SUBMANIFOLDS SATISFYING THE CONDITION $K(X, \boldsymbol{Y}) \cdot \boldsymbol{K}=0$

By Kunio Sakamoto

Introduction.

In 1968, Simons [7] obtained a formula giving the Laplacian of the square of length of the second fundamental tensor and applied it to the study of minimal hypersurfaces of a sphere. Nomizu and Smyth [6] applied a formula of Simons' type to the study of hypersurfaces with constant mean curvature and with nonnegative sectional curvature in a Euclidean space or in a sphere. Chern, Do Carmo and Kobayashi [2] also applied Simons' formula to the study of minimal submanifolds of a sphere (see also Chern [1]). Recently, Yano and Ishihara [10] have applied a formula of Simons' type to the study of submanifolds of higher codimension with parallel mean curvature vector and with locally trivial normal bundle in a Euclidean space or in a sphere. On the other hand, Nomizu [5] studied hypresurfaces of a Euclidean space, which satisfy the condition $K(X, Y) \cdot K=0$ for all tangent vectors X and Y, K being the curvature tensor. Tanno [8], Tanno and Takahashi [9] studied hypersurfaces of a Euclidean space or of a sphere, which satisfy the condition $K(X, Y) \cdot S=0$ for all tangent vectors X and Y, S being the Ricci tensor (see also Kenmotsu [4]).

In the present paper, we shall, applying a formula of Simons' type, study submanifolds satisfying the condition $K(X, Y) \cdot K=0$ and having parallel mean curvature vector, non-negative Ricci curvature and locally trivial normal bundle in a space of constant curvature. We shall also study submanifolds with parallel second fundamental tensor and with locally trivial normal bundle in a Euclidean space or in a sphere. The main results are stated in Theorems 3.3, 3. 4, 3.5 and 3. 6.

§ 1. Preliminaries.

Let M^{m} be an m-dimensional Riemannian manifold of class C^{∞} with metric tensor G, whose components are $G_{j i}$ with respect to local coordinates $\left\{\xi^{h}\right\}$. Let M^{n} be an n-dimensional connected submanifold of class C^{∞} differentiably immersed in $M^{m}(1<n<m)$ and suppose that the local expression of the submanifold M^{n} is

$$
\begin{equation*}
\tilde{\xi}^{h}=\hat{\xi}^{h}\left(\eta^{a}\right), \tag{1.1}
\end{equation*}
$$

Received April 28. 1972.
where $\left\{\eta^{a}\right\}$ are local coordinates in the submanifold M^{n}. The indices h, i, \cdots, l run over the range $\{1, \cdots, m\}$ and the indices a, b, \cdots, g over the range $\{1, \cdots, n\}$. If we put

$$
\begin{equation*}
B_{b}^{h}=\partial_{b} \hat{\xi}^{h}, \quad \partial_{b}=\partial / \partial \eta^{b}, \tag{1.2}
\end{equation*}
$$

then the Riemannian metric g of M^{n} induced from that of M^{m} is given by

$$
\begin{equation*}
g_{c b}=G_{j i} B_{c}{ }^{j} B_{b}{ }^{2} . \tag{1.3}
\end{equation*}
$$

For each index $b, B_{b}{ }^{h}$ denotes a local vector field tangent to M^{n} and the n local vector fields $B_{0}{ }^{h}$ span the tangent space of the submanifold M^{n} at each point. We denote by $C_{x}{ }^{h} m-n$ mutually orthogonal local unit vector fields normal to M^{n}, where here and in the sequel the indices x, y, z run over the range $\{n+1, \cdots, m\}$,

If we denote by $\left\{j^{n}{ }_{i}\right\}$ and $\left\{c_{c}{ }^{a}\right\}$ the Christoffel symbols formed with $G_{j i}$ and $g_{c b}$ respectively, then the van der Waerden-Bortolotti covariant derivative of $B_{b}{ }^{h}$ is, by definition, given by

$$
\left.\nabla_{c} B_{b}{ }^{h}=\partial_{c} B_{b}{ }^{h}+\left\{\begin{array}{c}
h \tag{1.4}\\
j
\end{array} i\right\} B_{c}{ }^{j} B_{b}{ }^{2}-\left\{\begin{array}{c}
a \\
c
\end{array}\right\}\right\}_{a}{ }^{h} .
$$

Since $\nabla_{c} B_{b}{ }^{h}$ is, for any fixed indices c and b, a local vector field normal to M^{n}, we can write

$$
\begin{equation*}
\nabla_{c} B_{b}{ }^{h}=h_{c b}{ }^{x} C_{x}{ }^{h} . \tag{1.5}
\end{equation*}
$$

The local tensor field ${h_{c c}}^{x}$ is called the second fundamental tensor of the submanifold M^{n} relative to the unit normals $C_{x}{ }^{h}$. Equations (1.5) are equations of Gauss for the submanifold M^{n}.

If we denote by g^{*} the metric tensor induced on the normal bundle $\Re\left(M^{n}\right)$ of the submanifold M^{n} from the metric tensor G of M^{m}, then we have, for the components of g^{*} relative to the frame $\left\{C_{x}{ }^{h}\right\}$,

$$
\begin{equation*}
g_{y x}^{*}=G_{j i} C_{y}{ }^{3} C_{x}{ }^{2}=\delta_{y x} . \tag{1.6}
\end{equation*}
$$

If we denote by $\Gamma_{c}{ }^{x}{ }_{y}$ components of the connection ∇^{*} induced on $\mathfrak{R}\left(M^{n}\right)$ from the Riemannian connection ∇ of the ambient manifold M^{m}, the van der WaerdenBortolotti covariant derivative of $C_{y}{ }^{h}$ is, by definition, given by

$$
\left.\nabla_{c} C_{y}{ }^{h}=\partial_{c} C_{y}{ }^{h}+\left\{\begin{array}{c}
h \tag{1.7}\\
j
\end{array}\right\}\right\}_{c} B_{c} C_{y}{ }^{2}-I_{c}{ }_{c}{ }_{y} C_{x}{ }^{h}
$$

Since $\nabla_{c} C_{y}{ }^{h}$ is, for any fixed c and y, a local vector field tangent to M^{n}, we have from $G_{j i} B_{b}{ }^{3} C_{y}{ }^{2}=0$ and (1.5)

$$
\begin{equation*}
\nabla_{c} C_{y}{ }^{h}=-h_{c}{ }^{a}{ }_{y} B_{a}{ }^{h} \quad\left(h_{c}{ }^{a}{ }_{y}=h_{c b}{ }^{x} g^{b a} \delta_{x y}\right) . \tag{1.8}
\end{equation*}
$$

Equations (1.8) are equations of Weingarten for the submanifold M^{n}. We extend the van der Waerden-Bortolotti covariant differentiation ∇_{c} to tensor fields of mixed
type on M^{n} in such a way that for any tensor fields, say $T_{b}{ }^{a}{ }_{y}{ }^{x}$ and $T_{b y}{ }^{h}$, of mixed type, the covariant derivatives are defined to be

$$
\nabla_{c} T_{b}^{a}{ }_{y}^{x}=\partial_{c} T_{b}^{a}{ }_{y}^{x}+\left\{\begin{array}{c}
a \\
c \\
e
\end{array}\right\} T_{b}^{e} y^{x}-\left\{\begin{array}{c}
e \\
c \\
b
\end{array}\right\} T_{e}^{a} y_{y}^{x}+\Gamma_{c}{ }_{z}^{x} T_{b}{ }^{a}{ }_{y}^{z}-\Gamma_{c}^{z}{ }_{y} T_{b}^{a}{ }_{z}^{x}
$$

$$
\nabla_{c} T_{b y}{ }^{h}=\partial_{c} T_{b y}{ }^{h}+\left\{\begin{array}{c}
h \tag{1.9}\\
j \\
i
\end{array}\right\} B_{c}^{j} T_{b y}{ }^{2}-\left\{\begin{array}{c}
a \\
c \\
b
\end{array}\right\} T_{a y}{ }^{n}-\Gamma_{c}^{x}{ }_{y} T_{b x}{ }^{h} .
$$

For tensor fields of mixed type, we have, from (1.9), the Ricci formula

$$
\begin{equation*}
\nabla_{d} \nabla_{c} T_{b}^{a}{ }_{y}{ }^{x}-\nabla_{c} \nabla_{d} T_{b}{ }_{y}{ }^{x}=K_{d c e}{ }^{a} T_{b}^{e}{ }_{y}{ }^{x}-K_{d c b}{ }^{e} T_{e}{ }_{y}^{a}{ }^{x}+K_{d c z}{ }^{x} T_{b}{ }^{a}{ }_{y}^{z}-K_{d c y}{ }^{z} T_{b}{ }^{a}{ }_{z}^{x}, \tag{1.10}
\end{equation*}
$$

where $K_{d c b}{ }^{a}$ and $K_{d c y}{ }^{x}$ are curvature tensors of g of M^{n} and ∇^{*} of $\mathfrak{N}\left(M^{n}\right)$ respectively.
We now assume that the ambient manifold M^{m} is of constant curvature c, ie., that

$$
\begin{equation*}
R_{k j i h}=c\left(G_{k h} G_{j i}-G_{j h} G_{k \imath}\right) \tag{1.11}
\end{equation*}
$$

where $R_{k j i h}$ are covariant components of the curvature tensor of G of M^{m}. Substituting (1.5) and (1.8) in the Ricci formulas for $B_{b}{ }^{h}$ and $C_{y}{ }^{2}$ respectively. we have the structure equations of the submanifold M^{n}, i.e.,

$$
\begin{equation*}
K_{d c b a}=c\left(g_{d a} g_{c b}-g_{c a} g_{d b}\right)+h_{d a}{ }^{x} h_{c b x}-h_{c a}{ }^{x} h_{d b x} \tag{1.12}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{d} h_{c b}^{x}=\nabla_{c} h_{d b}^{x} \tag{1.13}
\end{equation*}
$$

$$
\begin{equation*}
K_{d c y}{ }^{x}=h_{d e}{ }^{x} h_{c}{ }^{e} y-h_{c e}{ }^{x} h_{d}{ }^{e}{ }_{y} . \tag{1.14}
\end{equation*}
$$

Transvecting (1.12) with $g^{d a}$, we find

$$
\begin{equation*}
K_{c b}=c(n-1) g_{c b}+n h^{x} h_{c b x}-h_{c e}{ }^{x} h_{b}^{e}{ }_{x} \tag{1.15}
\end{equation*}
$$

where $K_{c b}=K_{e c b}{ }^{e}$ is the Ricci tensor and $h^{x}=(1 / n) h_{c}{ }^{c x}$ is the mean curvature vector of the submanifold M^{n}.

When the ambient manifold M^{m} is of constant curvature c, we compute the Laplacian ΔF of the function $F=h_{c b}{ }^{x} h^{c b}{ }_{x}$, where $\Delta=g^{c b} \nabla_{c} \nabla_{b}$. We thus have

$$
\begin{equation*}
\frac{1}{2} \Delta F=g^{e d}\left(\nabla_{e} \nabla_{d} h_{c b}^{x}\right) h_{x}^{c b}+\left(\nabla_{c} h_{b a}^{x}\right)\left(\nabla^{c} h^{b a}{ }_{x}\right) \tag{1.16}
\end{equation*}
$$

From the Ricci identity for $h_{c b}{ }^{x}$ and (1.13), we have
(1. 17) $\frac{1}{2} \Delta F=n\left(\nabla_{c} \nabla_{b} h^{x}\right) h^{c b}{ }_{x}+K_{c}{ }^{a} h_{b a}{ }^{x} h^{c b}{ }_{x}-K_{e c b a} h^{e a x} h^{c b}{ }_{x}+K_{o c y}{ }^{x} h_{b}{ }^{e y} h^{c b}{ }_{x}+\left(\nabla_{c} h_{b a}{ }^{x}\right)\left(\nabla^{c} h^{b a}{ }_{x}\right)$.

If we substitute (1.12), (1.14) and (1.15) in (1.17), then we have (cf. [10])

$$
\frac{1}{2} \Delta F=n\left(\nabla_{c} \nabla_{b} h^{x}\right) h^{c b}{ }_{x}+c n F-c n^{2} h^{x} h_{x}-h_{e a}^{y} h_{c b y} h^{e a}{ }_{x} h^{c b x}
$$

$$
\begin{equation*}
+n h^{y} h_{c a y} h_{b}{ }^{a}{ }_{x} h^{c b x}-K_{e c y}{ }^{x} K^{e c y}{ }_{x}+\left(\nabla_{c} h_{b a}{ }^{x}\right)\left(\nabla^{c} h^{b a}{ }_{x}\right) . \tag{1.18}
\end{equation*}
$$

 (1.18) becomes

$$
\begin{align*}
\frac{1}{2} \Delta F= & n\left(\nabla_{c} \nabla_{b} h^{x}\right) h^{c b}{ }_{x}+c n F-c n^{2} h^{x} h_{x}-h_{e a}{ }^{y} h_{c b y} h^{a}{ }_{x} h^{c b x} \tag{1.19}\\
& +n h^{y} h_{c a y} h_{b}{ }^{a}{ }_{x} h^{c b x}+\left(\nabla_{c} h_{b a}{ }^{x}\right)\left(\nabla^{c} h^{b a}{ }_{x}\right) .
\end{align*}
$$

§2. Submanifolds satisfying the condition $K(X, Y) \cdot K=0$.

Let M^{n} be a submanifold in a space M^{m} of constant curvature c, and suppose that the normal bundle $\Re\left(M^{n}\right)$ of M^{n} is locally trivial, i.e., that $K_{d c y}=0$ holds. We now consider the condition

$$
\begin{equation*}
K(X, Y) \cdot K=0 \tag{*}
\end{equation*}
$$

for any tangent vector X and Y of M^{n}, where $K(X, Y)$ operates on the tensor algebra at each point as a derivation. The condition $\left(^{*}\right)$ is equivalent to
(2.1) $\nabla_{f} \nabla_{e} K_{d e b a}-\nabla_{e} \nabla_{f} K_{d c b a}=-\left(K_{f e d}{ }^{g} K_{g c b a}+K_{f e c}{ }^{g} K_{d g b a}+K_{f e b}{ }^{g} K_{d c g a}+K_{f e a}{ }^{g} K_{d c b g}\right)=0$.

On the other hand, differentiating (1.12) covariantly, we have

$$
\begin{equation*}
\nabla_{e} K_{d c b a}=\left(\nabla_{e} h_{d a}{ }^{x}\right) h_{c b x}+h_{d a}{ }^{x}\left(\nabla_{e} h_{c b x}\right)-\left(\nabla_{e} h_{c a}{ }^{x}\right) h_{d b x}-h_{c a}{ }^{x}\left(\nabla_{e} h_{d b x}\right), \tag{2.2}
\end{equation*}
$$

and hence

$$
\begin{aligned}
& \nabla_{f} \nabla_{e} K_{d c b a}-\nabla_{e} \nabla_{f} K_{d c b a} \\
= & \left(\nabla_{f} \nabla_{e} h_{d a}{ }^{x}-\nabla_{e} \nabla_{f} h_{d a}{ }^{x}\right) h_{c b x}+\left(\nabla_{f} \nabla_{e} h_{c b}{ }^{x}-\nabla_{e} \nabla_{f} h_{c b} x\right) h_{d a x} \\
& -\left(\nabla_{f} \nabla_{e} h_{e a}{ }^{x}-\nabla_{e} \nabla_{f} h_{c a} x\right) h_{d b x}-\left(\nabla_{f} \nabla_{e} h_{d b}{ }^{x}-\nabla_{e} \nabla_{f} h_{d b} x\right) h_{c a x} .
\end{aligned}
$$

Applying the Ricci identity (1.10) to $h_{c b}{ }^{x}$ with vanishing $K_{d c y}{ }^{x}$, we see that the equations above reduce to

$$
\begin{align*}
& \nabla_{f} \nabla_{e} K_{d c b a}-\nabla_{e} \nabla_{f} K_{d c b a} \\
&=-\left(K_{f e d}{ }^{g} h_{g a} x+K_{f e a}{ }^{g} h_{d g} x\right) h_{c b x}-\left(K_{f e c}{ }^{g} h_{g b}{ }^{x}+K_{f e b}{ }^{g} h_{c y}{ }^{x}\right) h_{d a x} \tag{2.3}\\
&+\left(K_{f e c} h_{g a}{ }^{x}+K_{f e a}{ }^{g} h_{c g^{x}}\right) h_{d b x}+\left(K_{f e d}{ }^{g} h_{g b}{ }^{x}+K_{f e b}{ }^{y} h_{d g}{ }^{x}\right) h_{c a x} .
\end{align*}
$$

Since the normal bundle $\mathfrak{P}\left(M^{n}\right)$ of M^{n} is locally trivial, we see from (1.14) that, for any indices x and $y, h_{b}^{a x}$ and $h_{b}{ }^{a y}$ are commutative, i.e., $h_{e}^{a x} h_{b}{ }^{e y}=h_{e}{ }^{a y} h_{b}{ }^{e x}$.

Hence we see that there exist certain n mutually orthogonal unit vectors $v_{1}{ }^{a}, \cdots, v_{n}{ }^{a}$ such that

$$
\begin{equation*}
h_{b}{ }^{a x} v_{\alpha}{ }^{b}=\lambda_{\alpha}{ }^{x} v_{\alpha}^{a} \quad(\alpha ; \text { not summed }) \tag{2.4}
\end{equation*}
$$

at each point of M^{n}, where here and in the sequel indices $\alpha, \beta, \gamma, \varepsilon$ run over the range $\{1, \cdots, n\}$. We shall now compute

$$
\left(\nabla_{f} \nabla_{e} K_{d c b a}-\nabla_{e} \nabla_{f} K_{d c b a}\right) v_{\beta}{ }^{f} v_{\alpha}{ }^{e} v_{r}^{d} v_{\varepsilon}^{c}
$$

First we find from (1.12)

$$
K_{f e b a} v_{\beta}^{f} v_{\alpha}^{e}=\left(c+\sum_{x} \lambda_{\alpha}^{x} \lambda_{\beta}^{x}\right)\left(v_{\beta a} v_{\alpha b}-v_{\alpha a} v_{\beta b}\right) \quad(\alpha \neq \beta)
$$

Since we see, from (1.12), that the sectional curvature $\sigma_{\beta, \alpha}$ of M^{n} with respect to the plane section determined by eigenvectors v_{α} and v_{β} of $h_{b}{ }^{a x \prime}$ s is given by

$$
\begin{equation*}
\sigma_{\beta, \alpha}=c+\sum_{x} \lambda_{\beta}^{x} \lambda_{\alpha}^{x} \quad(\alpha \neq \beta) \tag{2.5}
\end{equation*}
$$

we have

$$
\begin{equation*}
K_{f e b}{ }^{a} v_{\beta}{ }^{f} v_{\alpha}^{e}=\sigma_{\beta, \alpha}\left(v_{\beta}^{a} v_{\alpha b}-v_{\alpha}{ }^{a} v_{\beta b}\right) . \tag{2.6}
\end{equation*}
$$

If we transvect (2.3) with $v_{\beta}^{f} v_{\alpha}^{e}$ and use (2.4) and (2.6), then we find

$$
\begin{align*}
& \left(\nabla_{f} \nabla_{e} K_{d c b a}-\nabla_{e} \nabla_{f} K_{d c b a}\right) v_{\beta}^{f} v_{\alpha}^{e} \\
= & -\sigma_{\beta, \alpha}\left[\lambda_{\beta}^{x}\left(v_{\beta a} v_{\alpha d}+v_{\beta d} v_{\alpha a}\right)-\lambda_{\alpha}^{x}\left(v_{\alpha a} v_{\beta d}+v_{\alpha d} v_{\beta a}\right)\right] h_{c b x} \\
& -\sigma_{\beta, \alpha}\left[\lambda_{\beta}^{x}\left(v_{\beta b} v_{\alpha c}+v_{\beta c} v_{\alpha b}\right)-\lambda_{\alpha}^{x}\left(v_{\alpha b} v_{\beta c}+v_{\alpha c} v_{\beta b}\right)\right] h_{d a x} \tag{2.7}\\
& +\sigma_{\beta, \alpha}\left[\lambda_{\beta}^{x}\left(v_{\beta a} v_{\alpha c}+v_{\beta c} v_{\alpha a}\right)-\lambda_{\alpha}^{x}\left(v_{\alpha a} v_{\beta c}+v_{\alpha c} v_{\beta a}\right)\right] h_{d b x} \\
& +\sigma_{\beta, \alpha}\left[\lambda_{\beta}^{x}\left(v_{\beta b} v_{\alpha d}+v_{\beta d} v_{\alpha b}\right)-\lambda_{\alpha}^{x}\left(v_{\alpha b} v_{\beta d}+v_{\alpha d} v_{\beta b}\right)\right] h_{c a x}
\end{align*}
$$

Thus transvecting (2.7) with $v_{r}{ }^{d} v_{\varepsilon}{ }^{c}$, we have from (2.4)

$$
\begin{align*}
& \left(\nabla_{f} \nabla_{e} K_{d c b a}-\nabla_{e} \nabla_{f} K_{d c b a}\right) v_{\beta}{ }^{f} v_{\alpha}{ }^{e} v_{r}^{d} v_{\varepsilon}{ }^{c} \\
= & \sigma_{\beta, \alpha} \sum_{x}\left[(\lambda _ { \beta } ^ { x } - \lambda _ { \alpha } x) \left\{-\lambda_{\varepsilon}^{x}\left(\delta_{\alpha \gamma} v_{\beta a}+\delta_{\beta r} v_{\alpha a}\right) v_{\varepsilon b}\right.\right. \tag{2.8}\\
& \left.\left.-\lambda_{\gamma}^{x}\left(\delta_{\alpha \varepsilon} v_{\beta b}+\delta_{\beta \varepsilon} v_{\alpha b}\right) v_{\gamma a}+\lambda_{\gamma} x\left(\delta_{\alpha \varepsilon} v_{\beta a}+\delta_{\beta \varepsilon} v_{\alpha a}\right) v_{\gamma b}+\lambda_{\varepsilon} x\left(\delta_{\alpha \gamma} v_{\beta b}+\delta_{\beta \gamma} v_{\alpha b}\right) v_{\epsilon a}\right\}\right]
\end{align*}
$$

We can easily verify that the right-hand side of (2.8) vanishes identically except in the following four cases: Case I $\gamma=\alpha, \gamma \neq \beta, \varepsilon \neq \alpha, \varepsilon \neq \beta(\alpha \neq \beta)$, Case II $\gamma \neq \alpha$, $\gamma=\beta, \varepsilon \neq \alpha, \varepsilon \neq \beta(\alpha \neq \beta)$, Case III $\gamma \neq \alpha, \gamma \neq \beta, \varepsilon=\alpha, \varepsilon \neq \beta(\alpha \neq \beta)$ and Case IV $\gamma \neq \alpha, \gamma \neq \beta$, $\varepsilon \neq \alpha, \varepsilon=\beta \quad(\alpha \neq \beta)$. For these four cases, (2.8) reduces to

$$
\begin{equation*}
\left(\nabla_{f} \nabla_{e} K_{d c b a}-\nabla_{e} \nabla_{f} K_{d c b a}\right) v_{\beta}^{f} v_{\alpha}^{e} v_{r}^{d} v_{\alpha}^{c}=\sigma_{\beta, \alpha} \sum_{x}\left(\lambda_{\beta}^{x}-\lambda_{\alpha} x\right) \lambda_{r}^{x}\left(v_{r b} v_{\beta a}-v_{\beta b} v_{r a}\right) \tag{2.9}
\end{equation*}
$$

We moreover assume that the submanifold satisfies the condition (*), which is equivalent to the condition

$$
\begin{equation*}
\sigma_{\beta, \alpha} \sum_{x}\left(\lambda_{\beta}^{x}-\lambda_{\alpha}^{x}\right) \lambda_{r}^{x}=0 \quad \gamma \neq \alpha, \beta(\alpha \neq \beta) \tag{2.10}
\end{equation*}
$$

because of (2.9). Using (2.5), we see easily that (2.10) is equivalent to

$$
\begin{equation*}
\sigma_{\beta, \alpha}\left(\sigma_{\gamma, \beta}-\sigma_{r, \alpha}\right)=0 \quad \gamma \neq \alpha, \beta(\alpha \neq \beta) . \tag{2.11}
\end{equation*}
$$

We here assume that there is at least one non-zero $\sigma_{\beta, \alpha}$. Then we may suppose that $\sigma_{1,2}, \ldots, \sigma_{1, p}$ are non-zero and $\sigma_{1, p+1}=\cdots=\sigma_{1, n}=0$. We find from (2.11)

$$
\sigma_{r, \beta}=\sigma_{r, \alpha} \quad(\beta<\alpha ; 1, \cdots, p, \gamma=1, \cdots, n) .
$$

Thus we have

$$
\begin{array}{ll}
\sigma_{\beta, \alpha}=\sigma_{1,2} & (\beta<\alpha ; 1, \cdots, p), \\
\sigma_{\beta, \alpha}=0 & (\beta=1, \cdots, p, \alpha=p+1, \cdots, n) .
\end{array}
$$

Similarly, if we suppose that $\sigma_{p+1},{ }_{p+2}, \cdots, \sigma_{p+1, q}$ are non-zero and $\sigma_{p+1}, q_{q+1}=\cdots$ $=\sigma_{p+1, n}=0$, then we find

$$
\begin{array}{ll}
\sigma_{\beta, \alpha}=\sigma_{p+1, p+2} & (\beta<\alpha ; p+1, \cdots, q), \\
\sigma_{\beta, \alpha}=0 & (\beta=p+1, \cdots, q, \alpha=q+1, \cdots, n) .
\end{array}
$$

In this way, we have

$$
\begin{array}{ll}
\sigma_{\beta, \alpha}=\sigma_{q+1, q+2} & (\beta<\alpha ; q+1, \cdots, r), \\
\sigma_{\beta, \alpha}=0 & (\beta=q+1, \cdots, r, \alpha=r+1, \cdots, n),
\end{array}
$$

as far as there is a non-zero $\sigma_{\beta, \alpha}$.
If we denote by S the Ricci tensor, we easily find

$$
\begin{equation*}
S\left(v_{\alpha}, v_{\alpha}\right)=K_{c b} v_{\alpha}{ }^{c} v_{\alpha}{ }^{b}=\sum_{\beta \neq \alpha} \sigma_{\beta, \alpha} \quad(\alpha ; \text { fixed }) \tag{2.12}
\end{equation*}
$$

Hence, when we assume that the Ricci tensor S is non-negative, taking account of the behavior of the sectional curvatures $\sigma_{\beta, \alpha}$, explained above, we see that the sectional curvature $\sigma_{\beta, \alpha}$ is non-netative for all β and α. Using (2.4) and (2.5), we find from (1.19) (cf. [10])

$$
\begin{equation*}
\frac{1}{2} \Delta F=n\left(\nabla_{c} \nabla_{b} h^{x}\right) h^{c b}{ }_{x}+\left(\nabla_{c} h_{b a} x\right)\left(\nabla^{c} h^{b a}{ }_{x}\right)+\sum_{\alpha<\beta} \sum_{x}\left(\lambda_{\beta}^{x}-\lambda_{\alpha}^{x}\right)^{2} \sigma_{\beta, a} . \tag{2.13}
\end{equation*}
$$

Therefore we have

Proposition 2.1. Let $M^{n}(n \geqq 3)$ be a submanifold immersed in a space of constant curvature and satisfy the conditions:
(A) The normal bundle $\mathfrak{N}\left(M^{n}\right)$ is locally trivial;

(C) $K(X, Y) \cdot K=0$ for any tangent vectors X and Y of M^{n};
(D) The Ricci tensor is non-negative. If M^{n} is compact, then we have

$$
\begin{array}{ll}
\nabla_{c} h_{b a}^{x}=0 & \text { for any indices } c, b \text { and } a, \tag{2.14}\\
\left(\lambda_{\beta}^{x}-\lambda_{\alpha}\right)^{2} \sigma_{\beta, \alpha}=0 & \text { for any indices } \alpha, \beta(\alpha \neq \beta) \text { and } x .
\end{array}
$$

Proposition 2.2. Let $M^{n}(n \geqq 3)$ be a submanifold immersed in a space of constant curvature and satisfy the conditions (A), (B), (C) and (D) in Proposition 2.1. If $F=h_{c b} x^{c b}{ }_{x}$ is constant, we have (2.14) and (2.15).

§3. Submanifolds with parallel second fundamental tensor.

Let M^{n} be a connected submanifold with parallel second fundamental tensor, i.e., $\nabla_{c} h_{b a}{ }^{x}=0$, in a space M^{m} of constant curvature c and suppose that the normal bundle $\Re\left(M^{n}\right)$ is locally trivial. Then we easily see that all of the eigenvalues $\lambda_{\alpha}{ }^{x}$ of the second fundamental tensor are constant and that each of eigenspaces of the second fundamental tensor is of constant dimension. If we denote by λ_{α} the normal vector fields with components $\lambda_{\alpha}{ }^{h}=\lambda_{\alpha}{ }^{x} C_{x}{ }^{h}$, then they are globally defined. When we fix the normals $C_{x}{ }^{h}$, we can identify λ_{α} with a vector of R^{m-n} with components $\left(\lambda_{\alpha}{ }^{n+1}, \cdots, \lambda_{\alpha}{ }^{m}\right)$ and the inner product of λ_{α} and λ_{β} with the usual inner product $\left(\lambda_{\alpha}, \lambda_{\beta}\right)$ in R^{m-n}. If all of the eigenvector fields corresponding to λ_{α} form a p_{α} dimensional distribution, then we say that the multiplicity of λ_{α} is p_{α}.

Let μ_{1}, \cdots, μ_{N} be distinct vectors of eigenvalues and let p_{1}, \cdots, p_{N} be the multiplicity of μ_{1}, \cdots, μ_{N}. We denote by D_{A} the distribution formed by all eigenvector fields corresponding to μ_{A} of multiplicity p_{A}, where the index A runs over the range $\{1, \cdots, N\}$. Taking a vector field X^{a} belonging to D_{A}, we have

$$
\begin{equation*}
h_{b}{ }^{a x} X^{b}=\mu_{A}{ }^{x} X^{a} \tag{3.1}
\end{equation*}
$$

and hence

$$
\begin{equation*}
h_{b}^{a x} \nabla_{c} X^{b}=\mu_{A}{ }^{x} \nabla_{c} X^{a}, \tag{3.2}
\end{equation*}
$$

since $\nabla_{c} h_{b}{ }^{a x}=0$ and $\mu_{A}{ }^{x}$ are constant. If a vector field Y^{a} belongs to D_{A}, then we find from (3.2)

$$
\begin{equation*}
h_{b}^{a x}\left(Y^{c} \nabla_{c} X^{b}-X^{c} \nabla_{c} Y^{b}\right)=\mu_{a}{ }^{x}\left(Y^{c} \nabla_{c} X^{a}-X^{c} \nabla_{c} Y^{a}\right) \tag{3.3}
\end{equation*}
$$

Thus we see that the distribution D_{A} and the orthogonal complement \bar{D}_{A} of D_{A} are both integrable and parallel. Therefore, if we denote by M_{A} and \bar{M}_{A} some integral manifolds of D_{A} and \bar{D}_{A} respectively, they are totally geodesic submani-
folds in M^{n} and M^{n} is locally a pythagorean product $M_{A} \times \bar{M}_{A}$. Since, for any vector fields X^{a} and Y^{a} tangent to M_{A}, we have

$$
X^{c} \nabla_{c}\left(Y^{a} B_{a}^{h}\right)=\left(X^{c} \nabla_{c} Y^{a}\right) B_{a}{ }^{h}+\mu_{A}{ }^{x} g_{c a} X^{c} Y^{a} C_{x}{ }^{h},
$$

we see that M_{A} is totally umbilical in the ambient manifold M^{m} if $\mu_{A} \neq 0$ and that M_{A} is totally geodesic in the ambient manifold M^{m} if $\mu_{A}=0$. Thus we have (cf. [10])

Lemma 3.1. Let M^{n} be a submanifold with parallel second fundamental tensor immersed in a space M^{m} of constant curvature and assume that the normal bundle $\mathfrak{N}\left(M^{n}\right)$ of M^{n} is locally trivial. If distinct vectors of elgenvalues of the second fundamental tensor are given by μ_{1}, \cdots, μ_{N}, then M^{n} is locally a pythagorean product $M_{1} \times \cdots \times M_{N}$, where $M_{A}(A=1, \cdots, N)$ is a totally umbilical submanifold in M^{m} with mean curvature vector μ_{A} if $\mu_{A} \neq 0$ and M_{A} is a totally geodesic submannfold in M^{m} if $\mu_{A}=0$. In particular the normal bundle $\mathfrak{A}\left(M_{A}\right)$ of M_{A} in M^{m} is locally trivial.

Let M^{n} be an n-dimensional submanifold with parallel second fundamental tensor immersed in a space M^{m} of constant curvature c and suppose that the normal bundle $\mathfrak{N}\left(M^{n}\right)$ is locally trivial. If u^{a} and v^{a} are unit vector belonging to D_{A} and D_{B} respectively, then we have

$$
K_{d c b a} v^{d} u^{c} u^{b} v^{a}=0
$$

and hence, from (1.12),

$$
K_{d c b a v} v^{d} u^{c} u^{b} v^{a}=c+\sum \mu_{A}^{x} \mu_{B}^{x}=c+\left(u_{A}, \mu_{B}\right)=0 .
$$

We note that we have this result under the assumptions in Propositions 2.1 and 2.2. We have known the following lemma (cf. [10]).

Lemma 3.2. Let μ_{1}, \cdots, μ_{N} be distinct vectors belonging to R^{m-n} such that $\left(\mu_{A}, \mu_{B}\right)=k(A \neq B ; A, B=1, \cdots, N)$. If μ_{1}, \cdots, μ_{N} span an r-dimensional subspace, ($m-n \geqq r>0$), then $N=r$ or $N=r+1$. When $N=r+1$, and when μ_{1}, \cdots, μ_{N} span an r-dimensional subspace,

$$
\left|\begin{array}{cccc}
\left(\mu_{1}, \mu_{1}\right) & k & \cdots \cdots & k \\
k & \left(\mu_{2}, \mu_{2}\right) & \cdots & k \\
& \cdots \cdots \cdots \cdots \cdots & \\
k & k & \cdots \cdots & \left(\mu_{N}, \mu_{N}\right)
\end{array}\right|=0 .
$$

If $k=0$, then one of μ_{1}, \cdots, μ_{N} is necessarily zero.
In general, a submanifold M^{n} immersed in an m-dimensional space M^{m} is said to be of essential codimension $r(0 \leqq r \leqq m-n)$, if there exists in the ambient manifold M^{m} an ($n+r$)-dimensional totally geodesic submanifold containing M^{n} as a submanifold and no such a totally geodesic submanifold of dimension less than $n+r$. The subspace in the normal space at a point P of M^{n} spanned by normal
vectors $v^{c} u^{b} h_{c b}{ }^{x} C_{x}{ }^{h}, u^{a}$ and v^{a} being any tangent vectors of M^{n} at P , is called the first normal space at P.

We now assume that the ambient manifold M^{m} is an m-dimensional Euclidean space R^{m}. Then, from the above Lemma 3.2, we see that the first normal space is of constant dimension r and $N=r$ or $N=r+1$, if μ_{1}, \cdots, μ_{N} span an r-dimensional subspace of R^{m-n}, and that one of μ_{1}, \cdots, μ_{N} is necessarily zero if $N=r+1$. If X^{a}, Y^{a} and Z^{a} are vector fields tangent to M^{n}, then we have

$$
Z^{e} \nabla_{e}\left(X^{c} Y^{b} h_{c b}{ }^{x}\right) C_{x}^{h}=\left(Z^{e} \nabla_{e} X^{c}\right) Y^{b} h_{c b}^{x} C_{x}^{h}+X^{c}\left(Z^{e} \nabla_{e} Y^{b}\right) h_{c b}^{x} C_{x}^{h}
$$

because of $\nabla_{c} h_{b a}{ }^{x}=0$. Thus the first normal space is parallel in the normal bundle $\mathfrak{R}\left(M^{n}\right)$. Therefore we see that the essential codimension is r, i.e., that M^{n} is immersed in an $(n+r)$-dimensional plane in R^{m}, if μ_{1}, \cdots, μ_{N} span an r-dimensional subspace of R^{m-n} (cf. [3]) Since it is easily verified that the second fundamental tensor of $M_{A}(A=1, \cdots, N)$ in R^{m} is parallel and that the first normal space of M_{A} in R^{m} is of constant dimension 1 if $\mu_{A} \neq 0$, we see from Lemma 3.1 that M_{A} is immersed in an $\left(p_{A}+1\right)$-dimensional plane in R^{m} as a totally umbilical hypersurface if $\mu_{A} \neq 0$ and that, in particular, if M_{A} is of dimension $1, M_{A}$ is a curve of constant curvature in a 2-dimensional plane in R^{m}. Therefore we have (cf. [5], [6] and [10])

Theorem 3.3. Let M^{n} be a connected complete submanifold of dimension n with parallel second fundamental tensor immersed in a Euclidean space R^{m} of dimension $m(1<n<m)$ and suppose that the normal bundle is locally trivial. Then M^{n} is a sphere $S^{n}(r)$ of dimension n with radius r, an n-dimensional plane R^{n}, a pythagorean product of the form

$$
\begin{equation*}
S^{p_{1}}\left(r_{1}\right) \times \cdots \times S^{p_{N}}\left(r_{N}\right), p_{1}+\cdots+p_{N}=n, p_{1}, \cdots, p_{N} \geqq 1,1<N \leqq m-n \tag{3.4}
\end{equation*}
$$

or a pythagorean product of the form

$$
\begin{equation*}
S^{p_{1}}\left(r_{1}\right) \times \cdots \times S^{p_{N}}\left(r_{N}\right) \times R^{p}, p_{1}+\cdots+p_{N}+p=n, p_{1}, \cdots, p_{N}, p \geqq 1,1<N \leqq m-n \tag{3.5}
\end{equation*}
$$

where $S^{p}(r)$ is a p-dimensional sphere with radius r and R^{p} is a p-dimensional plane. If M^{n} is a pythagorean product of the form (3.4) or (3.5), then M^{n} is of essentral codimension N.

In the case where the ambient manifold M^{m} is an m-dimensional sphere $S^{m}(a)$ with radius a, we have (see [10])

Theorem 3.4. Let M^{n} be an n-dimensional connected complete submanifold with parallel second fundamental tensor immersed in an m-dimensional sphere $S^{m}(a)$ with radius $a(0<a, 1<n<m)$ and suppose that the normal bundle is locally trivial. Then M^{n} is a small sphere, a great sphere or a pythagorean product of a certam number of spheres. If, moreover, M^{n} is of essential codimension $m-n$, then M^{n} is a pythagorean product of the form
(3. 6) $S^{p_{1}}\left(r_{1}\right) \times \cdots \times S^{p}\left(r_{N}\right), p_{1}+\cdots+p_{N}=n, p_{1}, \cdots, p_{N} \geqq 1, r_{1}^{2}+\cdots+r_{N}^{2}=a^{2}, N=m-n+1$,
or a pythagorean product of the form

$$
\begin{equation*}
\Sigma^{p_{1}}\left(r_{1}\right) \times \cdots \times \Sigma^{p_{N^{\prime}}}\left(r_{N^{\prime}}\right) \subset \sum^{m-1}(r), \tag{3.7}
\end{equation*}
$$

$$
\begin{equation*}
p_{1}+\cdots+p_{N^{\prime}}=n, p_{1}, \cdots, p_{N^{\prime}} \geqq 1, r_{1}^{2}+\cdots+r_{N^{\prime}}{ }^{2}=r^{2}<a^{2}, N^{\prime}=m-n, \tag{2.}
\end{equation*}
$$

where $\Sigma^{p}(r)$ is a p-dimensional small sphere with radius r in $S^{m}(a)$.
Taking account of Proposition 2.1, we have, as a corollary to Theorems 3.3 and 3.4,

Theorem 3.5. Let M^{n} be a connected submanifold immersed in a Euclidean space R^{m} (resp. a sphere $\left.S^{m}(a)\right)(3 \leqq n<m)$ and satisfy the conditions (A), (B), (C) and (D) stated in Proposition 2.1. If M^{n} is compact, then M^{n} is a sphere or a pythagorean product of the form (3.4) (resp. a small sphere, or a pythagorean product of a certain number of spheres).

Taking account of Proposition 2.2, we have, as a corollary to Theorems 3.3 and 3.4,

Theorem 3.6. Let M^{n} be a connected complete submanifold immersed in a Euclidean space R^{m} (resp. a sphere $\left.S^{m}(a)\right)(3 \leqq n<m)$ and satisfy the conditions (A), (B), (C) and (D) stated in Proposition 2.1. If $F=h_{c b}{ }^{x} h^{c b}{ }_{x}$ is constant, then we have the same conclusion as in Theorem 3.3 (resp. as in Theorem 3.4).

Bibliography

[1] Chern, S. S., Minımal submanıfolds in a Riemannian manıfold. Technical Report 19, Unıversity of Kansas (1968).
[2] Chern, S. S., M. Do Carmo and S. Kobayashi, Minımal submanıfolds of a sphere with second fundamental form of constant length. Functional analysis and related fields. Sprınger-Verlag (1970), 60-75.
[3] Erbacher, J., Reduction of the codimension of an isometric immersion. J. Differential Geometry 5 (1971), 333-340.
[4] Kenmotsu, K., Some remarks on mınımal submanıfolds. Tôhoku Math. J. 22 (1970), 240-248.
[5] Nomizu, K.., On Hypersurfaces satısfying a certain condition on the curvature tensor. Tôhoku Math. J. 20 (1968), 46-59.
[6] Nomizu, K., and B. Smyth, A formula of Simons' type and hypersurfaces with constant mean curvature. J. Differential Geometry 3 (1969), 367-377.
[7] Simons, J., Minımal varieties in Riemannian manıfolds, Ann. of Math. 88 (1968), 62-105.
[8] Tanno, S., Hypersurfaces satısfying a condition on the Riccı tensor. Tôhoku Math. J. 21 (1969), 297-303.
[9] Tanno, S., and T. Takahashi, Some hypersurfaces of a sphere. Tôhoku Math. J. 22 (1970), 212-219.
[10] Yano, K., and S. Ishihara, Submanifolds with parallel mean curvature vector. J. Differential Geometry. 6 (1971), 95-118.

```
Department of Mathematics, Tokyo Institute of Technology.
```

