COMPACT HYPERSURFACES IN AN ODD DIMENSIONAL SPHERE

By Hisao Nakagawa and Ichiro Yokote

Introduction.

As is well known, a ($2 n+1$)-dimensional sphere $S^{2 n+1}(c)$ of constant curvature c is naturally endowed with a normal contact metric structure and any hypersurface M in $S^{2 n+1}(c)$ admits also an (f, g, u, v, λ)-structure, which is defined by Yano and Okumura [8], induced from the Sasakian structure in $S^{2 n+1}(c)$. For an (f, g, u, v, λ)-structure, the exterior derivatives of the dual 1 -form of the vector field u is equal to twice of the fundamental 2 -form induced from f. It might be interesting to study the manifold structure of the hypersurfaces of an odddimensional sphere, when the exterior derivatives of the dual 1 -form of v is proportional to the fundamental 2 -form induced from f. Recently, in this sense, taking in connection with the paper due to Blair, Ludden and Yano [1], the present authors [4] have proved the following

Theorem. Let M be a complete orientable hypersurface with constant scalar curvature in $S^{2 n+1}(1)$. We assume that, for an (f, g, u, v, λ)-structure on M, there exists a constant ϕ such that

$$
\begin{equation*}
H_{k}{ }^{2} f_{j}^{k}+f_{k}{ }^{i} H_{j}{ }^{k}=2 \phi f_{j}{ }^{2}, \tag{0.1}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\nabla_{j} v_{i}-\nabla_{i} v_{j}=2 \phi f_{j i}, \tag{0.2}
\end{equation*}
$$

where $H_{j}{ }^{2}$ denotes components of the second fundamental tensor in M. Then either of the following two assertions (a) and (b) is true:
(a) M is isometric to one of the following spaces:
(1) the great sphere $S^{2 n}(1)$;
(2) the small sphere $S^{2 n}(c)$, where $c=1+\phi^{2}$;
(3) the product manifold $S^{2 n-1}\left(c_{1}\right) \times S^{1}\left(c_{2}\right)$, where $c_{1}=1+\phi^{2}$ and $c_{2}=1+1 / \phi^{2}$;
(4) the product manifold $S^{n}\left(c_{1}\right) \times S^{n}\left(c_{2}\right)$, where $c_{1}=2\left(1+\phi^{2}+\phi \sqrt{1+\phi^{2}}\right)$ and $c_{2}=2\left(1+\phi^{2}-\phi \sqrt{1+\phi^{2}}\right)$.

Received May 24, 1972.
(b) M has exactly four distinct constant principal curvatures of multiplicities $n-1, n-1,1$ and 1 , respectively.

The main purpose of the present paper is to show that this theorem will be established under some weaker conditions.

In $\S 1$, as preliminaries, we recall the definition and some properties of an (f, g, u, v, λ)-structure on a hypersurface naturally induced from a normal contact structure of $S^{2 n+1}(1)$. In $\S 2$, we prove some lemmas and properties concerning a hypersurface satisfying the condition (0.1) with a differentiable function ϕ. In $\S 3$, we prove a theorem concerning a hypersurface satisfying the condition (0.1) with a function ϕ (cf. Theorem 3.5) and, in the last §4, another theorem concerning a compact hypersurface without the assumption that the scalar curvature is constant (cf. Theorem 4.1).

The authors wish to express their sincere gratitude to Prof. S. Ishihara who gave them many valuable suggestions.

§ 1. Hypersurfaces in an odd dimensional sphere.

Let M be a $2 n$-dimensional Riemannian manifold of class C^{∞} covered by a system of local coordinate neighborhoods $\left\{U ; x^{h}\right\}$. Throughout this paper, indices i, j, \cdots run over the range $\{1,2, \cdots, 2 n\}$. Let there be given in M a tensor field f of type (1,1), vector fields u and v, a scalar function λ satisfying the following conditions:

$$
\begin{align*}
& f_{k}{ }^{h} f_{j}^{k}=-\delta_{j}^{h}+u^{h} u_{j}+v^{h} v_{j}, \\
& f_{k}{ }^{h} u^{k}=\lambda v^{h}, \quad f_{k}^{h} v^{k}=-\lambda u^{h}, \\
& u_{k} f_{j}{ }^{k}=-\lambda v_{j}, \quad v_{k} f_{j}{ }^{k}=\lambda u_{j}, \tag{1.1}\\
& u_{k} u^{k}=v_{k} v^{k}=1-\lambda^{2}, \quad u_{k} v^{k}=v_{k} u^{k}=0, \\
& g_{k h} f_{j}{ }^{k} f_{\imath}{ }^{h}=g_{j i}-u_{j} u_{i}-v_{j} v_{i},
\end{align*}
$$

where $f_{j}{ }^{h}, u^{h}, v^{h}$ and $g_{j i}$ are components of the tensor field f, vector fields u, v and the Riemannian metric tensor g, and $u_{j}=g_{j k} u^{k}, v_{\jmath}=g_{j k} v^{k}$. The set of these tensor fields is called an (f, g, u, v, λ)-structure [8].

Now, let $S^{m}(c)$ be an m-dimensional sphere of constant curvature c in an $(m+1)$-dimensional Euclidean space E^{m+1}. As is well known, $S^{2 n+1}(1)$ admits a normal contact metric structure ($\bar{\phi}, \bar{\xi}, \bar{\eta}, \bar{g}$), which is induced from the natural Kaehlerian structure equipped on $E^{2 n+2}$. Let $S^{2 n+1}(1)$ be covered by a system of local coordinate neighborhoods $\left\{\bar{U} ; y^{*}\right\}$, where indices κ, λ, \ldots run over the range $\{1,2, \cdots, 2 n+1\}$. Let M be an orientable and connected hypersurface in $S^{2 n+1}(1)$. We put

$$
B_{j}{ }^{\kappa}=\partial y^{\kappa} \mid \partial x^{x},
$$

then B_{j} is a local vector field with components $B_{3}{ }^{*}$ of $S^{2 n+1}(1)$ tangent to M for each j. We choose a unit normal vector C of M such that B_{\jmath} and C give the positive orientation of $S^{2 n_{+1}}(1)$. The transforms $\bar{\phi}_{\lambda}{ }^{k} B_{j}{ }^{k}$ of B_{0} by $\bar{\phi}$ can be expressed as a linear combination of B_{\jmath} and C, that is,

$$
\begin{equation*}
\bar{\phi}_{2}{ }^{{ }^{k} B_{j}{ }^{k}=f_{j}{ }^{k} B_{k}{ }^{k}+v_{j} C^{k}, ~} \tag{1.2}
\end{equation*}
$$

where $\bar{\phi}_{2}{ }^{k}$ are components of the tensor field $\bar{\phi}$ of type $(1,1)$. Then $f_{j}{ }^{k}$ is a tensor field of type $(1,1)$ and v_{j} is a 1 -form on M. Similarly, since the transforms $\bar{\phi}_{2}{ }^{*} C^{\lambda}$ of the normal vector C with components C^{2} by $\bar{\phi}$ is tangent to M, it is written as

$$
\begin{equation*}
\bar{\phi}_{\lambda}{ }^{{ } C^{\lambda}}=-B_{j}{ }^{{ }^{\kappa}} v^{\jmath} . \tag{1.3}
\end{equation*}
$$

Moreover the vector field $\bar{\xi}$ with components $\bar{\xi}^{x}$ of $S^{2 n+1}(1)$ on M is also a linear combination of B_{\jmath} and C, and hence we can express $\bar{\xi}$ as follows:

$$
\begin{equation*}
\bar{\xi}^{x}=B,{ }^{\kappa} u^{j}+\lambda C^{x}, \tag{1.4}
\end{equation*}
$$

where u^{j} is a vector field on M and λ is a differentiable function. Then it is seen that the set $\left(f_{i}{ }^{3}, g_{j i}, u^{j}, v^{3}, \lambda\right)$ satisfies the equation (1.1) and hence it is an (f, g, u, v, λ)-structure. Furthermore, by making use of the property of the normal contact metric structure on $S^{2 n+1}(1)$, the (f, g, u, v, λ)-structure satisfies the following conditions:

$$
\begin{align*}
& \nabla_{j} f_{i}^{h}=\delta_{j}^{h} u_{i}-g_{j i} u^{h}-H_{j i} v^{h}+H_{j}{ }^{h} v_{i}, \\
& \nabla_{j} u^{h}=f_{j}^{h}+\lambda H_{j}{ }^{h}, \quad \nabla_{j} v^{h}=f_{k}{ }^{h} H_{j}{ }^{k}-\lambda \partial_{j}^{h}, \tag{1.5}\\
& \lambda_{j}=v_{j}-H_{j k} u^{k},
\end{align*}
$$

where $\lambda_{j}=\nabla_{j} \lambda$ and $H_{j}{ }^{h}$ are components of the second fundamental tensor H of M in $S^{2 n+1}(1)$ (cf. [6]). Throughout this paper, we concern with hypersurfaces in $S^{2 n+1}(1)$ and with their induced (f, g, u, v, λ)-structures.

We now denote by $K_{k j i}{ }^{h}, K_{j i}$ and K components of the Riemannian curvature tensor, the Ricci tensor and the scalar curvature of M, respectively. The equation of Gauss for the hypersurface M is written as

$$
\begin{equation*}
K_{k j i}{ }^{h}=\partial_{k}^{h} g_{j i}-\delta_{j}^{h} g_{k i}+H_{k}{ }^{h} H_{j i}-H_{j}{ }^{h} H_{k v}, \tag{1.6}
\end{equation*}
$$

where $H_{j i}=H_{j}{ }^{k} g_{k v}$, and the equation of Codazzi is given by

$$
\begin{equation*}
\nabla_{k} H_{j i}-\nabla_{j} H_{k \imath}=0, \tag{1.7}
\end{equation*}
$$

where ∇_{j} means the covariant derivation with respect to the induced Riemannian connection of M. From (1.6), we have easily

$$
\begin{equation*}
K_{j i}=(2 n-1) g_{j i}+H_{k}^{k} H_{j i}-H_{j k} H_{l}{ }^{k}, \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
K=2 n(2 n-1)+\left(H_{j}^{j}\right)^{2}-H_{j i} H^{j i} \tag{1.9}
\end{equation*}
$$

§2. The second fundamental tensor.

In the sequel, we assume that on the hypersurface M in $S^{2 n+1}(1)$, the linear transformation f and the second fundamental tensor H satisfy the following condition

$$
\begin{equation*}
H_{k}^{i} f_{j}^{k}+f_{k}^{i} H_{j}^{k}=2 \phi f_{j}, \tag{2.1}
\end{equation*}
$$

where ϕ is a certain differentiable function, or equivalently,

$$
\begin{equation*}
f_{j}^{k} H_{k i}-f_{i}^{k} H_{k j}=2 \phi f_{j i}, \tag{2.2}
\end{equation*}
$$

because $f_{j i}=f_{j}{ }^{k} g_{k \imath}$ is skew-symmetric. Taking account of the third equation of (1.5), we see that (2.2) is also equivalent to

$$
\begin{equation*}
\nabla_{j} v_{i}-\nabla_{i} v_{j}=2 \phi f_{j i} \tag{2.3}
\end{equation*}
$$

If we now put $N_{0}=\{x \in M \mid \lambda(x)=0\}, N_{1}=\left\{x \in M \mid \lambda^{2}(x)=1\right\}$ and $N=M-N_{0} \cup N_{1}$, then we have $M=N \cup N_{0} \cup N_{1}$. Then the sets N_{0} and N_{1} are geometrically characterised as follows: the vector field $\bar{\xi}$, i.e., the Sasakian structure $\bar{\xi}$ in the ambient space is tangent to the hypersurface M at any point in the set N_{0} and the vector $\bar{\xi}$ is orthogonal to M at each point in N_{1} (see (1.2) and (1.4)).

The second equation of (1.5) implies that N_{1} is a bordered set. In fact, if we suppose that there is an open subset U contained in N_{1}, then we have, in U, $f_{j i} \pm H_{j i}=0$, because $u_{i} u^{2}=1-\lambda^{2}=0$ in U, and hence $u=0$ in U. This implies $f_{j i}$ vanishes in U, because $f_{j i}$ is skew-symmetric and $H_{j i}$ is symmetric. This contradicts the fact that $f_{j i}$ is of rank $2 n-2$ or of rank $2 n$ in M. Consequently N_{1} is a bordered set. Thus we may discuss properties of principal curvatures only on $N \cup N_{0}$, since they are continuous. In the sequel, we consider only hypersurfaces in $S^{2 n+1}(1)$ satisfying the condition (2.1). First we prove

Lemma 2.1. On the set $N \cup N_{0}$, the transforms $H u$ and $H v$ of the vector fields u and v by the linear transformation H are linear combination of u and v, that is,

$$
\begin{align*}
& H_{k}^{\jmath} u^{k}=\alpha u^{\jmath}+\beta v^{\jmath} \tag{2.4}\\
& H_{k}^{\jmath} v^{k}=\beta u^{\jmath}+\gamma v^{\jmath} \tag{2.5}
\end{align*}
$$

where $\alpha=H(u, u) /\left(1-\lambda^{2}\right), \quad \beta=H(u, v) /\left(1-\lambda^{2}\right), \quad \gamma=H(v, v) /\left(1-\lambda^{2}\right), \quad H(u, u)=H_{j i} u^{j} u^{2}$, $H(u, v)=H_{j i} u^{j} v^{2}$ and $H(v, v)=H_{j i} v^{v} v^{2}$.

Proof. Transvecting $f_{h^{\prime}}$ with equation (2.1) and taking account of (2.1) and the first equation of (1.1), we obtain

$$
H_{k}^{i}\left(u^{k} u_{h}+v^{k} v_{h}\right)-\left(u^{i} u_{k}+v^{\imath} v_{k}\right) H_{h}^{k}=0 .
$$

Transvecting u^{h} and v^{h} with the equation above, we have respectively

$$
\left(1-\lambda^{2}\right) H_{k^{2}} u^{k}=H(u, u) u^{2}+H(u, v) v^{2}
$$

and

$$
\left(1-\lambda^{2}\right) H_{k}^{2} v^{k}=H(u, v) u^{2}+H(v, v) v^{2},
$$

from which, equations (2.4) and (2.5) respectively. Thus we conclude the proof.
Differentiating (2.4) covariantly, we get

$$
\nabla_{j} H_{i k} u^{k}+H_{i k} \nabla_{j} u^{k}=\alpha_{j} u_{i}+\alpha \nabla_{j} u_{i}+\beta_{j} v_{i}+\beta \nabla_{j} v_{i},
$$

where $\alpha_{j}=\nabla_{j} \alpha$ and $\beta_{j}=\nabla_{j} \beta$. From this relation and the equation (1.7) of Codazzi, we have

$$
H_{i k} \nabla_{j} u^{k}-H_{j k} \nabla_{i} u^{k}=\alpha_{j} u_{i}-\alpha_{i} u_{j}+\alpha\left(\nabla_{j} u_{i}-\nabla_{i} u_{j}\right)+\beta_{j} v_{i}-\beta_{i} v_{j}+\beta\left(\nabla_{j} v_{i}-\nabla_{i} v_{j}\right) .
$$

Substituting the second equation of (1.5) and (2.3) into the equation above, we have

$$
\begin{equation*}
\{2 \phi(1-\beta)-2 \alpha\} f_{j i}=\alpha_{j} u_{i}-\alpha_{i} u_{j}+\beta_{j} v_{i}-\beta_{i} v_{j} \tag{2.6}
\end{equation*}
$$

which implies that vectors $\nabla \alpha$ and $\nabla \beta$ are linear combinations of u and v, that is, that α_{\jmath} and β_{\jmath} are expressed in the form

$$
\begin{equation*}
\alpha_{j}=A_{1} u_{j}+A_{2} v_{j}, \quad \beta_{j}=B_{1} u_{j}+B_{2} v_{j}, \tag{2.7}
\end{equation*}
$$

where A_{1}, A_{2}, B_{1} and B_{2} are differentiable functions in $N \cup N_{0}$. Consequently, the equation (2.6) is reduced to

$$
\{2 \phi(1-\beta)-2 \alpha\} f_{j i}=-\left(A_{2}-B_{1}\right)\left(u_{j} v_{i}-u_{i} v_{j}\right) .
$$

Since the rank of the linear transformation f is equal to or greater than $2 n-2$ and since M is finite dimensional, we have

Lemma 2.2. We have in $N \cup N_{0}$

$$
\begin{equation*}
\alpha=\phi(1-\beta), \quad A_{2}=B_{1} . \tag{2.8}
\end{equation*}
$$

By the similar method, we obtain from (2.5)

$$
\begin{equation*}
2 H_{i k} f_{h}^{k} H_{j}^{h}=2(\beta+\phi \gamma) f_{j i}+\beta_{j} u_{i}-\beta_{i} u_{j}+\gamma_{j} v_{i}-\gamma_{i} v_{j} \tag{2.9}
\end{equation*}
$$

where $\gamma_{\jmath}=\nabla_{j \gamma}$. This means that the vector ∇_{γ} is also a linear combination of vector u and v and hence γ_{0} is expressed in the form

$$
\gamma_{\jmath}=C_{1} u_{j}+C_{2} v_{j},
$$

where C_{1} and C_{2} are differentiable functions in $N \cup N_{0}$. Furthermore, we can prove

Lemma 2.3. The second fundamental tensor satisfies the following conditıons in $N \cup N_{0}$:

$$
\begin{align*}
& 2 H_{j k} H_{i}{ }^{k}-4 \phi H_{j i}+2(\beta+\phi \gamma) g_{j i} \tag{2.10}\\
= & \left\{R+\lambda\left(B_{2}-C_{1}\right)\right\} u_{j} u_{i}+P\left(u_{j} v_{i}+u_{i} v_{j}\right)+\left\{Q+\lambda\left(B_{2}-C_{1}\right)\right\} v_{j} v_{i}
\end{align*}
$$

and

$$
\begin{equation*}
\lambda P=0, \quad \lambda Q=\lambda R=\left(B_{2}-C_{1}\right)\left(1-\lambda^{2}\right), \tag{2.11}
\end{equation*}
$$

where

$$
\begin{aligned}
& P=2 \beta(\alpha+\gamma)-4 \phi \beta, \\
& Q=2\left(\beta^{2}+\gamma^{2}+\beta-\phi \gamma\right), \\
& R=2\left(\alpha^{2}+\beta^{2}-2 \phi \alpha+\beta+\phi \gamma\right) .
\end{aligned}
$$

Proof. By means of (2.1), the equation (2.9) becomes

$$
\begin{equation*}
\left\{2 H_{i k} H_{h}^{k}-4 \phi H_{i h}+2(\beta+\phi \gamma) g_{i n}\right\} f_{j}^{h}=\left(B_{2}-C_{1}\right)\left(u_{j} v_{i}-u_{i} v_{j}\right) . \tag{2.12}
\end{equation*}
$$

Transvecting u^{j} (resp. v^{j}) with the equation above, we get three relations in (2.10).
On the other hand, applying $f_{l}{ }^{\jmath}$ to (2.12) and interchanging indices l and j, we obtain the equation (2.10). Thus, this lemma is proved.

If we take account of (2.4) and (2.5), then we see that there exist, at an arbitrary point of $N \cup N_{0}$, two eigenvectors of the second fundamental tensor of M belonging to the plane section $P(u, v)$ spanned by u and v. Let τ_{1} and τ_{2} be eigenvalues corresponding to these two eigenvectors, respectively. Then the eigenvalues satisfy the quadratic equation

$$
\begin{equation*}
\tau^{2}-(\alpha+\gamma) \tau+\alpha \gamma-\beta^{2}=0 \tag{2.13}
\end{equation*}
$$

Moreover, (2.10) shows that $N \cup N_{0}$ has at most two distinct principal curvatures, say σ_{1} and σ_{2}, associated with eigenvectors orthogonal to the plane section $P(u, v)$. First we prove

Proposition 2.4. N has at most four distinct principal curvatures $\sigma_{1}, \sigma_{2}, \tau_{1}, \tau_{2}$ such that

$$
\begin{array}{ll}
\sigma_{1}=\phi+\sqrt{-\beta\left(1+\phi^{2}\right)}, & \sigma_{2}=\phi-\sqrt{-\beta\left(1+\phi^{2}\right)}, \\
\tau_{1}=\phi+\sqrt{\beta^{2}\left(1+\phi^{2}\right)}, & \tau_{2}=\phi-\sqrt{\beta^{2}\left(1+\phi^{2}\right)} .
\end{array}
$$

Proof. Transvecting $u^{\rho} v_{i}$ with (2.1) and making use of (1.1), we get

$$
\lambda\left\{H(u, u)+H(v, v)-2 \phi\left(1-\lambda^{2}\right)\right\}=0,
$$

from which,

$$
\begin{equation*}
\alpha+\gamma=2 \phi \quad \text { in } \quad N . \tag{2.14}
\end{equation*}
$$

According to (2.8) and the equation above, we have

$$
\begin{equation*}
\gamma=\phi(1+\beta) \quad \text { in } \quad N . \tag{2.15}
\end{equation*}
$$

By making use of (2.8) and (2.15), we see that (2.13) implies

$$
\tau_{1}=\phi+\sqrt{\beta^{2}\left(1+\phi^{2}\right)}, \quad \tau_{2}=\phi-\sqrt{\beta^{2}\left(1+\phi^{2}\right)} .
$$

On the other hand, the equation (2.10) is reduced to

$$
H_{j k} H_{i}^{k}-2 \phi H_{j i}+(\beta+\phi \gamma) g_{j i}=\left(\alpha^{2}+\beta^{2}-2 \phi \alpha+\beta+\phi \gamma\right)\left(u_{j} u_{i}+v_{j} v_{i}\right) /\left(1-\lambda^{2}\right),
$$

because P is equal to zero in N. Therefore, eliminating α and γ from the equation above, we have
$(2.10)^{\prime} \quad H_{j k} H_{l}{ }^{k}-2 \phi H_{j i}+\left\{\beta+\phi^{2}(1+\beta)\right\} g_{j i}=\beta(1+\beta)\left(1+\phi^{2}\right)\left(u_{j} u_{i}+v_{j} v_{i}\right) /\left(1-\lambda^{2}\right)$.
Thus, for an eigenvalue σ associated with an eigenvector orthogonal to the plane section $P(u, v)$ spanned by u and v, we have the quadratic equation

$$
\begin{equation*}
\sigma^{2}-2 \phi \sigma+\left\{\beta+\phi^{2}(1+\beta)\right\}=0 \tag{2.16}
\end{equation*}
$$

Thus we conclude the proof.
Since principal curvatures are real, Proposition 2.4 implies that β is nonpositive. This fact plays an important role not only in the proof of the following lemma but also in the later discussions.

Lemma 2.5. The function ϕ is constant in N.
Proof. Differentiating the second equation of (2.7) covariantly, we have

$$
\nabla_{i} \beta_{j}=\nabla_{i} B_{1} u_{j}+B_{1} \nabla_{i} u_{j}+\nabla_{i} B_{2} v_{j}+B_{2} \nabla_{i} v_{j}
$$

from which, taking the skew-symmetric part,

$$
\nabla_{i} B_{1} u_{j}-\nabla_{j} B_{1} u_{i}+\nabla_{i} B_{2} v_{j}-\nabla_{j} B_{2} v_{i}=B_{1}\left(\nabla_{j} u_{i}-\nabla_{i} u_{j}\right)+B_{2}\left(\nabla_{j} v_{i}-\nabla_{i} v_{j}\right)=2\left(B_{1}+\phi B_{2}\right) f_{j i} .
$$

Since f is of rank $2 n-2$ or of rank $2 n$, the coefficient $2\left(B_{1}+\phi B_{2}\right)$ vanishes identically in $N \cup N_{0}$, i.e.,

$$
\begin{equation*}
B_{1}+\phi B_{2}=0 \quad \text { in } \quad N \cup N_{0} . \tag{2.17}
\end{equation*}
$$

In a similar way, we obtain

$$
\begin{equation*}
C_{1}+\phi C_{2}=0 \quad \text { in } \quad N \cup N_{0} . \tag{2.18}
\end{equation*}
$$

Differentiating the first equation of (2.8) covariantly, we also have

$$
\alpha_{j}=\phi_{j}(1-\beta)-\phi \beta_{j} .
$$

Thus, putting $\Phi_{1}=u^{3} \phi_{j} /\left(1-\lambda^{2}\right)$ and $\Phi_{2}=v^{3} \phi_{j} /\left(1-\lambda^{2}\right)$, we have

$$
\Phi_{2}(1-\beta)=A_{2}+\phi B_{2}
$$

By means of this relation, (2.17) and the second one of (2.8), we obtain

$$
(1-\beta) \Phi_{2}=0
$$

Since β is non-positive in N, Φ_{2} vanishes identically in N and hence

$$
\phi_{J}=\Phi_{1} u_{\jmath}
$$

Differentiating the equation above covariantly and taking the skew-symmetric part, we get

$$
\nabla_{j} \Phi_{1} u_{i}-\nabla_{i} \Phi_{1} u_{j}+2 \Phi_{1} f_{j i}=0
$$

from which,

$$
\Phi_{1}=0
$$

Therefore the function ϕ is constant in N. This completes the proof.
Suppose that there exists a connected component of the set N_{0}, which has a non-empty open kernel W.

Lemma 2.6. The open kernel W has at most four distinct principal curvatures

$$
\begin{array}{ll}
\sigma_{1}=\phi+\sqrt{\phi^{2}-\phi \gamma-1}, & \sigma_{2}=\phi-\sqrt{\phi^{2}-\phi \gamma-1} \\
\tau_{1}=\left(\gamma+\sqrt{\gamma^{2}+4}\right) / 2, & \tau_{2}=\left(\gamma-\sqrt{\gamma^{2}+4}\right) / 2
\end{array}
$$

where the multiplicities of $\sigma_{1}, \sigma_{2}, \tau_{1}$ and τ_{2} are $n-1, n-1,1$ and 1 , respectively.
Proof. Since $\lambda_{j}=v_{j}-H_{j i} u^{i}=0$ in the open kernel W, we get $H(u, u)=0$ and $H(u, v)=1$. Thus (2.4) and (2.5) are reduced to

$$
\begin{equation*}
H_{k}{ }^{2} u^{k}=v^{i} \tag{2.19}
\end{equation*}
$$

$$
\begin{equation*}
H_{k}^{\imath} v^{k}=u^{2}+\gamma v^{2} \tag{2.20}
\end{equation*}
$$

respectively, where $\gamma=H(v, v)$. Consequently, for the coefficients α and β appearing in (2.4), we get $\alpha=0$ and $\beta=1$. Equations (2.19) and (2.20) show that two eigenvalues, say τ_{1} and τ_{2}, corresponding to eigenvectors belonging to the plane section $P(u, v)$ are distinct and that they satisfy the quadratic equation

$$
\tau^{2}-\gamma \tau-1=0
$$

from which, we obtain

$$
\tau_{1}=\left(\gamma+\sqrt{\gamma^{2}+4}\right) / 2, \quad \tau_{2}=\left(\gamma-\sqrt{\gamma^{2}+4}\right) / 2
$$

Since we have obtained $\alpha=0$ and $\beta=1,(2.10)$ is simplified as follows:

$$
\begin{equation*}
2 H_{j k} H_{\imath}{ }^{k}-4 \phi H_{j i}+2(1+\phi \gamma) g_{j i}=R u_{j} u_{i}+P\left(u_{j} v_{i}+u_{i} v_{j}\right)+Q v_{j} v_{i} . \tag{2.21}
\end{equation*}
$$

For the eigenvalue σ associated with an eigenvector perpendicular to $P(u, v)$, we get by (2.21)

$$
\begin{equation*}
\sigma^{2}-2 \phi \sigma+1+\phi \gamma=0, \tag{2.22}
\end{equation*}
$$

from which,

$$
\sigma_{1}=\phi+\sqrt{\phi^{2}-\phi \gamma-1}, \quad \sigma_{2}=\phi-\sqrt{\phi^{2}-\phi \gamma-1} .
$$

Thus there exist at most two distinct principal curvatures, say σ_{1} and σ_{2}, at each point of W.

The equation (2.1) implies $H(f X)=\left(2 \phi-\sigma_{1}\right) f X$ for an eigenvector X corresponding to the eigenvalue σ_{1}. This mean that $f X$ is also an eigenvector with an eigenvalue σ_{2}. Thus the multiplicities of σ_{1} and σ_{2} are equal to $n-1$. This completes the proof.

Lemma 2.7. On the open kernel W, the function γ is constant.
Proof. Substituting $\beta=1$ into (2.12), we obtain

$$
2\left\{H_{i k} H_{h}{ }^{k}-2 \phi H_{i h}+(1+\phi \gamma) g_{i h}\right\} f_{j}^{h}=-C_{1}\left(u_{j} v_{i}-u_{i} v_{j}\right) .
$$

Transvecting u^{j} with the equation above, we have $C_{1}=0$. Hence (2.18) implies

$$
\phi C_{2}=0 \quad \text { in } \quad W
$$

Suppose that there exists a point p in W such that $\phi(p)=0$, we have

$$
2 H_{j k} H_{i}^{k}+2 g_{j i}=R u_{j} u_{i}+P\left(u_{j} v_{i}+u_{i} v_{j}\right)+Q v_{j} v_{i} \quad \text { at } \quad p,
$$

because of (2.21). This means that there exist principal curvatures $\pm \sqrt{-1}$ at p. This is a contradiction. Consequently, ϕ vanishes nowhere in W and then the function γ is necessarily constant in W. Thus Lemma 2.7 is proved.

Lemma 2.8. The function ϕ is constant in the open kernel W, if $n \geqq 3$.
Proof. Since W has at most four distinct principal curvatures $\sigma_{1}, \sigma_{2}, \tau_{1}$ and τ_{2} with multiplicities $n-1, n-1,1$ and 1 respectively, we get, using Lemma 2.6, by a straightforward computation

$$
\begin{gather*}
H_{j^{j}}=2(n-1) \phi+\gamma \tag{2.23}\\
H_{j i} H^{j i}=2(n-1)\left(2 \phi^{2}-\phi \gamma-1\right)+\left(\gamma^{2}+2\right) \tag{2.24}
\end{gather*}
$$

Differentiating (2.2) covariantly, we have

$$
\nabla_{l} f_{j}{ }^{k} H_{k i}+f_{j}{ }^{k} \nabla_{l} H_{k i}+\nabla_{l} H_{j}{ }^{k} f_{k i}+H_{j}{ }^{k} \nabla_{l} f_{k l}=2 \phi_{l} f_{j i}+2 \phi \nabla_{l} f_{j i} .
$$

Transvecting this equation with $g^{l i}$ and making use of (2.23) and the first equa tion of (1.5), we obtain

$$
2(n-2) f_{j}^{k} \phi_{k}+2\left\{H_{i}{ }^{i}-\gamma-2(n-1) \phi\right\} u_{j}+\left\{H_{i k} H^{i k}+(\gamma-2 \phi)\left(H_{i}{ }^{2}-\gamma\right)-\gamma^{2}+2(n-2)\right\} v_{j}=0
$$

Since $n \geqq 3$, from (2.23) and (2.24), we get

$$
f_{j}^{k} \phi_{k}=0
$$

that is,

$$
\begin{equation*}
\phi_{\jmath}=\Phi_{1} u_{j}+\Phi_{2} v_{\jmath} \tag{2.25}
\end{equation*}
$$

By means of Lemma 2.3, coefficients P, Q and R in the equation (2.10) are given by

$$
P=2 \gamma-4 \phi, \quad Q=2\left(\gamma^{2}-\phi \gamma+2\right), \quad R=2 \phi \gamma+4
$$

because of $\alpha=0$ and $\beta=1$. Taking account of the second and the third equations of (1.5), we have

$$
\nabla_{i} u^{2}=\nabla_{i} v^{2}=0, \quad u^{i} \nabla_{i} u_{J}=u^{i} \nabla_{i} v_{J}=v^{i} \nabla_{i} u_{J}=v^{i} \nabla_{i} v_{J}=0
$$

Consequently, applying $\nabla^{i}=g^{\imath j} \nabla_{\jmath}$ to (2.10) and taking account of the relations above, we have

$$
\begin{align*}
& 2 \nabla^{i} H_{j k} H_{i}^{k}+2 H_{j k} \nabla^{i} H_{i}^{k}-4 \phi^{i} H_{j i}-4 \phi \nabla^{i} H_{j i}+2 \gamma \phi_{\jmath} \tag{2.26}\\
= & 2 \gamma \phi^{\imath} u_{j} u_{i}-4 \phi^{i}\left(u_{j} v_{i}+u_{i} v_{j}\right)-2 \gamma \phi^{\imath} v_{j} v_{i}
\end{align*}
$$

where $\phi^{2}=g^{2 j} \phi_{j}$. By the equation (1.7) of Codazzi and (2.24), the first term in the left hand side of (2.26) is given by

$$
2 \nabla^{i} H_{j k} H_{2}^{k}=\nabla_{j}\left(H_{i k} H^{i k}\right)=2(n-1)(4 \phi-\gamma) \phi_{j}
$$

Substituting (2.23), (2.25) and this equation into (2.26), we have

$$
\left(2 \Phi_{2}-\gamma \Phi_{1}\right) u_{j}+\left(2 \Phi_{1}+\gamma \Phi_{2}\right) v_{j}=0
$$

from which,

$$
2 \Phi_{2}-\gamma \Phi_{1}=0, \quad 2 \Phi_{1}+\gamma \Phi_{2}=0
$$

Therefore, $\Phi_{1}=\Phi_{2}=0$ and hence the function ϕ is constant. This completes the proof.

Summing up Lemmas 2.5 and 2.8 and taking account of the fact that N_{1} is a bordered set, we have

Proposition 2.9. The function ϕ appearing in (2.1) is constant in M, if $n \geqq 3$.

As a direct consequence of Lemmas 2.6,2.7 and 2.8, we have
Proposition 2.10. If $n \geqq 3$, then a connected open kernel W of the set $N_{\text {. }}$ has at most four distinct constant principal curvatures

$$
\begin{array}{ll}
\sigma_{1}=\phi+\sqrt{\phi^{2}-\phi \gamma-1}, & \sigma_{2}=\phi-\sqrt{\phi^{2}-\phi \gamma-1}, \\
\tau_{1}=\left(\gamma+\sqrt{\gamma^{2}+4}\right) / 2, & \tau_{2}=\left(\gamma-\sqrt{\gamma^{2}+4}\right) / 2,
\end{array}
$$

with multiplicities $n-1, n-1,1$ and 1 , respectively.

§ 3. Hypersurfaces of constant scalar curvature.

In this section, we shall concern with a hypersurface M of constant scalar curvature in $S^{2 n+1}(1)$ satisfying the condition (2.1). We shall prove the following theorem, which has been, however, proved in a previous paper [4], provided that ϕ is constant.

Theorem 3.1. Let M be a hypersurface in $S^{2 n+1}(1)$ satisfying (2.1) and being of constant scalar curvature. If $n \geqq 3$, then one of the following assertions (1), (2), (3) and (4) is true:
(1) M is totally umbilic;
(2) M has exactly two distinct constant principal curvatures $\phi+\sqrt{1+\phi^{2}}$, $\phi-\sqrt{1+\phi^{2}}$ with the same multiplicity n;
(3) M has exactly two distinct constant principal curvatures ϕ with multiplicity $2 n-1$ and $-1 / \phi$ with multiplicity 1 ;
(4) M has exactly four distinct constant principal curvatures $\phi+\sqrt{\phi^{2}-\phi \gamma-1}$, $\phi-\sqrt{\phi^{2}-\phi \gamma-1},\left(-1+\sqrt{1+\phi^{2}}\right) / \phi,\left(-1-\sqrt{1+\phi^{2}}\right) / \phi$ with multiplicities $n-1$, $n-1,1$ and 1 , respectively.

We shall give outlines of the proof of Theorem 3.1 for completeness. To prove this theorem, we need Lemmas 3.2, 3.3 and 3.4 which will be stated later.

By Lemma 2.1, the transforms $H u$ and $H v$ of the vectors u and v by the second fundamental tensor H are linear combinations of u and v, that is,

$$
\begin{align*}
& H_{k^{\prime}}{ }^{j} u^{k}=\alpha u^{j}+\beta v^{j}, \tag{3.1}\\
& H_{k}{ }^{\prime} v^{k}=\beta u^{j}+\gamma v^{j} \tag{3.2}
\end{align*}
$$

in $N \cup N_{0}$, where the set N consists of points x such that $1>\lambda^{2}(x)>0$ and the set N_{0} consists of points x such that $\lambda(x)=0$. First, we prove

Lemma 3.2. The functions α, β and γ are constant in N.
Proof. By taking account of equations (3.1) and (3.2), there exist two eigen-
values τ_{1} and τ_{2} of the second fundamental tensor corresponding to eigenvectors belonging to the plane section $P(u, v)$, and τ_{1}, τ_{2} satisfy the quadratic equation

$$
\begin{equation*}
\tau^{2}-(\alpha+\gamma) \tau+\alpha \gamma-\beta^{2}=0 \tag{3.3}
\end{equation*}
$$

Consequently we find $\tau_{1}+\tau_{2}=2 \phi$, because of (2.14). Let σ be an eigenvalue associated with an eigenvector X perpendicular to $P(u, v)$. Then the condition (2.1) shows that $2 \phi-\sigma$ is also an eigenvalue associated with the transforms $f X$ of X by the linear transformation f. On the other hand, since (2.10) is reduced to

$$
\begin{equation*}
H_{j k} H_{i}^{k}-2 \phi H_{j i}+\left\{\beta+\phi^{2}(1+\beta)\right\} g_{j i}=\beta(1+\beta)\left(1+\phi^{2}\right)\left(u_{j} u_{i}+v_{j} v_{i}\right) /\left(1-\lambda^{2}\right) \tag{3.4}
\end{equation*}
$$

the eigenvalue σ satisfies

$$
\begin{equation*}
\sigma^{2}-2 \phi \sigma+\beta+\phi^{2}(1+\beta)=0 \tag{3.5}
\end{equation*}
$$

Thus there exist at most two distinct eigenvalues, say σ and $2 \phi-\sigma$, associated with eigenvectors perpendicular to the plane section $P(u, v)$. Their multiplicities are all equal to $n-1$. Hence we have

$$
H_{j}{ }^{j}=(n-1) \sigma+(n-1)(2 \phi-\sigma)+\tau_{1}+\tau_{2}
$$

from which,

$$
\begin{equation*}
H_{j}{ }^{j}=2 n \phi \tag{3.6}
\end{equation*}
$$

Thus, the mean curvature is constant in N.
Now, transvecting $g^{j i}$ to (3.4), we get

$$
H_{j i} H^{j i}-2 \phi H_{j}^{j}+2 n\left\{\beta+\phi^{2}(1+\beta)\right\}=2 \beta(1+\beta)\left(1+\phi^{2}\right)
$$

Thus, by (1.9), (3.6) and the equation above, the scalar curvature K is given by

$$
\begin{equation*}
K=-2\left(1+\phi^{2}\right)\{\beta-(2 n-1)\}(\beta+n) \tag{3.7}
\end{equation*}
$$

Since K is constant and ϕ is also constant in N by Lemma 2.5 , so is β in N. Thus, by (2.8) and (2.14), α and γ are constant in N. Thus, Lemma 3.2 is proved.

Lemma 3.3. Each point in N is umbilic or N has two distinct constant principal curvatures $\phi+\sqrt{1+\phi^{2}}, \phi-\sqrt{1+\phi^{2}}$ with the same multiplicity n.

Proof. Making use of the second equation of (2.11) and (2.14), we have

$$
\begin{equation*}
2 \beta^{2}+2 \beta+\gamma^{2}-\alpha \gamma=0 \tag{3.8}
\end{equation*}
$$

from which,

$$
(\beta+\phi \gamma)-\left(\alpha \gamma-\beta^{2}\right)=\left(2 \beta^{2}+2 \beta+\gamma^{2}-\alpha \gamma\right) / 2=0
$$

that is,

$$
\begin{equation*}
\beta+\phi \gamma=\alpha \gamma-\beta^{2} \tag{3.9}
\end{equation*}
$$

Consequently, equation (3.3) coincides with equation (3.5), and therefore there exist at most two distinct principal curvatures τ_{1} and τ_{2} at each point in N, where

$$
\tau_{1}=\phi+\sqrt{\beta^{2}\left(1+\phi^{2}\right)}, \quad \tau_{2}=\phi-\sqrt{\beta^{2}\left(1+\phi^{2}\right)}
$$

Substituting (2.8) and (2.15) into (3.9), we have

$$
\beta(1+\beta)\left(1+\phi^{2}\right)=0 .
$$

This implies that $\beta=0$ or $\beta=-1$. Thus it is evident that, in the case where $\beta=0$ in N, each point in N is umbilic and that, in the case where $\beta=-1$ in N, N has distinct constant principal curvature $\phi+\left(1+\phi^{2}\right)^{1 / 2}$ and $\phi-\left(1+\phi^{2}\right)^{1 / 2}$ with the same multiplicity n. This completes the proof.

Lemma 3.4. If $\phi^{2}-\phi \gamma-1>0$ in a connected open kernel W of N_{0}, then W has exactly four distinct constant principal curvatures

$$
\begin{array}{ll}
\phi+\sqrt{\phi^{2}-\phi \gamma-1}, & \phi-\sqrt{\phi^{2}-\phi \gamma-1}, \\
\left(-1+\sqrt{1+\phi^{2}}\right) / \phi, & \left(-1-\sqrt{1+\phi^{2}}\right) / \phi
\end{array}
$$

with multiplicities $n-1, n-1,1$ and 1 , respectively.
If $\phi^{2}-\phi \gamma-1=0$ in a connected open kernel W of N_{0}, then W has exactly two distinct constant principal curvatures

$$
\phi, \quad-1 / \phi
$$

with multiplicities $2 n-1$ and 1, respectively.
Proof. The eigenvalue σ associated with an eigenvector orthogonal to the plane section $P(u, v)$ satisfies the equation (2.22). This implies that

$$
\phi^{2}-\phi_{\gamma}-1 \geqq 0 .
$$

By proposition 2.10, for eigenvalues $\sigma_{1}, \sigma_{2}, \tau_{1}$ and τ_{2} obtained in Lemma 2.6, we have
or

$$
\begin{array}{lll}
\sigma_{1}=\sigma_{2}=\phi, & \tau_{1}=\phi, & \tau_{2}=-1 / \phi \\
\sigma_{1}=\sigma_{2}=\phi, & \tau_{1}=-1 / \phi, & \tau_{2}=\phi
\end{array}
$$

if $\phi^{2}-\phi \gamma-1=0$.
Next, we consider the case where $\phi^{2}-\phi \gamma-1>0$. In this case, assuming $\sigma_{1}=\tau_{1}$, we obtain

$$
\sqrt{\gamma^{2}+4} \sqrt{\phi^{2}-\phi \gamma-1}=0,
$$

which contradicts $\dot{\phi}^{2}-\phi \gamma-1>0$. Thus we have $\sigma_{1} \neq \tau_{1}$. In a similar way, we have
$\sigma_{1} \neq \tau_{2}, \sigma_{2} \neq \tau_{1}$ and $\sigma_{2} \neq \tau_{2}$, if $\phi^{2}-\phi \gamma-1>0$. This implies that W has four distınct constant principal curvatures, if $\phi^{2}-\phi_{\gamma}-1>0$. By Lemma 2.6, the multiplicities of σ_{1} and σ_{2} are equal to $n-1$. On the other hand, by virtue of a formula due to Cartan [2] for the hypersurface with constant principal curvatures in a sphere, we get

$$
\frac{1+\tau_{1} \sigma_{1}}{\tau_{1}-\sigma_{1}}+\frac{1+\tau_{2} \sigma_{1}}{\tau_{2}-\sigma_{1}}+(n-1) \frac{1+\sigma_{2} \sigma_{1}}{\sigma_{2}-\sigma_{1}}=0,
$$

from which,

$$
(\phi \gamma+2)\left(\sigma_{1}{ }^{2}-\gamma \sigma_{1}-1\right)=0 .
$$

Since τ_{1} and τ_{2} are different from σ_{1}, we get

$$
\dot{\varphi}+2=0,
$$

from which,

$$
\tau_{1}=\left(-1+\sqrt{1+\phi^{2}}\right) / \phi, \quad \tau_{2}=\left(-1-\sqrt{ } 1+\phi^{2}\right) / \phi .
$$

This completes the proof.
Proof of Theorem 3.1. The function $\beta=H(u, v) /\left(1-\lambda^{2}\right)$ is defined and differentiable in $N \cup N_{0}$. We now see, from Proposition 2.4 and Lemma 3.2, that β is non-positive constant in N. On the other hand, (2.19) implies that β is equal to 1 in W. Therefore, W is necessarily empty or identical with M itself.

When W is empty, as consequences of Lemma 3.3, the assertions (1) and (2) stated in Theorem 3.1 are true. When $W=M$, as consequences of Lemma 3.4, the assertions (3) and (4) in Theorem 3.1 are true. Thus, Theorem 3.1 is proved completely.

Following Theorem 3.1, we now prove
Theorem 3.5. Let M be a complete hypersurface in $S^{2 n+1}(1)$ satisfying (2.1) and being of constant scalar curvature. If $n \geqq 3$, then one of the following two assertions (a) and (b) is true:
(a) M is isometric to one of the following spaces:
(1) the great sphere $S^{2 n}(1)$;
(2) the small sphere $S^{2 n}(c)$, where $c=1+\phi^{2}$;
(3) the product manifold $S^{2 n-1}\left(c_{1}\right) \times S^{1}\left(c_{2}\right)$, where $c_{1}=1+\phi^{2}$ and $c_{2}=1+1 / \phi^{2}$;
(4) the product manifold $S^{n}\left(c_{1}\right) \times S^{n}\left(c_{2}\right)$, where $c_{1}=2\left(1+\phi^{2}+\phi \sqrt{1+\phi^{2}}\right)$ and $c_{1}=2\left(1+\phi^{2}-\phi \sqrt{1+\phi^{2}}\right) ;$
(b) M has exactly four distinct constant principal curvatures $\phi \pm \sqrt{1+\phi^{2}}$, $\left(-1 \pm \sqrt{1+\phi^{2}}\right) / \phi$ of multiplicities $n-1, n-1,1$ and 1 , respectively.

Proof. Suppose that the open kernel of any connected component of the set N_{0} consisting of points x such that $\lambda(x)=0$ is empty. Then, Lemma 3.3 implies that each point in N is umbilic or that N has two distinct principal curvatures $\tau_{1}=\phi+\left(1+\phi^{2}\right)^{1 / 2}, \tau_{2}=\phi-\left(1+\phi^{2}\right)^{1 / 2}$ with the same multiplicity n. Thus, the principal curvatures of M itself has the same property as that stated above, because of continuity of principal curvatures. In the case where there exist two distinct ones, we have two distinct distributions D_{1} and D_{2} on M which assign the eigenspaces $D_{1}(x)$ and $D_{2}(x)$ to each point x in M, where $D_{1}(x)$ and $D_{2}(x)$ are elgenspaces of τ_{1} and τ_{2} respectively. The distributions D_{1} and D_{2} are of the same dimension n, and mutually orthogonal. Since each eigenvalue is constant, each distribution is involutive and parallel with respect to the Riemannian connection in M. Let $M_{i}(i=1,2)$ be a maximal integral manifold of D_{i}. Then M_{i} is totally geodesic, and M is locally Riemannian product of M_{1} and M_{2}. Thus, integrating the equations of Gauss and Weingarten, we can verıfy that M is isometrıc to the product space $S^{n}\left(c_{1}\right) \times S^{n}\left(c_{2}\right)$, where $c_{1}=1+\left[\dot{\phi}+\left(1+\phi^{2}\right)^{1 / 2}\right]^{2}$ and $c_{2}=1+\left[\phi-\left(1+\phi^{2}\right)^{1 / 2}\right]^{2}$. Thus, in the present case, only the case (4) of the assertion (a) occurs. In the other case, where each point in N is umbilic, only the cases (1) and (2) of the assertion (a) occur.

Next, suppose that there exists a connected component of N_{0} which contans an interior point. Then it was proved in Theorem 3.1 that an open kernel is the hypersurface M itself. In the case where there are exactly two distinct constant principal curvatures, using similar divices as those developed above, we can verify that the case (3) of the assertion (a) occurs, if $\phi^{2}-\phi \gamma-1=0$, and the assertion (b) is true, if $\phi^{2}-\phi \gamma-1>0$. Thus Theorem 3.5 is proved.

§ 4. Compact hypersurfaces.

We prove in this section the following
Theorem 4.1. Let M be a compact hypersurface in $S^{2 n-1}(1)$ satisfyng (2.1). If $n \geqq 3$, then one of the following two assertions (a) and (b) is true:
(a) M is isometric to one of the following spaces:
(1) the great sphere $S^{2 n}(1)$;
(2) the small sphere $S^{2 n}(c)$, where $c=1+\phi^{2}$;
(3) the product manifold $S^{2 n-1}\left(c_{1}\right) \times S^{1}\left(c_{2}\right)$, where $c_{1}=1+\phi^{2}$ and $c_{2}=1+1 / \phi^{2}$;
(4) the product manifold $S^{n}\left(c_{1}\right) \times S^{n}\left(c_{2}\right)$, where $c_{1}=2\left(1+\phi^{2}+\phi \sqrt{1+\phi^{2}}\right)$ and $c_{2}=2\left(1+\dot{\phi}^{2}-\phi \sqrt{1+\phi^{2}}\right) ;$
(b) M has exactly four distinct constant principal curvatures $\phi \pm \sqrt{ } 1+\phi^{2}$, $\left(-1 \pm \sqrt{1+\phi^{2}}\right) / \phi$ with multiplicities $n-1, n-1,1$ and 1 , respectively.

As is already seen in $\S 2$ and $\S 3$, a connected open kernel W of N_{0} is empty or is identical with M itself and, when $W=M, W$ has exactly two distinct con-
stant principal curvatures $\dot{\phi},-1 / \phi$ or exactly four distinct constant principal curvatures $\phi \pm\left(1+\phi^{2}\right)^{1 / 2},\left[-1 \pm\left(1+\phi^{2}\right)^{1 / 2}\right] / \phi$. Consequently, by the proof of Theorem 3.5, in order to prove this theorem, it suffices to show that the function β is equal to 0 or -1 in the case where W is empty.

Now, in the sequel, suppose that W is empty. Thus in the following Lemmas 4.2, 4.3 and 4.4 , we restrict ourselves to the case where W is empty. When the assumptions stated in Theorem 4.1 are satisfied, the function ϕ in the condition (2.1) must be constant by means of Lemmas 2.5 and 2.8. From Lemma 2.1, we see that the transforms $H u$ and $H v$ of u and v by the transformation H are linear combinations of u and v, i.e., in $N \cup N_{0}$

$$
\begin{align*}
& H_{k}{ }^{\jmath} u^{k}=\alpha u^{\jmath}+\beta v^{\jmath}, \tag{4.1}\\
& H_{k} v^{j}=\beta u^{\jmath}+\gamma v^{\jmath} . \tag{4.2}
\end{align*}
$$

Moreover, we have already obtained in (2.8)

$$
\begin{equation*}
\alpha=\phi(1-\beta), \quad A_{2}=B_{1} \quad \text { in } \quad N \cup N_{0} . \tag{4.3}
\end{equation*}
$$

The functions α, β and γ are defined and differentiable in $N \cup N_{0}$. We have also obtained in (2.15)

$$
\gamma=\phi(1+\beta) \quad \text { in } \quad N .
$$

However, this equation is satisfied also in $N \cup N_{0}$, that is,

$$
\begin{equation*}
\gamma=\phi(1+\beta) \quad \text { in } \quad N \cup N_{0}, \tag{4.4}
\end{equation*}
$$

since N_{0} is a bordered set. By means of Proposition 2.4, we get at most four distinct principal curvatures $\sigma_{1}, \sigma_{2}, \tau_{1}$ and τ_{2} such that

$$
\begin{array}{ll}
\sigma_{1}=\phi+\sqrt{-\beta\left(1+\phi^{2}\right)}, & \sigma_{2}=\phi-\sqrt{-\beta\left(1+\phi^{2}\right)}, \tag{4.5}\\
\tau_{1}=\phi+\sqrt{\beta^{2}\left(1+\phi^{2}\right)}, & \tau_{2}=\phi-\sqrt{\beta^{2}\left(1+\phi^{2}\right)}
\end{array}
$$

at each point in N, and hence, N_{0} being a bordered set, also in $N \cup N_{0}$ because of the continuity of principal curvatures. Under the condition (2.1), the multiplicities of σ_{1} and σ_{2} are $n-1$ and those of τ_{1} and τ_{2} are 1. Thus, the mean curvature is equal to $2 n \phi$, which is constant. By means of (3.7), it follows from this fact that the scalar curvature K satisfies

$$
\begin{equation*}
K=-2\left(1+\phi^{2}\right)\{\beta-(2 n-1)\}(\beta+n) \quad \text { in } \quad N \cup N_{0} . \tag{4.6}
\end{equation*}
$$

Since β is non-positive, solving the quadratic equation above, we have

$$
\beta=(n-1-\sqrt{\bar{\Lambda}}) / 2 \quad \text { in } \quad N \cup N_{0},
$$

where

$$
A=(n-1)^{2}-4\left\{K / 2\left(1+\phi^{2}\right)-n(2 n-1)\right\} \geqq 0 \quad \text { in } \quad N \cup N_{0} .
$$

We have $\Lambda>0$ in M, because N_{1} is a bordered set. Hence we can define a function $\bar{\beta}$ in M by

$$
\begin{equation*}
\bar{\beta}=(n-1-\sqrt{\bar{\Lambda}}) / 2 . \tag{4.7}
\end{equation*}
$$

Then, the function $\bar{\beta}$ thus defined is an extension of the function β which is defined only in $N \cup N_{0}$. Without fear of confusion, we denote the extended function by the same letter β. Thus we prove

Lemma 4.2. The function β is differentiable in M.
On the set $N \cup N_{0}$, differentiating equation (4.4) covariantly and taking account of constantness of ϕ, we get $\gamma_{\rho}=\phi \beta_{3}$, and hence

$$
\begin{equation*}
C_{1}=\phi B_{1} . \tag{4.8}
\end{equation*}
$$

By Lemma 2.3, we have

$$
\lambda R=\left(B_{2}-C_{1}\right)\left(1-\lambda^{2}\right)=\lambda\left\{2\left(\alpha^{2}+\beta^{2}\right)-4 \phi \alpha+2(\beta+\phi \gamma)\right\}
$$

from which,

$$
\begin{equation*}
B_{2}=2 \lambda \beta(1+\beta) /\left(1-\lambda^{2}\right) \quad \text { in } \quad N \cup N_{0} \tag{4.9}
\end{equation*}
$$

because of (2.17), (4.3), (4.4) and (4.8). Taking account of (4.9), we prove
Lemma 4.3. $\beta(x)$ is equal to 0 or -1 at each point x in N_{1}.
Proof. Since N_{1} is also a bordered set, for an arbitrary but fixed point x in N_{1}, we can choose a sequence $\left\{x_{j}\right\}$ of points belonging to N such that $x_{,}$converges to x. Substituting (4.9) into the equation $\beta_{j} v^{j}=B_{2}\left(1-\lambda^{2}\right)$, we have

$$
\begin{equation*}
\beta_{j} v^{j}=2 \lambda \beta(1+\beta) \quad \text { in } \quad N \cup N_{0} . \tag{4.10}
\end{equation*}
$$

Since the functions β, v and λ are differentiable in M and $v=0$ in N_{1}, from (4.10), we see that

$$
\lim _{j \rightarrow \infty} 2 \lambda \beta(1+\beta)\left(x_{j}\right)= \pm 2 \beta(1+\beta)(x)=0 .
$$

This completes the proof.
Next, we shall show that β is equal to 0 or -1 in M. As is already shown, there exist at most four distinct principal curvatures $\sigma_{1}, \sigma_{2}, \tau_{1}$ and τ_{2} at each point in M. Using (4.5), we obtain

$$
\begin{aligned}
& \left(1+\sigma_{1} \sigma_{2}\right)\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(1+\sigma_{1} \tau_{1}\right)\left(\sigma_{1}-\tau_{1}\right)^{2}+\left(1+\tau_{1} \sigma_{2}\right)\left(\tau_{1}-\sigma_{2}\right)^{2} \\
& \quad+\left(1+\tau_{2} \sigma_{1}\right)\left(\tau_{2}-\sigma_{1}\right)^{2}+\left(1+\sigma_{2} \tau_{2}\right)\left(\sigma_{2}-\tau_{2}\right)^{2}+\left(1+\tau_{1} \tau_{2}\right)\left(\tau_{1}-\tau_{2}\right)^{2} \\
& =-4\left(1+\phi^{2}\right)^{2} \beta(1+\beta)(1-\beta)(2-\beta) .
\end{aligned}
$$

Denoting by $\kappa_{1}, \kappa_{2}, \cdots, \kappa_{2 n}$ all of principal curvatures of M, we see that the equation above is equivalent to

$$
\begin{equation*}
\sum_{i<j}\left(1+\kappa_{i} \kappa_{j}\right)\left(\kappa_{i}-\kappa_{j}\right)^{2}=-4\left(1+\phi^{2}\right)^{2} \beta(1+\beta)(1-\beta)(2-\beta) . \tag{4.11}
\end{equation*}
$$

By a formula of Simon's type for the hypersurface of constant mean curvature in a sphere [5], we obtain

$$
\frac{1}{2} \Delta\left(H_{j i} H^{j i}\right)=\nabla_{k} H_{j i} \nabla^{\kappa} H^{j i}+\sum_{\imath<j}\left(1+\kappa_{i} \kappa_{j}\right)\left(\kappa_{i}-\kappa_{j}\right)^{2},
$$

where Δ is denoted the Laplacian, i.e., Beltrami operator. Thus we have

$$
\begin{equation*}
\frac{1}{2} \Delta\left(H_{j i} H^{j i}\right)=\nabla_{k} H_{j i} \nabla^{k} H^{j i}-4\left(1+\phi^{2}\right)^{2} \beta(1+\beta)(1-\beta)(2-\beta) . \tag{4.12}
\end{equation*}
$$

On the other hand, by (2.17) we get $B_{1}+\phi B_{2}=0$ and hence

$$
\begin{align*}
& \beta_{\jmath}=B_{2}\left(-\phi u_{j}+v_{j}\right), \tag{4.13}\\
& \lambda_{3}=(1-\beta)\left(-\phi u_{j}+v_{j}\right) .
\end{align*}
$$

Differentiating (4.9) covariantly and making use of the above equations, we have

$$
\begin{equation*}
\nabla_{j} B_{2}=\frac{2 \beta(1+\beta)}{\left(1-\lambda^{2}\right)^{2}}\left\{3 \lambda^{2}(1+\beta)+(1-\beta)\right\}\left(-\phi u_{j}+v_{j}\right), \tag{4.14}
\end{equation*}
$$

from which, by simple computations,

$$
\begin{equation*}
\Delta \beta=\frac{2\left(1+\phi^{2}\right) \beta(1+\beta)}{1-\lambda^{2}}\left\{\lambda^{2}(3+3 \beta-2 n)+(1-\beta)\right\} . \tag{4.15}
\end{equation*}
$$

Since the mean curvature is constant, using (1.9) and (4.6), we get by a straightforward calculation,

$$
\begin{aligned}
& \Delta\left(H_{j i} H^{j i}\right)=-\Delta K \\
= & \frac{4\left(1+\phi^{2}\right)^{2} \beta(1+\beta)}{1-\lambda^{2}}\left[(2 \beta-n+1)\left\{2 \lambda^{2}(\beta-n+2)+(1-\beta)\left(1-\lambda^{2}\right)\right\}+4 \lambda^{2} \beta(1+\beta)\right] .
\end{aligned}
$$

Combining (4.12) and the equation above, we find

$$
\begin{align*}
& \nabla_{k} H_{j i} \nabla^{k} H^{j i}=\frac{2\left(1+\phi^{2}\right)^{2} \beta(1+\beta)}{1-\lambda^{2}}\left[2 \lambda^{2}\left\{4 \beta^{2}-(3 n-7) \beta+(n-1)(n-2)\right\}\right. \\
&\left.-(n-5)\left(1-\lambda^{2}\right)(1-\beta)\right] . \tag{4.16}
\end{align*}
$$

Making use of (4.16), we prove the following lemma which is required to prove Theorem 4.1.

Lemma 4.4. β is equal to 0 or -1 in M.
Proof. In the case where $n \geqq 6$, since the left hand side of (4.16) is nonnegative in M, so is the right hand side in M and hence in N_{0}. This implies

$$
-2(n-5)\left(1+\phi^{2}\right)^{2} \beta(1+\beta)(1-\beta)(x) \geqq 0 \quad \text { at } \quad x \in N_{0},
$$

from which, we get

$$
-1 \leqq \beta(x) \leqq 0 \quad \text { at } \quad x \in N_{0}
$$

because the function β is non-positive. Since M is compact, the function β has the minimum at a point p in M. Supposing $\beta(p)<-1$, we see by Lemma 4.3 that p belongs to N. Let U be a suitable neighbourhood of p in N such that $\beta(x)<-1$ for any point x in U. Since $\beta(p)$ is the minimum and $\beta(1+\beta)$ is positive in $U,(4.9)$ shows that $\lambda=0$ at p, that is, p belongs to N_{0}. This is a contradiction. Thus we have

$$
-1 \leqq \beta \leqq 0 \quad \text { in } \quad M
$$

Then the right hand side of (4.12) is non-negative and hence, by the well-known theorem of Green (cf. [8]), we have

$$
4\left(1+\phi^{2}\right)^{2} \beta(1+\beta)(1-\beta)(2-\beta)=0 \quad \text { in } \quad M .
$$

This implies that $\beta(1+\beta)$ vanishes identically in M. Consequently, in the case where $n \geqq 6$, the assertion of Lemma 4.4 is true.

When $5 \geqq n \geqq 3$, since the quadratic polynomial $4 \beta^{2}-(3 n-7) \beta+(n-1)(n-2)$ is non-negative, taking account of the right hand side of (4.15), we see that

$$
\beta(1+\beta) \geqq 0 .
$$

By the continuity of β, it follows that β vanishes identically or that β is not greater than -1 .

Suppose that β is not greater than -1 . Since M is compact, there exists a point q in M such that $\beta(q)$ is the maximal value on M. Furthermore, suppose that q is the point in the set $N \cup N_{0}$. We now define a linear and elliptic differential operator L of the second order in $N \cup N_{0}$ defined by

$$
L=g^{j i} \frac{\partial^{2}}{\partial x^{j} \partial x^{2}}+h^{k} \frac{\partial}{\partial x^{k}},
$$

$\left\{x^{h}\right\}$ being local coordinates of M, where

$$
\begin{aligned}
& h^{k}=\frac{\lambda}{1-\lambda^{2}} \cdot \frac{3 k\left(1-\lambda^{2}\right)-3 \sqrt{D}-4 n}{k\left(1-\lambda^{2}\right)-\sqrt{D}-4} \lambda^{k}-g^{j i}\left\{\begin{array}{c}
k \\
j
\end{array} \quad i\right\}, \\
& D=k^{2}\left(1-\lambda^{2}\right)^{2}-4 k\left(1-\lambda^{2}\right)
\end{aligned}
$$

and $\left\{J^{k_{i}}\right.$ \} is the Christoffel's symbol formed with the Riemannian metric tensor g in M, k is a non-positive constant as will be stated later. Then the function β satisfies the equation

$$
\begin{equation*}
L(\beta)=\frac{2\left(1+\phi^{2}\right)}{1-\lambda^{2}} \beta(1+\beta)(1-\beta) . \tag{4.17}
\end{equation*}
$$

In fact, using (4.9) and (4.13), we get the differential equation

$$
\begin{equation*}
(1-\beta) \beta_{3}=\frac{2 \lambda \beta(1+\beta)}{1-\lambda^{2}} \lambda_{3} \quad \text { in } \quad N \cup N_{0} \tag{4.18}
\end{equation*}
$$

from which,

$$
\begin{equation*}
(1+\beta)^{2}=k \beta\left(1-\lambda^{2}\right) \quad \text { in } \quad N \cup N_{0} \tag{4.19}
\end{equation*}
$$

By the definition of h^{k}, we see that the first and the last terms of $L(\beta)$ is reduced to $\Delta \beta$. Next, we consider the second term of $L(\beta)$. By (4.19), we may suppose that k is a negative constant, because β is equal to -1 if k is assumed to be zero. Then, it follows from (4.19) that

$$
\frac{3 k\left(1-\lambda^{2}\right)-3 \sqrt{D}-4 n}{k\left(1-\lambda^{2}\right)-\sqrt{D}-4}=-\frac{3(1+\beta)-2 n}{1-\beta} .
$$

Thus we have

$$
L(\beta)=\Delta \beta-\frac{\lambda}{1-\lambda^{2}} \frac{3(1+\beta)-2 n}{1-\beta} \lambda^{2} \beta_{i} .
$$

Since (4.18) implies, together with (1.5), $\lambda^{2} \beta_{i}=B_{2}(1-\beta)\left(1+\dot{\phi}^{2}\right)\left(1-\lambda^{2}\right)$, the equation above becomes

$$
L(\beta)=\Delta \beta-\frac{2\left(1+\phi^{2}\right)}{1-\lambda^{2}} \lambda^{2} \beta(1+\beta)(3+3 \beta-2 n)
$$

By virtue of this equation and (4.15), we have (4.17).
Combining $\beta<-1$ and (4.17), we get

$$
L(\beta) \geqq 0 \quad \text { in } \quad U .
$$

By a theorem due to Hopf $[3,7]$ this means that β is constant in U, so that B_{2} is equal to 0 in U. By (4.9), we get

$$
\lambda \beta(1+\beta)=0
$$

Hence, in the case where q is a point in $N \cup N_{0}, \beta$ must be equal to -1 , because the set N_{0} has no interior points.

Next, suppose that q is a point belonging to N_{1}. Then, taking account of the fact that N_{1} is a bordered set, we can choose a sequence $\left\{x_{j}\right\}$ of points belonging
to N such that x_{j} converges to the point q. We may treat the subject in the case where $\beta\left(x_{j}\right)<-1$ for arbitrary points x_{j}. By (4.14), we obtain

$$
\nabla_{j} B_{2} \nabla^{j} B_{2}=\frac{4\left(1+\dot{\phi}^{2}\right)}{\left(1-\lambda^{2}\right)^{3}} \beta^{2}(1+\beta)^{2}\left\{3 \lambda^{2}(1+\beta)+(1-\beta)\right\}^{2},
$$

Combining the equation above with (4.19), we have

$$
\left(\nabla_{j} B_{2} \nabla^{j} B_{2}\right)\left(x_{i}\right)=\frac{4 k^{3}\left(1+\phi^{2}\right)}{(1+\beta)} \beta^{5}\left\{3 \lambda^{2}(1+\beta)+(1-\beta)\right\}^{2}\left(x_{i}\right) .
$$

On the other hand, $\left(\nabla_{j} B_{2} \nabla^{j} B_{2}\right)\left(x_{i}\right)$ converges to $\left(\nabla_{j} B_{2} \nabla^{j} B_{2}\right)(q)$, because β is differentiable. Thus the right hand side of the equation above should converge. Therefore, because of $\beta(q)=-1$ given in Lemma 4.3, we obtain

$$
\lim _{\imath \rightarrow \infty} k^{3} \beta^{5}\left\{3 \lambda^{2}(1+\beta)+(1-\beta)\right\}^{2}\left(x_{i}\right)=0,
$$

from which,

$$
-4 k^{3}=0 .
$$

This implies that β must be equal to -1 in M, because of (4.19). We now conclude the proof of Theorem 4.1 completely.

Bibliography

[1] Blair, D. E., G. D. Ludden, and K. Yano, Hypersurfaces of an odd-dimensional sphere. J. Differential Geometry 5 (1971), 479-486.
[2] Cartan, E., Familles de surfaces isoparamétriques dans les espaces à courbure constante. Oeuvres completes, Part III, 2, 1431-1445.
[3] Hopf, E., Elementare Bemerkung über die Lösungen partieller Differentialgleichungen zweiter Ordung vom elliptischen Typus. Sitzungdbreichte preuss. Akad. Wiss. 19 (1927), 147-152.
[4] Nakagawa, H., and I. Yokote, On hypersurfaces in an odd dimensional sphere. Bull. Fac. General Education, Tokyo Univ. of Agr. and Tech. 9 (1973), 1-4.
[5] Nomizu, K., and B. Smyth, A formula of Simon's type and hypersurfaces with constant mean curvature. J. Differental Geometry 3 (1969), 367-377.
[6] Okumura, M., Certain hypersurfaces of an odd dimensional sphere. Tôhoku Math. J. 19 (1967), 381-395.
[7] Yano, K., and S. Bochner, Curvature and Bettı numbers. Ann. of Math. studjes, No. 32 (1953).
[8] Yano, K., and M. Okumura, On (f, g, u, v, λ)-structures. Kōda1 Math. Sem. Rep. 22 (1970), 401-423.

Tokyo University of Agriculture and Technology.

