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§ 1. Introduction.

Let (M, g, /) be an almost Hermitian manifold with almost complex structure
tensor / and almost Hermitian metric tensor g. By R we denote the Riemannian
curvature tensor; R(X, Y)Z=PLχ<YΊZ—[l7χ, FY}Z. The holomorphic sectional cur-
vature H(X) for a unit tangent vector X is the sectional curvature K(X, fX)
= g(R(X,fX)X, JX). Let x be a point of M. If H(X) is constant for every unit
tangent vector X at x, (M, g, /) is said to be of constant holomorphic sectional
curvature at x. If H(X) is constant for every x and every tangent vector X at
Xj then (M, g, /) is said to be of constant holomorphic sectional curvature.

One of the main theorems is as follows:

THEOREM A. Let dim M=m = 2n>k. Assume that almost Hermitian manifold
(M, g, /) satisfies

(1. 1) g(R(IX, JY)JX, JZ)=g(R(X, Y)X, Z)

for every tangent vectors X, Y and Z. Then, (M, g, /) is of constant holomorphic
sectional curvature at x, if and only if

(1. 2) R(X, JX)X is proportional to JX

for every tangent vector X at x.

The condition (1. 1) is satisfied in every Kahlerian manifold or more generally
in every 7Γ-space ( = nearly Kahlerian space, almost Tachibana space).

The condition (1. 2) itself has a geometric meaning. It is also stated as follows:
Let σ be a holomorphic plane and let X, JX be in σ\ then R(X, JX) satisfies
R(X,JX)σdσ and R(X, JX)σ-Ldσ L, where aL denotes the orthocomplement of σ in
the tangent space.

In §2, as preliminaries we state some Propositions which give conditions for
a Riemannian manifold to be of constant curvature.

In § 3, we prove Theorem A. Theorem A is concerned with point-wise constant
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holomorphic sectional curvature. As for globally-constant holomorphic sectional
curvature, we have

THEOREM B. A K-space (M, g, /), m>4, is of constant holomorphic sectional
curvature, if and only if (1. 2) holds at each point.

Theorem B is a generalization of a result by Kosmanek [9], or a result by
Ogiue [15].

In §4, we give a condition for a Sasakian manifold to be of constant ^-holo-
morphic sectional curvature in an analogous way as in Kahlerian case.

In § 5, we consider ^-spaces of constant holomorphic sectional curvature. First
we have (cf. Theorem 5. 2)

THEOREM C. A complete ^-dimensional K-space of constant holomorphic sectional
curvature H is one of the following K-spaces:

S6[H], CP*[H], C£3[0]/Λ, CD*[H]/Γ2.

With respect to the sign of H, we have

THEOREM D. If a K-space (M, g, /) has constant holomorphic sectional curvature
II and if (M, g, /) is not Kahlerian, then

Finally we show a relation between the scalar curvature S and constant holo-
morphic sectional curvature H.

§2. Riemannian manifolds of constant curvature.

A Riemannian manifold (M, g), ra>3, is of constant curvature K, if and only
if we have

R(X, Y)Z=K[g(X, Z)Y-g(Y, Z)X]

for every tangent vectors X, Y and Z.
A result of Fialkow [2] is as follows:

PROPOSITION 2. 1. (Fialkow) Let dim M— ra>3. Then a Riemannian manifold
(M, g) is of constant curvature, if and only if

(2.1) g(R(X, F)*,Z) = 0

holds for every point x of M and every orthogonal triplet (X, Y, Z) in the tangent
space MX at x.

The condition (2. 1) may be stated as follows: For every 2-plane σ, let X, Y
be in σ\ then

(2. I/ R(XtY)σ^σ and R(X,
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Or equivalently, for every orthogonal pair (X, Y) in Mx

(2. 1)" R(X, Y)X is proportional to Y.

Proposition 2. 1 has a consequence:

PROPOSITION 2.2. (Ogiue [15]) Let w>3. A Riemannian manifold (M, g) is
of constant curvature, if and only if R(X, Y)Z is a linear combination of X and Y
for every X, Y, and Z.

In fact, for an orthogonal triplet (X, Y, Z\ if R(X, Y)X is a linear combination
of X and F, then it is orthogonal to Z.

§ 3. Almost Hermitian manifolds of constant holomorphic sectional curvature.

Let (M, g, /) be an almost Hermitian manifold. Then

g(JX, IY) = g(X, Γ), JJX= -X

holds. If (M, g, /) is of constant holomorphic sectional curvature at x, then we have

H(X) = g(R(X, JX)X, JX)ig(X, X}2=H= constant

for every non-zero tangent vector X at x. Let (eiy ι = l, •••, m) be any basis at x.
If we put Rljkι = g(R(ek, eί)e3J βi) and gjk = g(ej, ek), we have

(3. 1) [Rtr,ir,Ji-HgJJtgtt]X*XJX*Xl = Q,

where JX=(frjX^er and X=Xίei. By [symmetrization of ^rSJ
rjJs

k-PIgjkQiΐ)~\ = ΰ,
we have

LEMMA 3. 1. (Koto [10]) An almost Hermitian manifold (M, g, /) is of constant
holomorphic sectional curvature at x, if and only if

(3.2)

Transvecting (3. 2) with XJXkXl (X: unit), we have

(3. 3) (R>r,,JrJi+πRjr,JΪ)XJXkXl = 2HXlt i.e.,

(3. 3Y R(fX, X)fX+JR(fX, X)X=2HX.

Now we assume that (M, g, /) has a property
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(3. 4) g(R(IX, JY)JX, JZ) = g(R(X, Y)X, Z)

for every tangent vectors X, Y, and Z. (3. 4) is equivalent to JR(JXt JY)JX
= -R(X, Y)X. Putting Y=JX, we have JR(JX, X)JX=R(X,JX)X. Then (3. 3)'
implies

(3. 5) R(X, JX)X=HJX.

THEOREM 3. 2. Let ra>4. Assume that an almost Hermitian manifold (M, g, J)
satisfies (3. 4). Then, (M, g, /) is of constant holomorphic sectional curvature at x,
if and only if

(3. 6) R(X, JX)X is proportional to JX

for every tangent vector X at x.

Proof. The necessity follows from (3. 5). We prove the converse. Let (X, Y)
be an orthonormal pair in Mx such that g(Y, JX) = Q. Define X* and Z* by X*

= (X+Y)/V~2 and Z* = (JX-JY)/V~2. Then Z* is orthogonal to X* and JX*,
By property (3. 6) and curvature properties, we have

, JX)X, JX)-g(R(Y, JY)Y, JY)

-g(R(X,JY)X,JYHθ(R(JX,

By assumption (3. 4) on (M, g, /), we see that the last two terms of the right hand
side vanish. Therefore, we get H(X}—H(Y).

(i) First we assume m>6. Fix a unit tangent vector X at x. Then the
discussion above shows that every holomorphic plane which is orthogonal to the
plane (X, JX) has constant holomorphic sectional curvature H(X). Let W be any
unit tangent vector at x. Then the orthocomplement of the holomorphic plane
(W,JW) and that of (X, JX) have a non-trivial intersection. This proves H(W)
=H(X).

(ii) Next we assume m—4. For an orthonormal pair (X, Y) such that g(Y, JX)
=0, we have H(X) = H(Y) as before. Using property (3. 6), we get

R(X,JX)X=H(X)IX,

R(X, JX) Y=g(R(X, JX) F, /F)/F,

R(X, JY)X=g(R(X, fY)X, Y) Y+g(R(X, JY)X, JY)JY,

R(X, JY)Y=g(R(X, JY)Y, X)X+g(R(X, JY)Y, JX)JX,

R(Y, JX)X=g(R(Y, JX)X, Y)Y+g(R(Y, JX)X, JY)JY,

R(Y, JX)Y=g(R(Y, JX)Y, X)X+g(R(Y, JX)Y, JX)JX,

R(Y, fY)X=g(R(Y, JY)X, JX)JX,

R( F, JY) Y=H( Y)JY=H(X)JY.
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We define Xθ by Xθ = cosθ J^+sin θ Y, where θ denotes a real number. Then,
using the relations obtained above, we have

(3. 7) R(X', JX°)Xo = AX+ B Y+ CJX+ DfY,

where A and B are not necessary for our argument and

C=cos3# H(X) + cos θ sin2tf E,

D = sin3θ H(X) + coszθ sin θ E,

E=g(R(X, 7F)F, JX} + g(R(Y, f X ) Y , JX) + g(R(Y, fY)X, f X ) .

On the other hand, we have

R(X°, fXθ)Xθ

(3.8)
) cosθfX+H(Xθ) s'mθfY.

Comparing (3.7) and (3.8), we have H(X) = E. Hence, H(XΘ) = cos2θ H(X)
-fsin2# H(X) = H(X) for any θ. Changing Y in cosφ F+sin φJY, we see that
(M, g, 7) is of constant holomorphic sectional curvature at x.

COROLLARY 3.3. Assume that an almost Hermitian manifold (M, g, 7), w>4,
satisfies (3. 4) and is of constant holomorphic sectional curvature at each point. If
H(X) is not equal to zeto for some tangent vector X, then (M, g) is irreducible.

Proof. Assume the contrary. Let ί/be an open set in M which is a Rieman-
nian product (Ui, g ι ) X ( U 2 , gz). Let X be a vector field on U which is tangent to
C/i-part. We decompose fX as JX=(JX}ι + (JX}z corresponding to the decomposi-
tion of the Riemannian product. Then we have R(X, fX)X= R(X, (fX)ι)X, and it
is tangent to f/i-part. On the other hand, R(X, fX)X is proportional to fX, i.e.,

R(X, JX)X=H(X)g(X, X) JX=H(X}g(X, X)[(fX^ + (fX)z].

That is, H(X)g(X, X)(fX)2 = Q. Hence, if we choose U so that H(X)*Q on U, we
have (7^)2 = 0. Therefore, if X (F, resp.) is a vector field tangent to ί/i-part (Uz-
part, resp,), fX (fY, resp.) is tangent to C/i-part (C72-part, resp.). Assume g(X+ Y}

X+Y) = I. Then

(3. 9) R(X+ F, fX+fY)(X+ Y)=

On the other hand, we have

R(X+ F, 7^+7F)(^+ F) - R(X, fX)X+ R( F,
(3. 10)

= Hg(X,X)fX+Hg(Y, Y)JY.

If g(X,X) = g(Y, F) = l/2, (3.9) and (3.10) are not compatible. Therefore, (M,
is an irreducible Riemannian manifold. q.e.d.
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By ? we denote the covariant diffenentiation with respect to g. In an almost
Hermitian manifold (M, g, /), if (Pzf)X=Q holds for every X, then (M, g, /) is
called a X-space (in [17], almost Tachibana space in [25], etc. or nearly Kahler
manifold in [6]). In a K-space we have (cf. Gray [6])

(3. 11) g(R(IX, fY)fZ, fW) = g(R(X, Y)Z, W).

THEOREM 3. 4. A K-space (M, g, /), m>4, is of constant holomorphic sectional
curvature, if and only if

R(X, JX)X is proportional to JX

for every vector field X on M.

Proof. Nakagawa [13] proved that, in a 7£-space, if holomorphic sectional cur-
vature is constant at each point then it is constant on M. Therefore, Theorem
3. 4 follows from (3. 11) and Theorem 3. 2. q.e.d.

An almost Hermitian manifold (M, g, /) is called a Kahlerian manifold, if / is
parallel, i.e., F/=0. A Kahlerian manifold is a K-space. A ^-space is not always
Kahlerian. In fact, a unit 6-sphere S6 with / defined by Frolicher [4] is not a
Kahlerian manifold, but a K-space (cf. Fukami and Ishihara [5]). A Kahlerian
manifold is of constant holomorphic sectional curvature if and only if (cf. Yano [25])

(3. 12) R(X, Y)Z=(HI^(g(X,Z)Y-g(Y,Z)X+g(YJZ)JX-g(XJZ)fY~2g(X)fY)fZl

It is not known if R can be expressed by g and / in JiΓ-spaces of constant holo-
morphic sectional curvature.

COROLLARY 3. 5. (cf. Kosmanek [9]) A Kahlerian manifold, m>Δ, is of constant
holomorphic sectional curvature, if and only if

R(X, JX)X is proportional to JX

for every vector field X on M.

Then we have

COROLLARY 3. 6. (Ogiue [15]) A Kahlerian manifold, m>4, is of constant holo-
morphic sectional curvature, if and only if

R(X, Y)Z is a linear combination of X, Y, fX, JY, JZ

for every vector fields X, Y, and Z.

In fact, assume that R(X, JX)X is a linear combination of X and JX. Since
R(X, fX)X is orthogonal to X, Corollary 3. 6 follows from (3. 12) and Corollary 3. 5.

REMARK 1. In the original proof of Ogiue [15], it is not clear, especially for
m=k, that under the assumption " R(X, Y)Z is a linear combination of X, Y, JX,
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JY, JZ for any X, F, Z " there exist five tensor fields which express R(X, Y)Z.
Because X, Y, fX, JY, JZ are linearly dependent in almost all cases for w=4.

REMARK 2. In an almost Hermitian manifold, an orthonormal basis (Xτ) is
called a /-basis, if Xa = Xa, Xa~n=fXa, α = l, , n = m/2. It is stated in [1] (Bishop
and Goldberg, p. 532) that a Kahlerian manifold (w>4) is of constant holomorphic
sectional curvature if and only if g(R(X, Y)X, Z) = Q for every x and every part
(X, F, Z) of every /-basis at x.

REMARK 3. In a Kahlerian manifold, Kosmanek [9] gave a condition for the
space to be of constant holomorphic sectional curvature in terms of Jacobi fields
along geodesies. Its proof is completed by proving Corollary 3. 5.

§4. Sasakian manifolds of constant 0-holomorphic sectional curvature.

Let (Mt φ, ξ, η, g) be a Sasakian manifold ( = normal contact Riemannian mani-
fold, see for example [19], [20], etc.). The structure tensors satisfy

φξ = 0, φφX= - X+ g(X, ς)ί ,

g(φX, φY) = g(X, Y)-g(X, ξ)g(Y, ?).

We denote by R the Riemannian curvature tensor with respect to g. Then R
satisfies

(4. 1) R(X, F)f = g(X, ξ) Y- g( F, ξ)X.

The ^-holomorphic sectional curvature H(X) for a unit tangent vector X orthogonal
to ξ is given by H(X)=g(R(X, φX)X, φX). A Sasakian manifold has constant φ-
holomorphic sectional curvature H=HX at x if and only if (cf. Tashiro and Tachi-
bana [23], Ogiue [14])

, Y)Z=(H+3)[g(X, Z)Y-g(Y, Z)X]

(4. 2) +(tf-l)[g(F, φZ)φX-g(X, όZ}όY

Y-g(X, Z)η(Y)ξ}.

If H(X) is constant at every point x, then PI is constant on M for m>5.
Recently, Sekizawa [16] obtained the following

PROPOSITION 4. 1. (Sekizawa) A Sasakian manifold, m>5, is of constant φ-
holomorphic sectional curvature, if and only if R(X, Y)Z is a linear combination of
X, F, φX, φY, φZ and f, for every vector fields X, F, and Z.

As in Remark 1 in §3, in the proof given in [16], it is not clear that there
exist six tensor fields of covariant degree 2 and 3, which express R(X, Y}Z.

So, we give a generalization and a simple proof.
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THEOREM 4. 2. A Sasakian manifold, m>5, is of constant ψ-holomorphic sec-
tional curvature, if and only if

R(X, φX)X is proportional to φX

for every vector field X such that g(X, f) = 0.

Proof. If a Sasakian manifold is of constant ^-holomorphic sectional curvature,
we see that R(X, φX)X is proportional to φX by (4. 2). We prove the converse.
Let U be a cubical and regular neighborhood of x with respect to ξ. Then we
have a local fibering π\ U^U/ξ, where U/ξ is a Kahlerian manifold with structure
tensore (h, /) such that g = π*h+η®η and (Ju)* = φu* for every vector field u on
U/ξ, u* denoting the horizontal lift of u with respect to the contact form η (cf.
[22], etc.). By rR we denote the Riemannian curvature tensor with respect to h.
Then we have (cf. (5. 8) in [19])

g(R(u*, **)#*, z*} = h('R(u, z)y, z) π-3h(u, Jz)h(y, Jz) π.

We put u—fz, and choose y so that h(y, z) = h(y, Jz) = Q. Then g(R(z*, φz*)z*, y*)
=0 implies h('R(z, fz)z, y) = Q. Hence (U/ξ, h, /) is of constant holomorphic sectional
curvature fH by Corollary 3. 5. Consequently, C7, and hence M, is of constant φ-
holomorphic sectional curvature fH—?> (cf. for example (3. 6) in [22]). q.e.d.

Proof of Proposition 4. 1. Let X be orthogonal to ξ. Assume that R(X, JX)X
is a linear combination of X, JX, ξ. Clearly X-part is vanishing. We show
that f-part is also vanishing. By (4.1) we have R(X,JX)ξ = Q. Hence, ξ -part
= g(R(X, JX)X, ξ)=-g(R(X, JX}ξ, -X")=0. Therefore, Proposition 4. 1 follows from
(4. 2) and Theorem 4. 2.

§5. /^-spaces of constant holomorphic sectional curvature.

Let (M, g, J) be a ^"-space. We pick up the known results which we need
later.

( i ) In a 7£-space we have (cf. Takamatsu [18], (3. 2))

(5. 1) (Λyi-Λ^iXδΛ*** -#*)=(),

where Rβ denote components of the Ricci curvature tensor and

(ii) If m = 2n = 6 and (M, g, /) is not Kahlerian we have (cf. [18], (4. 3))

(5.2) 5S* = S>0,

where S denotes the scalar curvature and S* = gjίR*ji.

(iii) A X"-space is Kahlerian, if and only if S=S*.
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(iv) If a K-space is of constant holomorphic sectional curvature H, then we
have (Nakagawa [13], p. 272)

(5. 3) RJt + 3Λ*,, = 2(n + ΐ)Hgjt,

(5.4) S+3S*=4»(«

(5. 5) S

(v) In a 6-dimensional 7Γ-space, /,-; is a special Killing tensor and (M, g, /)
is an Einstein space (Matsumoto [12]).

(vi) If Jji is a special Killing tensor, (M, g, /) is of point-wise constant type
(Yamaguchi, Chuman and Matsumoto [24]), i.e.,

(5.6) ||(FX/)F||2=0, or

(5.6)' ||(Γχ/)F||2-(S/30)[||^||2||F||2-g(^, F)2-g(X, /F)2].

(vii) If a ^Γ-space has constant holomorphic sectional curvature H, then for
every orthonormal pair (X, F), we have (Gray [6], p. 288)

(5. 7) K(X, F) = (Him + 3g(X, /F)2] + (3/4) 1 1 (F*/) F 1 1 2.

LEMMA 5. 1. If a ^-dimensional K-space (M, g, /) is of constant holomorphic
sectional curvature Hy then either (M, g, /) is Kάhlerian, or (M, g, /) is of constant
curvature

Proof. The case (5. 6) is Kahlerian. If (5. 6)' holds for non-zero 5, this is a
non-Kahlerian case. By (5. 2) and (5. 4), we have

(5. 8) S=5«(w+l)#/2=30#>0.

Then, (5. 6)' and (5. 7) give #(Z, F)=#>0. q.e.d.

By CPn[H], CEn[Q], and CDn[H] we denote the simply connected Kahlerian
space forms of complex ^-dimension corresponding to constant holomorphic sectional
curvature #>0, #=0, and #<0, respectively. By S6[#] we denote a 6-sphere of
constant curvature H>Q, which has the natural ^-space structure.

THEOREM 5. 2. Let (M, g, /) be a complete ^-dimensional K-space. If R(X,
is proportional to JX for any vector field X on M, then (M, g, /) is one of the
following K-spaces:

Sβ[#], CP*[H], CE9[Q]/Γlt CD*[H]/Γ2,

where A, Γ2 are fixed point free discrete subgroups of the automorphism groups
of CE*[0], CD*[H]. The converse is also true.

Proof. If (My g, /) is Kahlerian, it is one of the last three spaces listed (cf .
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Hawley [7], Igusa [8], Lu Qu-Keng [11], etc.). If it is not Kahlerian, (M, g, /) is
S«[H]. q.e.d.

Transvecting (5. 3) with R** and R*jί, we have

(5. 9) RJi

(5. 10) R*ji

Using (5. 9) and (5. 10), by (5. 1) we get

MRjiR'* = 46(^ + 1)#S- 30(« + l)HS*.

Then using (5. 4) we have

(5. 11) ^RjiR^-7(n+l)HS+5n(n+l)2Hz = Q.

The equation (5. 11) is also witten as

(5. II)7 [2Rjt -(n + l)Hgji][2R^ -(n+ IW*] - 3(« + l)H [S-n(n + l)H] = 0,

(5. 11)" [47?y< - 5(n + V)Hgji][±R*i - 5(n + IW*] + 6(n + l)H[2S-5n(n + 1)ΛΓ] - 0.

THEOREM 5. 3. If a K-space (M, g, /) has constant holomorphic sectional cur-
vature H, and if it is not Kahlerian, then H>Q.

Proof. Suppose that H<0. If H=Q, then we have ̂  = 0 by (5. 11) and S=0
follows. (5.4) implies S=S* and (M, g, /) is Kahlerian. If #<0, (5. liγ gives
S<n(n+l}H. Then (5.5) implies S=n(n + l)H. (5.4) implies S=S* and (M, g, /)
is Kahlerian.

THEOREM 5. 4. Assume that a K-space (M, g, /) has constant holomorphic
sectional curvature H.

(1) If (M, g, /) z's Kahlerian, the scalar curvature S=

(2) If (M, g, /) zs not Kahlerian, then H>0 and

n(n + V)H< S < (5/2)«(w + 1)̂ ".

where equality is attained by and only by (M, gr)= Einstein space.

Proof. (1) is well known. (2) follows from Theorem 5. 3 and (5. ll/ and
(5. 11)". If equality holds, (M, g) is an Einstein space by (5. ll)x/. Conversely, if
(M, g) is an Einstein space, putting RJiR^ = Slίl2n1 by (5. 11) we have [2S-5n(n+l)H]
[S-n(n+l)H] = Q. Therefore we have 2S=5n(n + ΐ)H.

REMARK 4. Nakagawa [13] showed that an almost analytic vector X in a
compact K-space of constant holomorphic sectional curvature H<0 is an infini-
tesimal automorphism. By Theorem 5. 3, we see that this case is Kahlerian and,
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consequently, (M, g) is an Einstein space. If H=Q, then X is parallel. If H<Q,
we have no such X^-0. More generally in the last case, there is no non-trivial
isometry which is homotopic to the identity map (cf. Frankel [3]).
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