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SUBMANIFOLDS SATISFYING THE CONDITION K(X, F) K=Q

BY KUNIO SAKAMOTO

Introduction.

In 1968, Simons [7] obtained a formula giving the Laplacian of the square of
length of the second fundamental tensor and applied it to the study of minimal
hypersurfaces of a sphere. Nomizu and Smyth [β] applied a formula of Simons'
type to the study of hypersurfaces with constant mean curvature and with non-
negative sectional curvature in a Euclidean space or in a sphere. Chern, Do Carmo
and Kobayashi [2] also applied Simons' formula to the study of minimal submani-
folds of a sphere (see also Chern [1]). Recently, Yano and Ishihara [10] have
applied a formula of Simons' type to the study of submanifolds of higher codimen-
sion with parallel mean curvature vector and with locally trivial normal bundle
in a Euclidean space or in a sphere. On the other hand, Nomizu [5] studied
hypresurfaces of a Euclidean space, which satisfy the condition K(X, Y)-K=0 for
all tangent vectors X and F, K being the curvature tensor. Tanno [8], Tanno and
Takahashi [9] studied hypersurfaces of a Euclidean space or of a sphere, which
satisfy the condition K(X, F) S=0 for all tangent vectors X and Y, S being the
Ricci tensor (see also Kenmotsu [4]).

In the present paper, we shall, applying a formula of Simons' type, study
submanifolds satisfying the condition K(X, Y) K=0 and having parallel mean
curvature vector, non-negative Ricci curvature and locally trivial normal bundle in
a space of constant curvature. We shall also study submanifolds with parallel
second fundamental tensor and with locally trivial normal bundle in a Euclidean
space or in a sphere. The main results are stated in Theorems 3. 3, 3. 4, 3. 5 and
3.6.

§ 1. Preliminaries.

Let Mm be an w-dimensional Riemanman manifold of class C°° with metric
tensor G, whose components are Gμ with respect to local coordinates {ξh}. Let
Mn be an ^-dimensional connected submanifold of class C°° differentiably immersed
in Mm (l<n<m) and suppose that the local expression of the submanifold Mn is

(1.1) ίΛ=£V),
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where {ηa} are local coordinates in the submanifold Mn. The indices h,i, ,l run
over the range {1, •••, m} and the indices α,b,~ ,g over the range {!,-••,«}. If
we put

(1.2) Bb

h=dbξ\ db=8ldη\

then the Riemannian metric g of Mn induced from that of Mm is given by

(1.3) get> = GjiBc*Bb\

For each index b, Bb

h denotes a local vector field tangent to Mn and the n local
vector fields Bb

h span the tangent space of the submanifold Mn at each point.
We denote by Cx

h m—n mutually orthogonal local unit vector fields normal to Mn,
where here and in the sequel the indices x, y, z run over the range {w + 1, •••, m],

If we denote by {/*} and {Λ} the Christoffel symbols formed with G^ and gcb

respectively, then the van der Waerden-Bortolotti covariant derivative of Bb

h is,
by definition, given by

( 1 . 4 ) c c - - ,
( J I } [ C O

Since VcBι>h is, for any fixed indices c and b, a local vector field normal to Mn, we
can write

(1. 5) PcBb

h=hcb

xCx

h.

The local tensor field hcb

x is called the second fundamental tensor of the submani-
fold Mn relative to the unit normals Cx

h. Equations (1. 5) are equations of Gauss
for the submanifold Mn.

If we denote by g* the metric tensor induced on the normal bundle 9l(Mn) of
the submanifold Mn from the metric tensor G of Mm, then we have, for the com-
ponents of g* relative to the frame {Cx

h},

(1. 6) gyx = GjiCyJCx

l=δyX.

If we denote by Γc

x

y components of the connection F* induced on 9l(Mw) from the
Riemannian connection V of the ambient manifold Mm, the van der Waerden-
Bortolotti covariant derivative of Cy

h is, by definition, given by

Since FCC/ is, for any fixed c and y, a local vector field tangent to M71, we have
from GjiBjCj^Q and (1. 5)

(1. 8) FCC/ = - hc

αyBα

h (hc

α

y = hcb

xgbαδxy).

Equations (1. 8) are equations of Weingarten for the submanifold Mn. We extend
the van der Waerden-Bortolotti covariant differentiation Fc to tensor fields of mixed



SUBMANIFOLDS SATISFYING THE CONDITION K(X, Y) K=0 145

type on Mn in such a way that for any tensor fields, say Tι>a

y

x and Tby

h, of mixed
type, the covariant derivatives are defined to be

b
c e

\ e \Ta x-\- Γ x Ta z Γ z T a X

\ ϊ 1 e y -\- 1 c z-Lb y ~~ 1 c yJ-b z i
[ C O ]

(1.9)

17 T Λ _ 3 T h-\-\ I 7? JT l J a \T h Γ x T h

Vc±by — Oclby -Γ I . . Γ -De Iby ~ \ h \ y ~ ° y bx '

For tensor fields of mixed type, we have, from (1. 9), the Ricci formula

α Ί f Y \ U U T α x f7I7Taχ—J<Γ a>T β x J<Γ zTa>xΔ-Tf χrpaz js~ zrpax
. 1U; VdVc-l b y — VcVd-Lb y —J^dce -L b y ~~ Λ dcb J e y ~r J^-dcz -L b y ~~ J^dcy J-b z y

where Kdcb

a and Kdcy

x are curvature tensors of g of Mn and Γ* of yi(Mn) respectively.
We now assume that the ambient manifold Mm is of constant curvature c,

ie., that

(l 11) Rkjίtι=c(GkhGji — Gj?ιGkι),

where Rfcjih are covariant components of the curvature tensor of G of Mm. Subs-
tituting (1. 5) and (1. 8) in the Ricci formulas for Bb

h and Cy

l respectively, we have
the structure equations of the submanifold Mn, i.e.,

(l 12) Kdcba

(1.13) rdhcbx

(1- 14) KdcyX = hdeXhc*y-hce

Xhdey.

Transvecting (1. 12) with gda, we find

(1. 15) Kcb = c(n - l)0c& + nhxhcbx - hce

xhbe

x,

where Kcb =KeCb
e is the Ricci tensor and hx = (llri)hc

c* is the mean curvature vector
of the submanifold Mn.

When the ambient manifold Mm is of constant curvature c, we compute the
Laplacian ΔF of the function F=hcb

xhcb

x, where Δ = gcbVcVb. We thus have

(1. 16) -y- ΔF= g*d(WdhcbxWbχ + (^kba

x)^chύa

x).

From the Ricci identity for hcb

x and (1. 13), we have

(1.17) ^F=n(FΛA*)A^+/^^

If we substitute (1. 12), (1. 14) and (1. 15) in (1. 17), then we have (cf. [10])
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ΛW— WΓ7 U*.hxMιcb 4-r^W—r^hxh — h yh^ hea hcbx

c\ ^-* •*• — r l / \ r C' b'v J'v X I L r l r J - C fI/ rl/ rt/x /t gα, *^ cδ?/'^ X'^
Δ

(1.18)

+nhyhcayhb

a

xh
cbx - Kecy

xKecy

x + (FAΛ(Fc/^%).

When the normal bundle %71/f71) is locally trivial, i.e., Kdcy

x = Q, the above equation
(1. 18) becomes

(1.19) ^-ΔΈ

§2. Submanifolds satisfying the condition K(X, Y) K=Q.

Let Mn be a submanifold in a space Mm of constant curvature cf and suppose
that the normal bundle Vl(Mn) of Mn is locally trivial, i.e., that Kdcy

x = Q holds.
We now consider the condition

(*) K(X, Y) K=Q

for any tangent vector X and Y of Mw, where 7£~(J£, F) operates on the tensor
algebra at each point as a derivation. The condition (*) is equivalent to

(2. 1) WSΓdc6α-Fe^^

On the other hand, differentiating (1. 12) covariantly, we have

(2.2) Pe/ζzc&α=(Fβ^^

and hence

Applying the Ricci identity (1. 10) to hcb

x with vanishing Kdcy

x, we see that the
equations above reduce to

(2. 3) = - (Kfed

ghga.
x + Kfea

ghd/}hctιx - (Kfee

ttha,,
x

-i-fϊf Qli x _L T<Γ y h x\h -i-(ff Vh x-\- T<C Qh, x\h\ \J.\.fec f^gci i J ^-fea '^cg )^dbx\\-L^-fed '^gb r J-^ feb '^dg j'^cax

Since the normal bundle 9ΐ(Mw) of Mn is locally trivial, we see from (1. 14)
that, for any indices x and y,hb

ax and hb

ay are commutative, i.e., he

axhb

ey = he

ayhι,('x.
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Hence we see that there exist certain n mutually orthogonal unit vectors Vιa, •••, vn

a

such that

(2.4) hb

axva

b = λa

xva

a (a; not summed)

at each point of Mn, where here and in the sequel indices α, β, γ, ε run over the
range {1, ~,n}. We shall now compute

First we find from (1. 12)

^xλβx)(vβavab - vaavβb)

Since we see, from (1. 12), that the sectional curvature σβ,a of Mn with respect to
the plane section determined by eigenvectors va and vβ of hb

ax's is given by

(2.5) σβta
X

we have

(2. β) Kfeb

avβSva

e = σβ,a(vβ

avab-va

avβb).

If we transvect (2. 3) with vβ

fva

e and use (2. 4) and (2. 6), then we find

adVβa)]hcbx

(2. 7) -σβ,a[λβ

x(vβbvaC-\- vβcvab)-λa

x(vnbvβc+vacvβb)]hdax

cVaa) — λa

x(vaaVβC + VaCVβa)]hdbx

VadVβb)]hcaχ.

Thus transvecting (2. 7) with yr^£

c, we have from (2. 4)

(2. 8) = σβ, a Σ [( V - ̂ ^){ - ^.^Cδα^pα 4- ̂ r^α)

— λr

x(δaεVβb + δβεVab)Vra + λr

x(δaεVβa + dβtVaa)Vΐb + λεX(δarVβb + ̂ r^

We can easily verify that the right-hand side of (2. 8) vanishes identically except
in the following four cases: Case I γ = a, γ^β, ε^pa, ε^β (a^β), Case II
γ — β, e^a, ε^β (α^/3), Case III γ^at γ^β, ε = a, ε$pβ (cx^β) and Case IV

, ε = β (a^β). For these four cases, (2. 8) reduces to

(2. 9)
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We moreover assume that the submanifold satisfies the condition (*), which
is equivalent to the condition

(2. 10) σβt a Σ (λβ

x ~ λ«*)λr

x = 0 r*a,β(a*β)
X

because of (2. 9). Using (2. 5), we see easily that (2. 10) is equivalent to

(2. 11) σβ.a(σr.β-σr.J = Q γ*a, β (a*β).

We here assume that there is at least one non-zero σβ,a. Then we may sup-

pose that <7ι,2,..., σίtp are non-zero and σι,p+ι = =σι,n = Q We find from (2. 11)

or,β=or,a (β<oc\ 1, •••,/>, 7- = !, •••, n).

Thus we have

Similarly, if we suppose that σp+1, p+2, ~',σp+1,q are non-zero and σp+ι,q+ι =
=(7p+1)W=0, then we find

In this way, we have

ffβta=σq+1,q+2 (β<am, q+l,

as far as there is a non-zero σβ,a.
If we denote by S the Ricci tensor, we easily find

(2. 12) S(va, va) = Kcbva

cva

b= Σ σβ.« (<*\ fixed).
β*a

Hence, when we assume that the Ricci tensor S1 is non-negative, taking account of
the behavior of the sectional curvatures σβ,a, explained above, we see that the
sectional curvature σβ,« is non-netative for all β and a. Using (2. 4) and (2. 5), we
find from (1. 19) (cf. [10])

(2. 13) - ̂ =»(^Γ6A
af)Aβ6

af + (ΓΛαar)(FβAδα

β)+ Σ Σ (V~
^ a<β X

Therefore we have
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PROPOSITION 2. 1. Let Mn (n^3) be a submanifold immersed in a space of
constant curvature and satisfy the conditions'.

(A) The normal bundle yi(Mn) is locally trivial',
(B) The mean curvature vector is parallel in ^(Mn), i.e., Pch

x = Q;
(C) K(X, Y)-K=Q for any tangent vectors X and Y of Mn;
(D) The Ricci tensor is non-negative.

If Mn is compact, then we have

(2. 14) ^chbax—^ for any indices c, b and a,

(2. 15) (2β

x-λa

x)2σβ,a = Q for any indices a, β (a*β) and x.

PROPOSITION 2. 2. Let Mn (w^3) be a submanifold immersed in a space of
constant curvature and satisfy the conditions (A), (B), (C) and (D) in Proposition
2. 1. // F=hcb

xhcb

x is constant, we have (2. 14) and (2. 15).

§3. Submanifolds with parallel second fundamental tensor.

Let Mn be a connected submanifold with parallel second fundamental tensor,
i.e., Pchba? — 0, in a space Mm of constant curvature c and suppose that the normal
bundle 9l(Mn) is locally trivial. Then we easily see that all of the eigenvalues λa

x

of the second fundamental tensor are constant and that each of eigenspaces of the
second fundamental tensor is of constant dimension. If we denote by λa the normal
vector fields with components λa

h—λa

xCx

h, then they are globally defined. When
we fix the normals Cx

h, we can identify λa with a vector of Rm~n with components
(Λα

w+1, •••, λa

m) and the inner product of λa and λβ with the usual inner product
(λa, λβ) in Rm~n. If all of the eigenvector fields corresponding to λa form a pa-
dimensional distribution, then we say that the multiplicity of λa is pa.

Let μlt •••, μN be distinct vectors of eigenvalues and let plt ~ ,pN be the multi-
plicity of μi, " , μjf. We denote by DA the distribution formed by all eigenvector
fields corresponding to μA of multiplicity pA, where the index A runs over the
range {1, •••, N}. Taking a vector field Xa belonging to DA, we have

(3. 1) hb«*X» = μA*Xa

and hence

(3.2) h* *rex*=μA*rex*,
since Γchύ

ax=0 and μA

x are constant. If a vector field Ya belongs to DA, then we
find from (3. 2)

(3. 3) hb

ax(YcPc}?-X<VcY»)=μa

x(YΨcX
a-XcVcY«).

Thus we see that the distribution DA and the orthogonal complement DA of DA

are both integrable and parallel. Therefore, if we denote by MA and MA some
integral manifolds of DA and DA respectively, they are totally geodesic submani-
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folds in Mn and Mn is locally a pythagorean product MAxMA. Since, for any
vector fields Xa and Ya tangent to MA, we have

we see that MA is totally umbilical in the ambient manifold Mm if μA^0 and that
MA is totally geodesic in the ambient manifold Mm if μA=Q. Thus we have (cf.

[10])

LEMMA 3. 1. Let Mn be a submanifold with parallel second fundamental tensor
immersed in a space Mm of constant curvature and assume that the normal bundle
9l(Mn) of Mn is locally trivial. If distinct vectors of eigenvalues of the second
fundamental tensor are given by μlt •••, μN, then Mn is locally a Pythagorean product
MiX xMtf, where MA (A = l, ~,N) is a totally umbilical submanifold in Mm with
mean curvature vector μA if μA^Q and MA is a totally geodesic submanifold in Mm

if μA=Q. In particular the normal bundle yt(MA) of MA in Mm is locally trivial.

Let Mn be an n-dimensional submanifold with parallel second fundamental
tensor immersed in a space Mm of constant curvature c and suppose that the normal
bundle 9l(Mπ) is locally trivial. If ua and va are unit vector belonging to DA and
DB respectively, then we have

and hence, from (1. 12),

Kdcbav
ducubva = , μB) = 0.

We note that we have this result under the assumptions in Propositions 2. 1 and
2. 2. We have known the following lemma (cf. [10]).

LEMMA 3. 2. Let μi, •••, μN be distinct vectors belonging to Rm~n such that
(μA, μB)=k (A^B\ A,B—\, ",N). If μι,- ,μN span an r-dimensional subspace,
(m — n^r>fy, then N=r or N=r+l. When N=r+l, and when μίf •••, μN span an
r-dimensional sub space,

(μi,

k

k k

k

(μify A

If k=Q, then one of μίt •••, μN is necessarily zero.

In general, a submanifold Mn immersed in an m-dimensional space Mm is said
to be of essential codimension r (Q^r^m—n), if there exists in the ambient mani-
fold Mm an (n+r)-dimensional totally geodesic submanifold containing Mn as a
submanifold and no such a totally geodesic submanifold of dimension less than
n+r. The subspace in the normal space at a point P of Mn spanned by normal



SUBMANIFOLDS SATISFYING THE CONDITION K(X, Y) K=Q 151

vectors vcubhcb

xCx

h, ua and va being any tangent vectors of Mn at P, is called the
first normal space at P.

We now assume that the ambient manifold Mm is an w-dimensional Euclidean
space Rm. Then, from the above Lemma 3. 2, we see that the first normal space
is of constant dimension r and N—TQV N=r+I, if μlf •••, μN span an r-dimensional
subspace of Rm~n, and that one of μι, ~tμN is necessarily zero if N=r+l. If
Xa, Ya and Za are vector fields tangent to Mn, then we have

ZΨe(Xc Ybhcb*)Cx

h = (ZΨeX
c) Y*hcb

xCx

h + Xc(ZΨe Y*}hcb

xCx

h,

because of Fc/W^O. Thus the first normal space is parallel in the normal bundle
yi(Mn). Therefore we see that the essential codimension is r, i.e., that Mn is
immersed in an (n+r) -dimensional plane in Rm, if μly •••, μN span an r-dimensional
subspace of Rm~n (cf. [3]) Since it is easily verified that the second fundamental
tensor of MA (A = l, ~, N) in Rm is parallel and that the first normal space of MA
in Rm is of constant dimension 1 if μA^Q, we see from Lemma 3. 1 that MA is
immersed in an (/>^ + l)-dimensional plane in Rm as a totally umbilical hypersurface
if μA^Q and that, in particular, if MA is of dimension 1, MA is a curve of constant
curvature in a 2-dimensional plane in Rm. Therefore we have (cf. [5], [6] and [10])

THEOREM 3. 3. Let Mn be a connected complete submanifold of dimension n
with parallel second fundamental tensor immersed in a Euclidean space Rm of
dimension m (l<n<m) and suppose that the normal bundle is locally trivial. Then
Mn is a sphere Sn(r) of dimension n with radius r, an n- dimensional plane Rn, a
Pythagorean product of the form

(3.4)

or a Pythagorean product of the form

(3.5) S^(r1)x xSMr tf)x£3>, pι + +pN+p=n, plt

where Sp(r) is a p -dimensional sphere with radius r and Rp is a p- -dimensional plane.
If Mn is a Pythagorean product of the form (3. 4) or (3. 5), then Mn is of essential
codimension N.

In the case where the ambient manifold Mm is an ra-dimensional sphere Sm(ά)
with radius a, we have (see [10])

THEOREM 3. 4. Let Mn be an n- dimensional connected complete submanifold
with parallel second fundamental tensor immersed in an m- dimensional sphere Sm(a)
with radius a (0<#, l<n<m) and suppose that the normal bundle is locally trivial.
Then Mn is a small sphere, a great sphere or a Pythagorean product of a certain
number of spheres. If, moreover, Mn is of essential codimension m—n, then Mn is
a Pythagorean product of the form

(3.6) S^(rl}X'"XSpN(rN\ p! + -+pN=n, p,, -,̂ ^1, na+ +r/ = 02, N=m-n+l,
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or a Pythagorean product of the form

(3.7)
2, N'=m-n,

where Σp(r) is a p-dimensional small sphere with radius r in Sm(ά).

Taking account of Proposition 2. 1, we have, as a corollary to Theorems 3. 3

and 3. 4,

THEOREM 3. 5. Let Mn be a connected submanifold immersed in a Euclidean

space Rm (resp. a sphere Sm(ά)} (3^n<m) and satisfy the conditions (A), (B), (C)
and (D) stated in Proposition 2. 1. If Mn is compact, then Mn is a sphere or a

Pythagorean product of the form (3. 4) (resp. a small sphere, or a Pythagorean product

of a certain number of spheres).

Taking account of Proposition 2. 2, we have, as a corollary to Theorems 3. 3

and 3. 4,

THEOREM 3. 6. Let Mn be a connected complete submanifold immersed in a

Euclidean space Rm (resp. a sphere Sm(a)) (3^n<m) and satisfy the conditions (A),

(B), (C) and (D) stated in Proposition 2. 1. If F=hcb

xhcb

x is constant, then we have

the same conclusion as in Theorem 3. 3 (resp. as in Theorem 3. 4).
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