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COMPACT HYPERSURFACES IN AN ODD

DIMENSIONAL SPHERE

BY HISAO NAKAGAWA AND ICHIRO YOKOTE

Introduction.

As is well known, a (2^ + 1) -dimensional sphere S2n+1(c) of constant curvature
c is naturally endowed with a normal contact metric structure and any hyper-
surface M in S2n+1(c) admits also an (/, g, u, v, ̂ -structure, which is defined by
Yano and Okumura [8], induced from the Sasakian structure in S2n+1(c). For an
(/, gr, &,#, Λ) -structure, the exterior derivatives of the dual 1-form of the vector
field u is equal to twice of the fundamental 2-form induced from /. It might
be interesting to study the manifold structure of the hypersurfaces of an odd-
dimensional sphere, when the exterior derivatives of the dual 1-form of v is
proportional to the fundamental 2-form induced from /. Recently, in this sense,
taking in connection with the paper due to Blair, Ludden and Yano [1], the
present authors [4] have proved the following

THEOREM. Let M be a complete orientable hypersurface with constant scalar
curvature in S2n+1(l). We assume that, for an (/, g, u, v, ̂ -structure on M, there
exists a constant φ such that

(0.1)

or equivalently

(0.2)

where Hjl denotes components of the second fundamental tensor in M. Then either
of the following two assertions (a) and (b) is true:

( a ) M is isometric to one of the following spaces:

( 1 ) the great sphere S2rι(l);

( 2 ) the small sphere S2n(c\ where c = l+φ2;

(3) the product manifold S**-l(ci)xSl(cu, where Cl = l+ψ2 and ca = l + l/0a;

( 4 ) the product manifold Sn(d) X Sw(c2), where cί = 2(l + φ2 + φ Vl + φ2) and
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( b ) M has exactly four distinct constant principal curvatures of multiplicities
n — l, n — l, 1 and 1, respectively.

The main purpose of the present paper is to show that this theorem will be
established under some weaker conditions.

In § 1, as preliminaries, we recall the definition and some properties of an
(/, g, u, v, λ) -structure on a hypersurface naturally induced from a normal contact
structure of S2ri+1(l). In §2, we prove some lemmas and properties concerning a
hypersurface satisfying the condition (0. 1) with a differentiate function φ. In
§ 3, we prove a theorem concerning a hypersurface satisfying the condition (0. 1)
with a function φ (cf. Theorem 3. 5) and, in the last § 4, another theorem con-
cerning a compact hypersurface without the assumption that the scalar curvature
is constant (cf. Theorem 4.1).

The authors wish to express their sincere gratitude to Prof. S. Ishihara who
gave them many valuable suggestions.

§ 1. Hypersurf aces in an odd dimensional sphere.

Let M be a 2^-dimensional Riemannian manifold of class C°° covered by a
system of local coordinate neighborhoods {U\ xh}. Throughout this paper, indices
i,j,~ run over the range {1, 2, •••, 2n}. Let there be given in M a tensor field
/ of type (1, 1), vector fields u and v, a scalar function λ satisfying the following
conditions:

fk

hfjk = -d^ + U^

fk

huk = λvh, fk

hvk = - λuh,

(1.1) Ukf,
k=-λVj, Vkfj

k = λUj,

uku
k=vkv

k = l—λ2, ukv
k=vku

k=Q,

Qkhfjkfτh = Qji - UjUi - VjVi,

where //-, uh, vh and g^ are components of the tensor field /, vector fields u, v and
the Riemannian metric tensor g, and Uj — gjku

k, Vj — gjkv
k. The set of these tensor

fields is called an (/, g, u, v, ^-structure [8].
Now, let Sm(c) be an m-dimensional sphere of constant curvature c in an

(m + l)-dimensional Euclidean space E™*1. As is well known, S2w"μl(l) admits a
normal contact metric structure (φ, f , τjt g), which is induced from the natural
Kaehlerian structure equipped on E2n^2. Let S2n+1(l) be covered by a system of
local coordinate neighborhoods {£7; yκ], where indices κ,λ,~ run over the range
{1, 2, •• ,2w + l}. Let M be an orientable and connected hypersurface in S2 w l l(l).
We put
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then Bj is a local vector field with components B3

K of S2n+ί(l) tangent to M for
each j. We choose a unit normal vector C of M such that B3 and C give the
positive orientation of S2Wτl(l). The transforms φλ*B3

λ of B3 by 0 can be ex-
pressed as a linear combination of B3 and C, that is,

(1.2) φί'B/=fJ*Bk' + υ£'9

where φλ* are components of the tensor field φ of type (1, 1). Then // is a
tensor field of type (1, 1) and v3 is a 1-form on M. Similarly, since the trans-
forms φιCλ of the normal vector C with components Cλ by φ is tangent to M", it
is written as

(1.3) 0/<7=-J5/f;>.

Moreover the vector field f with components ξκ of S2?l+1(l) on M is also a linear
combination of B3 and C, and hence we can express ξ as follows:

(1.4) j' = B/uJ+λC,

where ^ is a vector field on M and λ is a differentiable function. Then it is
seen that the set (_/V, g j ί t uj, vj, λ) satisfies the equation (1. 1) and hence it is an
(/, gr, uy v, λ) -structure. Furthermore, by making use of the property of the normal
contact metric structure on S2w+1(l), the (/, g, u, v, Λ)-structure satisfies the follow-
ing conditions:

(1. 5)

where λj = V3 λ and H3

h are components of the second fundamental tensor H of
M in S27l+1(l) (cf. [6]). Throughout this paper, we concern with hypersurfaces in
S2π+1(l) and with their induced (/, g, u, v, ̂ -structures.

We now denote by Kkji

h, Kjί and K components of the Riemannian curvature
tensor, the Ricci tensor and the scalar curvature of M, respectively. The equa-
tion of Gauss for the hypersurface M is written as

(1. 6) Kw^ftgji

where Hμ=H3

kg^ and the equation of Codazzi is given by

(1.7) P*fl}i-F,#* = 0,

where V3 means the covariant derivation with respect to the induced Riemannian
connection of M. From (1. 6), we have easily

(1. 8) Kjt = (2n-
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and

(1. 9) K

§ 2. The second fundamental tensor.

In the sequel, we assume that on the hypersurface M in S2π+1(l), the linear
transformation / and the second fundamental tensor H satisfy the following con-
dition

(2.1) Htff+fJHf^ϊφff,

where φ is a certain differentiable function, or equivalently,

(2.2) fJ

kHkί

because fji=fj

kgkτ is skew-symmetric. Taking account of the third equation of
(1.5), we see that (2.2) is also equivalent to

(2.3) Fjvί-PίvJ = 2ψfβ.

If we now put N0 = {xeM\λ(x) = Q], Nί = {x^M\λ\x) = l} and N=M-N0\jNlt then we
have M=N\jNo\jNι. Then the sets N0 and Ni are geometrically characterised as
follows: the vector field f, i.e., the Sasakian structure f in the ambient space is
tangent to the hypersurface M at any point in the set N0 and the vector f is
orthogonal to M at each point in Ni (see (1. 2) and (1. 4)).

The second equation of (1. 5) implies that Ni is a bordered set. In fact, if
we suppose that there is an open subset U contained in Nίt then we have, in £7,
fji±Hji=Q, because UiUl=l — λ2=Q in U, and hence u=Q in U. This implies /#
vanishes in C7, because fμ is skew-symmetric and Hμ is symmetric. This con-
tradicts the fact that fμ is of rank 2^ — 2 or of rank 2n in M. Consequently Ni
is a bordered set. Thus we may discuss properties of principal curvatures only
on N\jN0, since they are continuous. In the sequel, we consider only hyper-
surfaces in S*n+1(l) satisfying the condition (2. 1). First we prove

LEMMA 2. 1. On the set N(J N0, the transforms Hu and Hv of the vector fields
u and v by the linear transformation H are linear combination of u and v, that is,

(2.4)

(2.5)

where a = H(u,u)l(l-λ2), β = H(u, v)/(l-λ2), γ = H(v, v)l(l-λ*),
and H(vyv)

Proof. Transvecting fh' with equation (2. 1) and taking account of (2. 1) and
the first equation of (1.1), we obtain
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HJ(ukuh + vkvh) - (u*uk + v^υk}Hh

k = 0.

Transvecting uh and vh with the equation above, we have respectively

(l-λ*)H^uk=H(u, u}ul+H(u, v)vl

and

from which, equations (2. 4) and (2. 5) respectively. Thus we conclude the proof.
Differentiating (2.4) covariantly, we get

where a3 = Vja and βj = Pjβ. From this relation and the equation (1.7) of Codazzi,
we have

HiιίVjUk - HjkPiUk = ajUi - aiUj + a(7jUi - ViUJ] + βjVi - βiVj + β(PjVt - ViV j).

Substituting the second equation of (1. 5) and (2. 3) into the equation above, we
have

(2. 6) {20(1 - β) - 2a}fji = ajUi - aiuj + βjVi - βiV3,

which implies that vectors Va and 7β are linear combinations of u and v, that is,
that a3 and βy are expressed in the form

(2. 7) OL3 = AiUj + A&j, βj = BiUj + BzVj,

where Aίt A2, Bι and B2 are differentiable functions in N\J N0. Consequently, the
equation (2. 6) is reduced to

{20(1 - β) - 2a}fβ = - (A - BMujϋi - twj).

Since the rank of the linear transformation / is equal to or greater than 2^—2
and since M is finite dimensional, we have

LEMMA 2.2. We have in N\JN0

(2.8) α= 0(1-0), A = #ι.

By the similar method, we obtain from (2.5)

(2. 9) 2Hikfh

kHjh

where γj^Ϋjγ This means that the vector 7γ is also a linear combination of
vector u and v and hence γ} is expressed in the form

where Ci and C2 are differentiable functions in N\jN0. Furthermore, we can prove
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LEMMA 2. 3. The second fundamental tensor satisfies the following conditions
in N(JNQ:

(2.10)

(2.11)

where

Q=2(β2+r

2+β-φr\

Proof. By means of (2. 1), the equation (2. 9) becomes

(2. 12) [2HikHh* - ±φHih + 2(β + φ^gih}fjh = (Bz - C

Transvecting u3 (resp. vj') with the equation above, we get three relations in (2. 10).
On the other hand, applying /? to (2. 12) and interchanging indices / and ,

we obtain the equation (2. 10). Thus, this lemma is proved.

If we take account of (2. 4) and (2. 5), then we see that there exist, at an
arbitrary point of N\jNQ, two eigenvectors of the second fundamental tensor of
M belonging to the plane section P(u, v) spanned by u and v. Let n and τ2

be eigenvalues corresponding to these two eigenvectors, respectively. Then the
eigenvalues satisfy the quadratic equation

(2. 13) τ2-(a + r)τ + ar-β2 = 0.

Moreover, (2. 10) shows that 7VU N0 has at most two distinct principal curvatures,
say 0Ί and 0 2, associated with eigenvectors orthogonal to the plane section P(u, v).
First we prove

PROPOSITION 2. 4. N has at most four distinct principal curvatures σίt σz, ri, τ2

such that

Proof. Transvecting u'Vi with (2. 1) and making use of (1. 1), we get

λ{H(u, u) + H(v, v} - 20(1 - ^2)} - 0,

from which,
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(2.14) a + r = 2φ in TV.

According to (2. 8) and the equation above, we have

(2.15) r=φ(l + β) in N.

By making use of (2. 8) and (2. 15), we see that (2. 13) implies

On the other hand, the equation (2. 10) is reduced to

k - 2φHβ + (β + φr)gjί = (a2 + β*-2

because P is equal to zero in N. Therefore, eliminating a and γ from the equa-
tion above, we have

(2. 10) ' Hjjtf - 2φHji + {β + φ*(l + β)}gjί = β(l + 0(1 + φ^u^ + VjVJKl - Λ2).

Thus, for an eigenvalue σ associated with an eigenvector orthogonal to the plane
section P(u, v) spanned by u and v, we have the quadratic equation

(2. 16) σ2 - 2φσ + {β + φ\l + β)} = 0.

Thus we conclude the proof.

Since principal curvatures are real, Proposition 2. 4 implies that β is non-
positive. This fact plays an important role not only in the proof of the following
lemma but also in the later discussions.

LEMMA 2. 5. The function φ is constant in N.

Proof. Differentiating the second equation of (2. 7) covariantly, we have

from which, taking the skew-symmetric part,

B^PjUt - PiUJ) + B2(PjVi - PiV/) = 2(B1 + φB2)fβ.

Since/ is of rank 2^ — 2 or of rank 2n, the coefficient 2(Bι+φB2) vanishes iden-
tically in N(jNo, i.e.,

(2.17) B, + φBz=0 in N\jNQ.

In a similar way, we obtain

(2.18) Cι+0Ca=0 in N(jN0.

Differentiating the first equation of (2. 8) covariantly, we also have
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Thus, putting Φ^u'φjKl-λ*) and Φ2 = vjφjl(l-λ2), we have

By means of this relation, (2. 17) and the second one of (2. 8), we obtain

(1-^=0.

Since β is non-positive in N, Φ2 vanishes identically in TV and hence

Differentiating the equation above covariantly and taking the skew -symmetric
part, we get

ΓjΦiUt - FiΦiUj + 2Φlfji = 0,

from which,

Φι = 0.

Therefore the function φ is constant in N. This completes the proof.

Suppose that there exists a connected component of the set N0, which has a
non-empty open kernel W.

LEMMA 2. 6. The open kernel W has at most four distinct principal curvatures

τ 1 = (γ + Vp+3)/2, τ2 - (γ - VpT4)/2,

where the multiplicities of σi, σ2, τ\ and τ2 are n — l, n — l, 1 and 1, respectively.

Proof. Since λJ=Vj—Hjiu
i=0 in the open kernel W, we get H(u,u)=Q and

£Γ(«,tO = l. Thus (2.4) and (2.5) are reduced to

(2.19) Hk

luk=v\

(2.20) Hk*vk = u* + γv\

respectively, where γ=H(v,v). Consequently, for the coefficients a and β appear-
ing in (2.4), we get a=Q and β = l. Equations (2.19) and (2.20) show that two
eigenvalues, say τ\ and τ2, corresponding to eigenvectors belonging to the plane
section P(u, v) are distinct and that they satisfy the quadratic equation

τ2_ r τ_ι=o,

from which, we obtain

Γl = (γ + Vp+4)/2, τ2 = (r- VpT4)/2.
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Since we have obtained a=Q and β = I, (2.10) is simplified as follows:

(2. 21) 2HJkHιk - 4:φHji + 2(1 + φr)gji =

For the eigenvalue σ associated with an eigenvector perpendicular to P(u, v), we
get by (2. 21)

(2.22) σ2

from which,

Thus there exist at most two distinct principal curvatures, say σλ and <τ2, at each
point of W.

The equation (2.1) implies H(fX) = (2φ—σ1)fX for an eigenvector X cor-
responding to the eigenvalue σi. This mean that fX is also an eigenvector with
an eigenvalue σz. Thus the multiplicities of σ\ and σ2 are equal to n— 1. This
completes the proof.

LEMMA 2. 7. On the open kernel W, the function γ is constant.

Proof. Substituting β = l into (2.12), we obtain

2{HikHh

k - 2φHih -f (14- φγ}gih}f3

h = - Cι(ujvt - UtVj).

Transvecting u3 with the equation above, we have Cι=0. Hence (2.18) implies

φC2=Q in W.

Suppose that there exists a point p in W such that φ(p)=Q, we have

2HjkHik + 2gji = RujUt + P (ujvt -f Uivj) + QvjVi at p,

because of (2. 21). This means that there exist principal curvatures ± V^T at p.
This is a contradiction. Consequently, φ vanishes nowhere in W and then the
function γ is necessarily constant in W. Thus Lemma 2. 7 is proved.

LEMMA 2.8. The function φ is constant in the open kernel W, if n^3.

Proof. Since W has at most four distinct principal curvatures σίt σz, n and
r2 with multiplicities n — 1, n — l> 1 and 1 respectively, we get, using Lemma 2,6,
by a straightforward computation

(2.23) Hj>=2(n

(2. 24) Hji H* = 2(n - l)(2φ2 -φr-

Differentiating (2. 2) covariantly, we have

ifto = 2φlfjί + 20P,jf,i.



234 HISAO NAKAGAWA AND ICHIRO YOKOTE

Transvecting this equation with glί and making use of (2. 23) and the first equa
tion of (1. 5), we obtain

2(n - 2)fjkφk + 2{Hf - r - 2(n -

Since n^3, from (2.23) and (2.24), we get

that is,

(2. 25) φj = Φ1

By means of Lemma 2. 3, coefficients P, Q and R in the equation (2. 10) are given
by

because of a = Q and β = l. Taking account of the second and the third equations
of (1. 5), we have

Consequently, applying Fl — glJPj to (2. 10) and taking account of the relations
above, we have

(2. 26)
= 2γφlUjUι — ̂ (UjVi + UiVj) — 2γφlVjVi,

where φ'l = gljφj. By the equation (1.7) of Codazzi and (2.24), the first term in
the left hand side of (2.26) is given by

2^HjkH,k = Fj(HikH
ik] - 2(n -

Substituting (2. 23), (2. 25) and this equation into (2. 26), we have

(202 - γΦJuj + (2Φj + γΦ2)Vj = 0,

from which,

Therefore, Φ1 = Φ2 = 0 and hence the function φ is constant. This completes the
proof.

Summing up Lemmas 2. 5 and 2. 8 and taking account of the fact that 7VΊ is
a bordered set, we have

PROPOSITION 2. 9. The function φ appearing in (2. 1) is constant in M, if
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As a direct consequence of Lemmas 2. 6, 2. 7 and 2. 8, we have

PROPOSITION 2.10. // w^3, then a connected open kernel W of the set
has at most four distinct constant principal curvatures

τι=(r+ Vp+4)/2, τ2 - (r - Vp+4)/2,

with multiplicities n—l, n — I, 1 and 1, respectively.

§ 3. Hypersurf aces of constant scalar curvature.

In this section, we shall concern with a hypersurface M of constant scalar
curvature in S2n+1(l) satisfying the condition (2. 1). We shall prove the following
theorem, which has been, however, proved in a previous paper [4], provided that
φ is constant.

THEOREM 3. 1. Let M be a hypersurface in S2w+1(l) satisfying (2. 1) and being
of constant scalar curvature. If n^3, then one of the following assertions (1), (2),
(3) and (4) is true:

( 1 ) M is totally umbilic,

( 2 ) M has exactly two distinct constant principal curvatures φ -f V 1 -f φ2,

φ— Vl-f^2 with the same multiplicity n\

( 3 ) M has exactly two distinct constant principal curvatures φ with multi-

plicity 2n — l and — \\φ with multiplicity 1;

(4) M has exactly four distinct constant principal curvatures

,̂ (-l-VΓ+02)/^ with multiplicities n-l,

n—l, 1 and 1, respectively.

We shall give outlines of the proof of Theorem 3. 1 for completeness. To
prove this theorem, we need Lemmas 3. 2, 3. 3 and 3. 4 which will be stated later.

By Lemma 2. 1, the transforms Hu and Hv of the vectors u and v by the
second fundamental tensor H are linear combinations of u and v, that is,

(3.1)

(3.2)

in N\jNo, where the set N consists of points x such that 1>Λ2(#)>0 and the set
No consists of points x such that λ(x) = Q. First, we prove

LEMMA 3. 2. The functions a, β and γ are constant in N.

Proof. By taking account of equations (3. 1) and (3. 2), there exist two eigen-
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values n and τ2 of the second fundamental tensor corresponding to eigenvectors
belonging to the plane section P(u, v), and τi, r2 satisfy the quadratic equation

(3.3) Γ2_(α+r)r+αr_02=0β

Consequently we find n + r2 = 2φ, because of (2. 14). Let σ be an eigenvalue
associated with an eigenvector X perpendicular to P(u, v). Then the condition
(2.1) shows that 2φ — σ is also an eigenvalue associated with the transforms fX of
X by the linear transformation /. On the other hand, since (2. 10)' is reduced to

(3. 4) HjtHi*

the eigenvalue σ satisfies

(3. 5)

Thus there exist at most two distinct eigenvalues, say σ and 2φ—σ, associated
with eigenvectors perpendicular to the plane section P(u,υ). Their multiplicities
are all equal to n — I. Hence we have

from which,

(3.6) HjJ

Thus, the mean curvature is constant in N.
Now, transvecting gji to (3.4), we get

} = 2β(l + /3)(1 + φ2).

Thus, by (1. 9), (3. 6) and the equation above, the scalar curvature K is given by

(3. 7) K= -

Since K is constant and φ is also constant in N by Lemma 2. 5, so is β in N.
Thus, by (2. 8) and (2. 14), a and γ are constant in N. Thus, Lemma 3. 2 is proved.

LEMMA 3. 3. Each point in N is umbilic or N has two distinct constant prin-
cipal curvatures 0+Λ/1+02, φ— vΊ+φ2 with the same multiplicity n.

Proof. Making use of the second equation of (2. 11) and (2. 14), we have

(3.8) 2

from which,

that is,
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(3.9)

Consequently, equation (3. 3) coincides with equation (3. 5), and therefore there
exist at most two distinct principal curvatures τi and τ2 at each point in N, where

Substituting (2. 8) and (2. 15) into (3. 9), we have

This implies that β=Q or β=— 1. Thus it is evident that, in the case where /3=0
in N, each point in N is umbilic and that, in the case where β= — 1 in N, N has
distinct constant principal curvature 0 + (l-f-02)1/2 and φ — (l + φ2)1/2 with the same
multiplicity n. This completes the proof.

LEMMA 3.4. If ψ2— ψγ — 1>0 in a connected open kernel W of No, then W
has exactly four distinct constant principal curvatures

with multiplicities n — \, n — l, 1 and 1, respectively.
If φ2—φγ — l=Q in a connected open kernel W of N0, then W has exactly two

distinct constant principal curvatures

Φ, -1IΦ

with multiplicities 2n — l and 1, respectively.

Proof. The eigenvalue σ associated with an eigenvector orthogonal to the
plane section P(u, v) satisfies the equation (2. 22). This implies that

By proposition 2. 10, for eigenvalues σίt σ2, ri and τ2 obtained in Lemma 2. 6,
we have

or
σι = σ2 = φ, τι=—l/φ, ΐ2 = φ,

if φ2-φγ-l = 0.
Next, we consider the case where φ2— φγ — 1>0. In this case, assuming <7ι = rι,

we obtain

2-φγ-I = 0,

which contradicts φ2— φγ — 1>0. Thus we have OI^TI. In a similar way, we have
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#1^2, σ 2^FΓι and <723Fi-2, if φ2 — φγ —1>0. This implies that 1/Γ has four distinct
constant principal curvatures, if φ2 — φγ —1>0. By Lemma 2.6, the multiplicities
of <7ι and (72 are equal to n — l. On the other hand, by virtue of a formula due
to Cartan [2] for the hypersurface with constant principal curvatures in a sphere,
we get

1+ΓlCTι [

τ\—o\

from which,

Since τi and τ2 are different from σ l y we get

0r + 2 = 0,

from which,

This completes the proof.

Proof of Theorem 3.1. The function β = H(u,v}l(l-λ2) is defined and differ-
entiable in N\J NQ. We now see, from Proposition 2. 4 and Lemma 3. 2, that β is
non-positive constant in N. On the other hand, (2. 19) implies that /3 is equal to
1 in W. Therefore, W is necessarily empty or identical with M itself.

When W is empty, as consequences of Lemma 3. 3, the assertions (1) and (2)
stated in Theorem 3.1 are true. When W—M, as consequences of Lemma 3.4,
the assertions (3) and (4) in Theorem 3. 1 are true. Thus, Theorem 3. 1 is proved
completely.

Following Theorem 3. 1, we now prove

THEOREM 3. 5. Let M be a complete hypersurface in S2n+1(l) satisfying (2. 1)
and being of constant scalar curvature. If n^3, then one of the following two
assertions (a) and (b) is true:

( a ) M is isometric to one of the following spaces:

( 1 ) the great sphere S2n(l}',

( 2 ) the small sphere S2n(c), where c = l + ψ2;

(3) the product manifold S^fcOxS'fca), where Cι = l + φ2 and ca = l + l/02;

( 4 ) the product manifold Sn(d) X Sn(cz), where c, = 2(1 + φ2 + φ Vl + ψ*) and

( b ) M has exactly four distinct constant principal curvatures φ ± Vl + φ2,

( — 1± Vl + 02)/^ of multiplicities n — l, n — l, 1 and 1, respectively.
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Proof. Suppose that the open kernel of any connected component of the set
No consisting of points x such that λ(x) = Q is empty. Then, Lemma 3.3 implies
that each point in N is umbilic or that N has two distinct principal curvatures
n = 0 + (l + 02)1/2, τz = φ-(l + φ2)1/2 with the same multiplicity n. Thus, the prin-
cipal curvatures of M itself has the same property as that stated above, because
of continuity of principal curvatures. In the case where there exist two distinct
ones, we have two distinct distributions D\ and D2 on M which assign the eigen-
spaces Dι(x) and D2(x) to each point x in M, where Dι(x) and D2(x) are eigen-
spaces of τ\ and τ2 respectively. The distributions D\ and Dz are of the same
dimension n, and mutually orthogonal. Since each eigenvalue is constant, each
distribution is involutive and parallel with respect to the Riemannian connection
in M. Let Mi (&'=!, 2) be a maximal integral manifold of A. Then Mτ is totally
geodesic, and M is locally Riemannian product of Mi and M2. Thus, integrating
the equations of Gauss and Weingarten, we can verify that M is isometric to the
product space Sn(c1)xSn(c2\ where c1 = l + [φ + (l + φ*y/2]2 and Cs = l + [φ-(l + φ2yz]2.
Thus, in the present case, only the case (4) of the assertion (a) occurs. In the
other case, where each point in N is umbilic, only the cases (1) and (2) of the
assertion (a) occur.

Next, suppose that there exists a connected component of N0 which contains
an interior point. Then it was proved in Theorem 3.1 that an open kernel is
the hypersurface M itself. In the case where there are exactly two distinct con-
stant principal curvatures, using similar divices as those developed above, we can
verify that the case (3) of the assertion (a) occurs, if φz — φγ — l = Q, and the assertion
(b) is true, if φz — φγ — l>Q. Thus Theorem 3.5 is proved.

§ 4. Compact hypersurf aces.

We prove in this section the following

THEOREM 4.1. Let M be a compact hypersurface in SZn'"l(V) satisfying (2.1).
If n^3, then one of the following two assertions (a) and (b) is true:

( a ) M is isometric to one of the following spaces:

( 1 ) the great sphere S2n(l);

( 2 ) the small sphere SZn(c\ where c = l + ώ2;

(3) the product manifold SZn-\d)xSl(c2\ where cι = l + φ* and c2 = l + l/02;

(4) the product manifold Sn(d) X Sn(cz), where a = 2(1 + φ2 + ̂ VΓT^2") and

( b ) M has exactly four distinct constant principal curvatures ψ ± Vl + φz,

( — 1+ Vl + 02)/0 with multiplicities n — I, n — l, 1 and 1, respectively.

As is already seen in § 2 and § 3, a connected open kernel W of N0 is empty
or is identical with M itself and, when W=M, W has exactly two distinct con-
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stant principal curvatures φ, —l/φ or exactly four distinct constant principal curva-
tures φ±(l+φ*γ/z, [-1±(1+^2)1/2]/^. Consequently, by the proof of Theorem 3.5,
in order to prove this theorem, it suffices to show that the function β is equal to
0 or —1 in the case where W is empty.

Now, in the sequel, suppose that W is empty. Thus in the following Lemmas
4. 2, 4. 3 and 4. 4, we restrict ourselves to the case where W is empty. When the
assumptions stated in Theorem 4. 1 are satisfied, the function φ in the condition
(2. 1) must be constant by means of Lemmas 2. 5 and 2. 8. From Lemma 2. 1, we
see that the transforms Hu and Hv of u and v by the transformation H are linear
combinations of u and v, i.e., in N\jN0

(4.1)

(4.2)

Moreover, we have already obtained in (2.8)

(4.3) a = φ(l-β), Az = Bi in N\jN0.

The functions α, β and γ are defined and differentiate in N\J N0. We have also
obtained in (2. 15)

γ = φ(l + β) in N.

However, this equation is satisfied also in N\jN0) that is,

(4.4) γ=φ(i + β) in N\JN0,

since N0 is a bordered set. By means of Proposition 2.4, we get at most four
distinct principal curvatures σlt σ2, n and τ2 such that

(4.5)
rι = 0 + V

at each point in N, and hence, 7V0 being a bordered set, also in N\jN0 because
of the continuity of principal curvatures. Under the condition (2. 1), the multi-
plicities of <7ι and σz are n—l and those of ri and r2 are 1. Thus, the mean curva-
ture is equal to 2nφ, which is constant. By means of (3.7), it follows from this
fact that the scalar curvature K satisfies

(4.6) K=-2(l+φ*){β-(2n-l)}(β + n) in N\jN0.

Since β is non-positive, solving the quadratic equation above, we have

n

where

-l)}^0 in
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We have /4>0 in M, because Ni is a bordered set. Hence we can define a func-
tion β in M by

(4.7) j8 = («-l-VJ)/2.

Then, the function β thus defined is an extension of the function β which is
defined only in N\jN0. Without fear of confusion, we denote the extended func-
tion by the same letter β. Thus we prove

LEMMA 4. 2. The function β is differ entiable in M.

On the set N(J N0, differentiating equation (4. 4) covariantly and taking account
of constantness of φ, we get γj=φβj, and hence

(4.8) Cί=φBl.

By Lemma 2.3, we have

from which,

(4.9) BΛ = 2λβ(l + β)l(l-λ*) in

because of (2. 17), (4. 3), (4. 4) and (4. 8). Taking account of (4. 9), we prove

LEMMA 4.3. β(x) is equal to 0 or — 1 at each point x in Ni.

Proof. Since Ni is also a bordered set, for an arbitrary but fixed point x in
Nl9 we can choose a sequence {xj} of points belonging to N such that x3 con-
verges to x. Substituting (4.9) into the equation βjVJ=B2(l-λ2), we have

(4.10) βjV' = 2λβ(l + β) in N\JN<>.

Since the functions β, v and λ are differentiate in M and ^=0 in Nίt from (4.10),
we see that

lim 2λβ(l + β)(xj) = ± 2/3(1 + β)(x) = 0.

This completes the proof.

Next, we shall show that β is equal to 0 or —1 in M. As is already shown,
there exist at most four distinct principal curvatures σίt σz, τ\ and τ2 at each point
in M. Using (4.5), we obtain

;a)(rι - σ2)
2

- τ2)
2 -f (1 + rιra)(rι - r2)

2
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Denoting by KI, κz, •••, κ2n all of principal curvatures of M, we see that the equa-
tion above is equivalent to

(4.11) Σ(l + ̂ Ofe-^)2--4(l + 02)2/S(l + ̂ )(l-/3)(2-/3).
l<J

By a formula of Simon's type for the hypersurface of constant mean curvature
in a sphere [5], we obtain

where Δ is denoted the Laplacian, i.e., Beltrami operator. Thus we have

(4.12) ^(Hj.H^^^Hj^H^-^l + φ^βa^βXl-β^-β).

On the other hand, by (2.17) we get Bι + ψB2 = Q and hence

βj = B2(-ψUj+Vj),
(4.13)

λj=(l-β)(-φUj+vj).

Differentiating (4. 9) covariantly and making use of the above equations, we have

(4.14)

from which, by simple computations,

(4.15) 43

Since the mean curvature is constant, using (1. 9) and (4. 6), we get by a straight-
forward calculation,

Combining (4. 12) and the equation above, we find

Ftffjt F*ff " = A1±fl2^L+ έt [2p{4β* - (3w - 7)/3 + (Λ - l)(w - 2)}

(4. 16)
-(^-5)(l-^2)(l-/3)].

Making use of (4. 16), we prove the following lemma which is required to
prove Theorem 4. 1.
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LEMMA 4.4. β is equal to 0 or — 1 in M.

Proof. In the case where n^6, since the left hand side of (4.16) is non-
negative in My so is the right hand side in M and hence in N0. This implies

/3)(x)^0 at

from which, we get

at

because the function β is non-positive. Since M is compact, the function β has
the minimum at a point p in M. Supposing β(p)< — l, we see by Lemma 4.3
that p belongs to N. Let U be a suitable neighbourhood of p in N such that
β(x)< — 1 for any point # in U. Since β(/>) is the minimum and /3(l + /3) is posi-
tive in Uj (4.9) shows that Λ — 0 at p, that is, p belongs to N0. This is a con-
tradiction. Thus we have

in M.

Then the right hand side of (4. 12) is non-negative and hence, by the well-known
theorem of Green (cf. [8]), we have

/5)-0 in M.

This implies that β(l + β) vanishes identically in M. Consequently, in the case
where n^6, the assertion of Lemma 4.4 is true.

When 5^72^3, since the quadratic polynomial 4β2 — (3n — 7)β+(n — T)(n—2) is
non-negative, taking account of the right hand side of (4. 15), we see that

By the continuity of β, it follows that β vanishes identically or that β is not
greater than — 1.

Suppose that β is not greater than — 1. Since Mis compact, there exists a
point q in M such that β(q) is the maximal value on M. Furthermore, suppose
that q is the point in the set N\jN0. We now define a linear and elliptic differ-
ential operator L of the second order in N(jNo defined by

{xh} being local coordinates of M, where

k
*-nJi
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and {jki} is the ChristoffeΓs symbol formed with the Riemannian metric tensor g
in M, k is a non-positive constant as will be stated later. Then the function β
satisfies the equation

(4- 17) L(β) = -

In fact, using (4. 9) and (4. 13), we get the differential equation

(4-18) (l-flfr = Zλ^y} λ, in NUN,,

from which,

(4.19) (l + β)*=kβ(l-λ2) in

By the definition of hk, we see that the first and the last terms of L(β) is reduced
to Δβ. Next, we consider the second term of L(β). By (4. 19), we may suppose
that k is a negative constant, because β is equal to —1 if k is assumed to be
zero. Then, it follows from (4. 19) that

_
4 "~ l-β

Thus we have

.

Since (4.18) implies, together with (1.5), ί̂ = 52(l-^)(l + ̂ a)(l-λ2), the equation
above becomes

By virtue of this equation and (4. 15), we have (4. 17).
Combining β<— 1 and (4.17), we get

in U.

By a theorem due to Hopf [3, 7] this means that β is constant in C7, so that £2 is
equal to 0 in U. By (4. 9), we get

$ = 0.

Hence, in the case where q is a point in N\jN0, β must be equal to —1, because
the set No has no interior points.

Next, suppose that q is a point belonging to M. Then, taking account of the
fact that Ni is a bordered set, we can choose a sequence {#/} of points belonging
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to N such that x3 converges to the point q. We may treat the subject in the

case where β(xj)< — 1 for arbitrary points x3. By (4.14), we obtain

β\l + β)*{3λ\l +β) + (l-β)}*,

Combining the equation above with (4. 19), we have

- #} W

On the other hand, (P 'jB2P
 Ί 7?2)(#ί) converges to (f7

jB2^
J'B2)(q)} because β is dif-

ferentiable. Thus the right hand side of the equation above should converge.

Therefore, because of β(q)=—l given in Lemma 4.3, we obtain

lim k*β5{3λ2(l + β) + (1 - /3)}2fe) - 0,
1— >oo

from which,

This implies that β must be equal to —1 in M, because of (4.19). We now con-

clude the proof of Theorem 4.1 completely.
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