_{b}{ }^{a} E^{b} \otimes E_{a}+\phi_{\beta}{ }^{a} C^{\beta} \otimes C_{a}, \psi=\psi_{b}{ }^{a} E^{b} \otimes E_{a}+\psi_{\beta}{ }^{\alpha} C^{\beta} \otimes C_{a},
$$

(1.17)

$$
\theta=\theta_{b}{ }^{a} E^{b} \otimes E_{a}+\theta_{\beta}{ }^{\alpha} C^{\beta} \otimes C_{\alpha},
$$

where we have put $\phi_{\beta}{ }^{\alpha}=c_{\beta} b^{\alpha}-b_{\beta} c^{\alpha}, \psi_{\beta}{ }^{\alpha}=a_{\beta} c^{\alpha}-c_{\beta} a^{\alpha}, \theta_{\beta}{ }^{\alpha}=b_{\beta} a^{\alpha}-a_{\beta} b^{\alpha}$.

§ 2. A structure induced in the base space.

Consider a point P of the base space M and a point σ of \tilde{M} such that $\pi(\sigma)=\mathrm{P}$. We denote by $\phi_{\sigma}, \psi_{\sigma}$ and θ_{σ} respectively the values of ϕ, ψ and θ at σ. Then we can define tensors \bar{F}_{o}, \bar{G}_{o} and \bar{H}_{σ} of type $(1,1)$ at $\mathrm{P} \in M$ respectively by

$$
\begin{equation*}
\bar{F}_{\sigma} A=d \pi\left(\phi_{\sigma} A^{L}\right), \bar{G}_{\sigma} A=d \pi\left(\psi_{\sigma} A^{L}\right), \bar{H}_{\sigma} A=d \pi\left(\theta_{\sigma} A^{L}\right) \tag{2.1}
\end{equation*}
$$

for any vector A tagent to M at $\mathrm{P}, d \pi$ being the differential of $\pi: \tilde{M} \rightarrow M$, where A^{L} denotes the horizontal lift of A at σ, i.e., the unique horizontal vector tagent to \tilde{M} at σ such that $d \pi\left(A^{L}\right)=A$. We now denote by V_{P} the linear closure of the set

$$
\left(\bigcup_{\sigma \in \pi^{-1}(\mathbb{P})} \bar{F}_{\sigma}\right) \cup\left(\bigcup_{\sigma \in \pi^{-1}(\mathbb{P})} \bar{G}_{\sigma}\right) \cup\left(\bigcup_{\sigma \in \pi^{-1}(\mathbb{P})} \bar{H}_{\sigma}\right)
$$

of tensors of type (1,1) at $\mathrm{P} \in M$ and put $V=\cup_{\mathrm{P} \in M} V_{\mathrm{P}}$, which is a linear subbundle of the tensor bundle of type $(1,1)$ over M. Any element L of V, if $L \in V_{\mathrm{P}}$, satisfies $g_{\mathrm{P}}(L A, B)+g_{\mathrm{P}}(L B, A)=0$ for any vectors A and B tangent to M at P , where g_{P} is the value of g at P , because Φ, Ψ and Θ appearing in $\S 1$ are skew-symmetric.

Take a coordinate neighborhood $\left\{U, v^{a}\right\}$ of M and consider a local cross-section τ of \tilde{M} over U, that is, a mapping $\tau: U \rightarrow \tilde{M}$ such that $\pi \circ \tau$ is the identity mapping of U. If we put

$$
\begin{equation*}
F_{P}=\bar{F}_{\tau(\mathrm{P})}, \quad G_{P}=\bar{G}_{r(\mathrm{P})}, \quad H_{P}=\bar{H}_{\tau(\mathrm{P})}, \quad \mathrm{P} \in U, \tag{2.2}
\end{equation*}
$$

then the correspondences $\mathrm{P} \rightarrow F_{\mathrm{P}}, \mathrm{P} \rightarrow G_{\mathrm{P}}$ and $\mathrm{P} \rightarrow H_{\mathrm{P}}(\mathrm{P} \in U)$ define respectively local tensor fields F, G and H of type $(1,1) U$. If we take account of $(1,7)$, we obtain

$$
F^{2}=-I, \quad G^{2}=-I, \quad H^{2}=-I,
$$

$$
\begin{equation*}
H G=-G H=F, \quad F H=-H F=G, \quad G F=-F G=H \tag{2.3}
\end{equation*}
$$

in U, where I denotes the identity tensor field of type $(1,1)$ in M. Since Φ, Ψ and Θ appearing in $\S 1$ are skew-symmetric, F, G and H are almost Hermitian structures in U with respect to g. Summing up, we see that there is a triple $\{F, G, H\}$ of local almost Hermitian structures in (U, g) which satisfies (2.3) if there is given a local cross-section τ of \tilde{M} over U. Moreover, if we take account of (2.4), which will be given later, we see that $\{F, G, H\}$ is in U a local base of the bundle V.

We take another local cross-section τ^{\prime} of \tilde{M} in U^{\prime}. Then we can construct a triple $\left\{F^{\prime}, G^{\prime}, H^{\prime}\right\}$ of local almost Hermitian structures in (U^{\prime}, g) in the same way as above, i.e., $F^{\prime}{ }_{\mathrm{P}}=\bar{F}_{r^{\prime}(\mathrm{P})}, G^{\prime}{ }_{\mathrm{P}}=\bar{G}_{\tau^{\prime}(\mathrm{P})}, H_{\mathrm{P}}^{\prime}=\bar{H}_{\tau^{\prime}(\mathrm{P})}, \mathrm{P} \in U$. Thus, if $U \cap U^{\prime} \neq \phi$, taking account of (1.8), we find in $U \cap U^{\prime}$

$$
\begin{align*}
& F^{\prime}=s_{11} F+s_{12} G+s_{13} H, \\
& G^{\prime}=s_{21} F+s_{22} G+s_{23} H, \tag{2.4}\\
& H^{\prime}=s_{31} F+s_{32} G+s_{33} H
\end{align*}
$$

with functions $s_{r \beta}$ in $U \cap U^{\prime}$, where the matrix $S^{\prime} U, U^{\prime}=\left(s_{r \beta}\right)$ at each point of $U \cap U^{\prime}$ belongs to the proper orthogonal groups $S O(3)$ of dimension 3, because both of $\{F, G, H\}$ and $\left\{F^{\prime}, G^{\prime}, H^{\prime}\right\}$ satisfy (2.3).

Using a local cross-section $\tau: U \rightarrow \tilde{M}$, we construct in $\left\{U, v^{a}\right\}$ a local base $\{F, G, H\}$ of V in the same as above. If we assume that $\tau(U) \subset \tilde{U}$ and that x^{h} are local coordinates in \tilde{U}, then we may assume that the local cross-section τ is expressed as $x^{h}=\tau^{h}\left(v^{a}\right)$ with differentiable functions $\tau^{h}\left(v^{a}\right)$, where ($\tau^{h}\left(v^{a}\right)$) denote coordinates of the point $\tau(\mathrm{P})$ and $\left(v^{a}\right)$ those of $\mathrm{P} \in U$. Thus we have

$$
\begin{equation*}
\left(\partial_{b} \tau^{h}\right) E_{h}^{a}=\delta_{b}^{a} \tag{2.5}
\end{equation*}
$$

along $\tau(U)$, because $\pi \circ \tau$ is the identity mapping of U.
Next, taking account of (1.17) and (2.1), we have from (2.2)

$$
\begin{equation*}
F_{b}{ }^{a}(v)=\phi_{b}{ }^{a}\left(\tau^{h}(v)\right), \tag{2.6}
\end{equation*}
$$

where $F_{b}{ }^{a}(v)$ denote components of F defined by (2.2) at a point $\mathrm{P} \in U$ having coordinates $\left(v^{a}\right)$. Differentiating (2.6) with respect to v^{c} and using (2.5), we find

$$
\begin{aligned}
\partial_{c} F_{b}{ }^{a} & =\left(\partial_{h} \phi_{b}{ }^{a}\right)\left(\partial_{c} \tau^{h}\right)=\left(\left(\partial_{e} \phi_{b}{ }^{a}\right) E_{h}^{e}+\left(\partial_{r} \phi_{b}^{a}\right) C_{h}^{r}\right)\left(\partial_{c} \tau^{h}\right) \\
& =\partial_{c} \phi_{b}{ }^{a}+\left(\partial_{c} \tau^{h}\right) C_{h}{ }^{r} \partial_{r} \phi_{b}{ }^{a},
\end{aligned}
$$

from which, using (1.13), (1.15) and (2.6),

$$
\left.\begin{array}{rl}
\nabla_{c} F_{b}^{e} & =\partial_{c} F_{b}^{a}+\left\{\begin{array}{cc}
a \\
c & e
\end{array}\right\} F_{b}^{e}-\left\{\begin{array}{c}
e \\
c
\end{array}\right\}
\end{array}\right\} F_{e}^{a}
$$

where we have put $q_{c}=-b_{r} C_{h}{ }^{r} \partial_{c} \tau^{h}$ and $r_{c}=-c_{r} C_{h}{ }^{r} \partial_{c} \tau^{h}$. Thus we find

$$
\nabla_{X} F=r(X) G-q(X) H
$$

for any vector field X in U, where q and r are certain local 1-forms defind in U. Similarly, using (1.15) and (1.16), we obtain in U

$$
\begin{array}{lr}
\nabla_{X} F= & r(X) G-q(X) H \\
\nabla_{X} G=-r(X) F & +p(X) H, \tag{2.7}\\
\nabla_{X} H=q(X) F & -p(X) H
\end{array}
$$

for any vector field X in M, where p, q and r are local 1 -forms defined in U.

§ 3. Quaternion Kählerian maniforlds.

We are now going to define a structure which we call a quaternion Kählerian structure. Let (M, g) be a Riemannian manifold. Assume that there is over M a vector bundle V consisting of tensors of type $(1,1)$ such that any element L of V, if L belongs to the fibre V_{P} of V at $\mathrm{P} \in M$, satisfies $g_{\mathrm{P}}(L A, B)+g_{\mathrm{P}}(L B, A)=0$ for any vectors A and B tangent to M at P , where g_{P} denotes the value of g at P . Moreover, we suppose that the bundle V satisfies the following condition:
(a) In any coordinate neighborhood U and M, there is a local base $\{F, G, H\}$ of V such that F, G and H satisfy the condition (2.3).

Such a local base $\{F, G, H\}$ of V is called canonical local base of V in U. Then the set $\{g, V\}$ is called an almost quaternion metric structure. In such a case, M is necessarily of dimension $n=4 m(m \geqq 1)$ (See [5]).

In a Riemannian manifold (M, g) with almost quaternion metric structure $\{g, V\}$, we take intersecting coordinate neighborhoods U and U^{\prime}. Let $\{F, G, H\}$ and
$\left\{F^{\prime}, G^{\prime}, H^{\prime}\right\}$ be canonical local bases of V in U and in U^{\prime}, respectively. Then $\{F, G, H\}$ and $\left\{F^{\prime}, G^{\prime}, H^{\prime}\right\}$ satisfy in $U \cap U^{\prime}$ the condition (2.4) with $S_{U}, U^{\prime}=\left(s_{\gamma \beta}\right) \in \operatorname{SO}(3)$, because F^{\prime}, G^{\prime} and H^{\prime} are linear combinations of F, G and H. And both of $\{F, G$, $H\}$ and $\left\{F^{\prime}, G^{\prime}, H^{\prime}\right\}$ satisfy (2.3). Thus, taking account of the arguments developed in $\S 2$, we have

Proposition 1. The base space (M, g) of a fibred Riemannian space with Sasakian 3 -structure admits an almost quaternion metric structure $\{g, V\}$.

When the Riemannian connection V of a Riemannian manifold (M, g) with almost quaternion metric structure $\{g, V\}$ satisfies (2.7) for any local base $\{F, G, H\}$ of V and for any vector field X in $M,\{g, V\}$ is called a quaternion Kählerian structure and a set (M, g, V) of such a manifold M and such an almost quaternion metric structure $\{g, V\}$ a quaternion Kählerian manifold (See [5]). Thus we have

Proposition 2. The base space (M, g) of a fibred Riemannian space with Sasakian 3 -structure admits a quaternion Kählerian structure $\{g, V\}$, that is, (M, g, V) is a quaternion Kählerian manifold.

We now give a tipical example of quaternion Kählerian manifolds. Let $S^{4 m+3}$ be a unit sphere of curvature 1 and of dimension $4 m+3(m \geqq 1)$ and $\pi: S^{4 m+3} \rightarrow H P(m)$ the natural projection of $S^{4 m+3}$ onto a quaternion projective space $H P(m)$. As is well known, $S^{4 m+3}$ admito a Sasakian 3 -structure $\{\xi, \eta, \zeta\}$ and any fibre $\pi^{-1}(\mathrm{P})$, $\mathrm{P} \in H P(m)$, is a maximal integral manifold of the distribution D spanned by ξ, η and ζ. Thus, $H P(m)$ is the base space of a fibred Riemannian space with Sasakian 3 -structure. Therefore $H P(m)$ admits the induced quaternion Kählerian structure $\{g, V\}$. We have already seen in [5] that the curvature tensor K of $H P(m)$ has local components of the form

$$
K_{d c b}{ }^{a}=\delta_{d}^{a} g_{c b}-\delta_{c}^{a} g_{d b}+F_{d}{ }^{a} F_{c b}-F_{c}{ }^{a} F_{d b}-2 F_{d c} F_{b}{ }^{a}
$$

$$
\begin{equation*}
+G_{d}{ }^{a} G_{c b}-G_{c}{ }^{a} G_{d b}-2 G_{d c} G_{b}{ }^{a}+H_{d}{ }^{a} H_{c b}-H_{c}{ }^{a} H_{d b}-2 H_{d c} H_{b}{ }^{a}, \tag{3.1}
\end{equation*}
$$

$g_{c b}, F_{b}{ }^{a}, G_{b}{ }^{a}$ and $H_{b}{ }^{a}$ being respectively components of g, F, G and H, where $F_{c b}$ $=F_{c}^{e} g_{e b}, G_{c b}=G_{c}{ }^{e} g_{e b}$, and $H_{c b}=H_{c}{ }_{c}{ }^{e} g_{e b}$. The F, G and H are locally defined, but the righthand side of (3.1) is globally defined (See [5]). The linear holonomy group of $H P(m)$ coincides with $S_{\mathrm{P}}(m) \cdot S_{\mathrm{P}}(1)$ itself (See [1], [2], [3] and [5]).

Bibliography

[1] Alekseevski, D. V., Riemannian spaces with exceptional holonomy groups. Funktsional' nyi Analiz i Ego Prilozhenyia 2 (1968), 1-10.
[2] Compact quaternion spaces. Funktsional' nyi Analiz 1 Ego Prilozhenyıa 2 (1968), 11-20.
[3] Gray, A., A note on manifolds whose holonomy group is a subgroup of $S_{\mathrm{P}}(m)$. $S_{\mathrm{P}}(1)$. Michigan Math. J. 16 (1969), 125-128.
[4] Hatakeyama, Y. Y. Ogawa, and S. Tanno, Some properties of manifolds with contact metric structure. Tôhoku Math. J. 15 (1963), 42-48.
[5] Ishihara, S., Notes on quaternion Kählerıan manıfolds. To appear in Journ. of Diff. Geon.
[6] Ishihara, S., and M. Konishi, Fibred Riemannian space with Sasakıan 3-structure. Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo (1972), 179-194.
[7] Kraines, V. K., Topology of quaternionic manifolds. Trans. Amer. Math. Soc. 122 (1966), 357-367.
[8] SASAKI, S., Almost contact manıfolds I, II. Lecture note, Tôhoku Unıv. (1965, 1967).
[9] Wolf, J.A., Complex homogenous contact manıfolds and quaternionic symmetric spaces. J. Math. Mech. 14 (1963), 1033-1047.

Tokyo Institute of Technology.

