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BY YOSHIOMI NAKAGAMI

§ 1. Introduction.

For the purpose of studying lattice systems of quantum statistical mechanics
and representations of CCR and CAR, infinite tensor products of von Neumann
algebras due to von Neumann [12] have been frequently used as shown in [1], [4],
[6] and others. The problems of types of infinite tensor products of von Neumann
algebras have been investigated by many authors [2], [3], [7], [9], [11]. Infinite
tensor products of normal positive linear functionals have been studied by Takeda
[10] and symmetric states of infinite tensor products have been recently studied
by St^rmer [8]. Most of these results have been treated in the cases of incom-
plete infinite tensor products and of factors.

When we study infinite tensor products of von Neumann algebras, we set a
problem what kind of relations has a finite normal trace given in the infinite
tensor product of von Neumann algebras, with a finite measure on an infinite
product space of some topological spaces corresponding to given von Neumann
algebras? We encounter this problem in the course of studying infinite dimen-
sional measures such as weak distributions, cylindrical measures and integrations
of functionals. In the present paper we prepare some results on infinite tensor
products of operators and those of normal positive linear functionals, which are
defined in complete infinite tensor products of Hubert spaces, in order to give
some informations on that problem. By utilizing the results of this paper a par-
tial answer will be given in the subsequent paper*} of the same title. In Theorem
3.1 some conditions by which infinite tensor products of operators can be defined
will be discussed, and in Theorem 3.2 the conditions that infinite tensor products
of operators belong to a given infinite tensor product of von Neumann algebras or
to its commutor will be obtained. In Theorem 4.1 a sufficient condition that
infinite tensor products of normal positive linear functionals can be defined will
be given by introducing a concept of characteristic numbers. The similar results
together with the necessary condition for finite normal traces will be given in
Theorem 4.2 with the aid of coupling operators. Beside this theorem will in-
dicate a finite part of infinite tensor product of von Neumann algebras as shown
in Corollary 4. 2.
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§ 2. Preparatory notations and definitions.

In what follows we will have to assume that the reader is familiar with the
elementary properties of von Neumann algebras which are given in [5] and those
of infinite tensor products of Hubert spaces which are given by von Neumann
[12]. In this section we prepare some notations and definitions used through this
paper. Some elementary facts have also been explained in the additional contexts.

von Neumann algebra: Let ξ) be a Hubert space, x a vector in $ and 31 a
von Neumann algebra on ξ>. C*> and S(ξ» stand for von Neumann algebras of all
scalar operators and all operators on ξ> respectively. Denote by E(W, x) the projec-
tion onto the subspace [Si, x] generated by {Ax: Aζtyί}. Let 0 and 1 denote the
zero and the identity operators on ξ> respectively and A+ the non-negative part of
a self -adjoint operator A. By Slu (resp. Sί+, 3ϊp) we mean the set of all unitary (resp.
non-negative, projection) operators in Si. We say x is cyclic (resp. separating) for
3ϊ if £(Sl, x)=l (resp. E(W, #) = !). ωx is a positive linear functional defined by
ωx(A) = (Ax,x) for A&Si. Let φt be a normal positive linear functional on 3ϊ, for
;€/, where / is a finite set, and denote the tensor product of ψt by §t)jψt. Then

t is a normal positive linear functional.

Infinite tensor product of Hibert spaces: Let / be an index set. This set is
used universally in this paper and is considered to be infinite if the contrary is
not explicitly stated. Let's denote fml if / is a finite subset of /. We often
omit the index set / from some symbols such as the sum 2> the product Π, the
union U, the intersection Π and the tensor product (g). Let {£>,: eel] be a family
of non trivial Hubert spaces, et,xt,yt,zt,~ elements of ξ>, and employ the same
symbol || || for the norms on all ξ>, for <€/. If 0<Π||#,||<+oo for xts$t,
then the set [xt: eel} is called a Co-sequence and written by (xt). A pair of Co-
sequences (xt) and (yt) is equivalent if ΣK#02/<)— 1|< +°°> which we denote by
(xc}^(y<\ It is already known that this relation satisfies the equivalence relation.
Let Γ0 and Γ denote respectively the set of all Co-sequences and the set of all
equivalence classes c of Co-sequences in Γ0 classified by ~.

Let (8)ξ>, denote the complete infinite tensor product of ξ>, for c€l and ®C4).
the incomplete one with respect to c€Γ. The vector ®x: which corresponds to
(x() is called a tensor product vector. If Π||^|| — 0, we define ®#,=0. Zero vector
which we denote by 0 is assumed to be a tensor product vector. Let Q&( be the
set of all finite linear combinations of tensor product vectors in (g)&. Then
is a pre-Hilbert space being dense in

Infinite tensor product of von Neumann algebras: Let SI, be a von Neumann
algebra on §, for each czl. Denote the zero operator and the identity operator on
ξ), by 0, and 10 sometimes without suffix. Moreover !(/) is the identity on ®j$t
for /c/. When % — C^c, we write Ce instead of it. If an operator Aκ^κ is given,
then there exists a unique operator X €£(£>) with £>=(><)€>; such that for all (
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ΆK(0X() = ΆK(XK®( 0 xt)) = AKXK

We j3hall often denote _such an operator Aκ by AΛ8X0<*Λ) and denote the set of
all Άt for ΛeSl. by St. or SkφflgU.COL Then a, is a von Neumann algebra.
Indeed, since the correspondence Φκ: AK-*ΆK is an isomorphism of 9ϊ* to $tκ for the
structure of *-algebra and it carries the operator 0, and 1, into 0 and 1 (zero and
identity operator on 0ξλ), the correspondence Φκ is an isomorphism of von Neumann
algebra Wκ into £(€>) such that Φ«(l«)=l. Thus 3Ϊ«=Φ«(9t.) is a von Neumann
algebra [5; p 57].

DEFINITION 1. 1. Denote by 091, the von Neumann algebra on 0ξ>, generated
by Άt satisfying A €21, for all *€/.

Let ©31, be the union of Πjt, for all /c/. Then 031, is a weakly dense
sub-*-algebra of

§ 3. Infinite tensor products of operators.

LEMMA 3. 1. Let Ue be a partially isometric operator on ξ>c for each isL
Then there exists uniquely a partially isometric operator U on (x)ί>< such that
U(<S)xc)=®Ulxc for every

Proof. Let ©c and 8t, be the initial and final spaces of Ut respectively. The
tensor products $£)— 0SD, and ^=®^ are canonically identified with the subspace
of 0©,. Then, (I) for every (xt)ςΓ0 with ^€$D, an element ®Utxc of 9^ is de-
fined; (II) (®Utxt, <8)Ucyc)=ΐl(xί,yc) for every (xt) and (y{)^Γ0 with xt and y{ €<£),•,
(III) all the finite linear combinations of ®Ucxt forms a dense linear subset of St.
It follows from Theorem IV in [12; p 33] that there exists uniquely an isomor-
phism V of ® onto 9t such that V(®xc)=®U(χί. Define an operator U on 0C>,
by Z7= V on 2) and £7=0 on ®-L. Then ί/ is a desired partially isometric operator
on 0ξχ satisfying U((x)xc)=(8)UcXc for (xc)ζΓo, because it is obvious that if 0#ί€$D-L

then ®U,xt=Q.

In the following we shall denote by 0£7f the partially isometric operator U
obtained in the above.

LEMMA 3. 2. Let Tc be a bounded operator on $frt for each i€l. Assume that

( i ) // (xt)~(y<) and (Texc) and (Γ^)€Γo, then (T(xc)~(Tcyc); and
(ii) if (xt) and (Ttxt)£ΓQ9 and Te=U( Tc\ the polar decomposition, then (Ttxc)

(U,xt).

Proof, (i) Since (7>{)eΓ0, it follows that 0<Π(Γ,*7>0x,)<+oo and hence

that is, (TVZVzOe/V Since (2>t)€Γ0, it follows Q<ΐl(T(*Tcxc,x()<+oo and hence
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)~fe). Since O,)~0/<), it follows that (T*Ttx()~(yc).
(ii)1' Since Π|| |Γ,^,||=Π||7>,||, it follows that (\Tt\x,)€ΓQ. Suppose that

O,) and (7>,)eΓ0. Denote xt' = \\xt\\-*xt and Tf = \\Tt\\-lTt. Then (\T/\2x/,x/)
^(\T/\x/,x/). Since Σ\(\T/\*x/9xt')-l\<+oo, it follows that Σl(|27k,^)
-IK+oo and hence (\T/\xt)~(xt')9 that is, (\Tt\xt)~(xt). Let a^a^+a?,2 be the
decomposition such that x,1^^ and xt

zeyie, where 5ft, is the kernel of T(. Since
7>, = 7>Λ follows that ΠIIΓ^II^ίΠIIΓJIXΠIIα?,1!!) and so (xt

l)eΓQ. Since (?>,)
=(C/;|Γ f |Λ? f)€Γo, it follows from the above that (Ttxύ~(Utx*)=(U<xt).

Before going into the following lemma, recall that, for any 0<ε<l and /<^/,
if Σjk-l|<e/2, then |Π {̂

LEMMA 3. 3. Let (xc) and (yc) be elements of Γ0. Then (xΐ)~(y() is necessary
and sufficient that for any 0<ε<l there is Jml such that

for every Kmjc

Proof. Necessity: For any 0<ε<l there exists J^I such that for any

ll2-i|< " and
Z_ι I
K

The first two inequalities follow from the facts that (xt) and (yt)e Γ0 and the last
inequality from (x,)~~(yt). Combining these inequalities, we have

K K

Sufficiency: Since for any 0<ε<l/4 there exists f^I such that for any K<^fc

||®a?-(g)y||<e, |||®^||2-l|<ε and | ||<8)y,||2-l|<e.
K K K K

Combining these three inequalities and combining the last two inequalities, we have

and

1) Another proof (due to Araki) : Since

o<ΠI|2>,|| ilT.ii-^πd^l^

it follows that (xt}~(yt\ where yt = \Tt\xt. Since

it follows that.ίί/^JeΓo and (Utxt)~(Utyt)=(Ttxt).
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respectively. Hence

Consequently ΣI(#o2/<)— l|<+oo and so (xt)~(yt).

THEOREM 3. 1. Let Γ«€S(&) with Tt*Q for each eel and let Tc=Ut\Tt\ be the
polar decomposition.

I. Denoting TJ=(®jTc)®(®jcUc) for /«=/.
( i ) // Π||Γt||<+oo, then {TJ: Jml} converges strongly to a unique ΓeSflg)©,)

and ||ΓHίgΠ||:Γ,||; and
(i i) if {TJ: /<c/} converges strongly to some Γ€S(®&), then Π||!Z>,[[<+oo

and T(®xc) = ®Ttxc for every (xt)eΓ0.
II. The following four conditions are equivalent:
( i ) 0<Π||Γf||<+oo and there is fe)eΓ0 with (7>,)€Γ<>;
(i i) 0<Π||Γί||<H-oo and each Tc\ except for a countable^ number of c's in I

has a proper value 1;
(iii) there exists uniquely Γ€δ((x)ξ>,) such that Γ^O and {TJ: J^I] converges

strongly to T\ and
(iv) there exists uniquely T€2(®ξ>e) such that T^O, Π||7>,||< + oo and
xύ = ®Ttxt for every (a?£)€Γ0.
In the case II, ||7Ί|-Π||:Γ,||.

Proof. I. (i) Let (α?ίf)€Γ0 and a^C for f=l, 2, ••-, n. If Σ?=ι «i((g)a?)i = 0 for
Λ?)i = (8) ί̂o then for any (ye)€Γ0

, Γ.*y,)=

and therefore Σ?=ι«ί(®^O = 0. Thus we may define an an operator T on
Θ€>, by

If (g)Γίa?ί=0 for (a OeΓo, then for any ε>0 there exists J0ml such that for any
fml with /oC/ we have ΠjHT^IKε and hence

2) "Countable" 'is either finite or countably infinite.
3) The convergence of H(xit, Tt*ye) and \[(TtXit, yΐ) is in the sense of quasi-convergence.
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where Mι=sup ΣUκ\\xt\\. If ®Ttxt*Q for (x^ΓQ, then (7>,)~(t/>,) by Lemma
3. 2. It follows from Lemma 3. 3 that for any 0<ε<l there exists 7o<^7 such that
for any KmJl

\\®Utx-®T(xt\\<ε
K K

and therefore for any 7^7 with 7<>c7

where M2=supz,IlL||7>ί|j. Hence for any (xit)^Γ0 and α^eC, i=l, 2, ~,n, define

M=
^=l J J J J

Then for any 0<ε<l there exists 7o<^7 such that for any 7^7 with 7<>c7

Since \\TJ\\=ΐlj\\Tc\\, it follows that ||T||^lim HΓΊ^ΠHΓ.H, that is, T is bounded.
Thus T on Qξ), has a unique continuous extension to ®$0 which we denote by
the same letter T. Consequently {TJ: J^I} converges strongly to T.

(ii) Suppose that T is a strong limit of {TJ: Jml}. If fe)eΓ0 then Π||7>,||
=lim\\TJ(®xt)\\<+cQ. If (g)71

ίa?<=0, then lim ΓJ((g)a?ί)=0 similarly as in (i), and
hence Γ((g)^) = (8)7>< If ΘΓ^^O, then (Tcχc)~(Ucxe) by Lemma 3.2 and
therefore

II. (i) implies (ii): Since 0<Π||Γ<||< + oo and (xe) and (Ttxt)eΓ<>, it follows
that 1 1 71|| = 1107,1 1 = || 71^11 = 1 except for a countable number of j's. Let's denote such
a countable set by 70. In general, if ,4^0 and 11^11 = 11^11 = 11^11=1, then Ax—x.
Since || \Tt\ \\ = \\TC\\ and || IΓJ^H-IIT^H, it follows that \Tt\xt=xt for ί€7-7o.

(ii) implies (iii): Since the unique existence follows from (i) of 7, it suffices
to show that T^O. Let 7ι be the set of cjs such that \Te\xc — χc for some \\xf\\= 1
and ||Γ,||=1, Then 70 = 7— h is a countable subset, 70 = {1, 2, ••-,*,•••} say, by (ii).
For any ε>0 and i€/0 there exists # t€& such that ||a?ί||=l and HΓi l i -ε
and so Σj0(l-|IΏ^II)<e, which implies Π/0||7><|| =*=(), if e/2<inf ||Jl||. Hence

and so
(iii) implies (iv): It is clear from (ii) of 7.
(iv) implies (i): Since T(®x^ = ®Ttxt and T^O, there exists fe)eΓ0 such that

It follows that
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and hence (7>,)€Γ0 and 0<Π||Γ<|| = ||Γ||. Q.E.D.

In the last theorem, if ΠHΓJ^+oo and if any condition in II are not satisfied,
then T"=0. Thus T is considered to be an infinite tenson product of operators Te.

DEFINITION 3. 1. The operator T obtained in the last theorem is denoted by
(x)j; symbolically.

The following corollary is an immediate consequence of the last theorem.

COROLLARY 3. 1. (i)
(ϋ) (®Γf)(®&)
(iii) if ϊlac is convergent, then
(iv) if T( is invertible for all csl and ΠUΓ^IK+oo, then

This corollary tells us that the set of all finite linear combinations of
satisfying Tc^t for c£l forms a normed *-algebra on (g)£, which depends on the
choice of 21, for czl. Thus its weak closure is a von Neumann subalgebra of
S((x)€>,) But we have few knowledges about this algebra such as its type, its
commutor, its relation to (g)9t,, its interpretation in physics and so on.

In what follows we shall denote by Pc the projection of (x)ξ>, onto the in-
complete infinite tensor product (x)0^ for ceA Then it is easily vertified that

by the similar methods in [12; p 54].

THEOREM 3. 2. Assume that U\\Te\\<+oo.
I. // TtStyic, then the following three conditions are equivalent:
( i) <8>Γ,€(g)2I,;
( i i ) for any ceΓ and any (xt)ec, (Tcxc)cc or (x)7>,=0; and
(iii) ®TC is a strong limit of {Tj\ Jml}, where Tj=((g)jTe)®l(fc) for fml.
II. // Γ,€31Λ then
III. // Γt€9l/, then

Proof. I. (i) implies (ii): Suppose ®Tt£$$Lt and ®Tcxc^O for (a?j€c. Since
)=Pt(®Tt)(<8)xt) = ®Tta;t, it follows that (Ttxt)ec.

(ii) implies (iii): Applying the similar methods as the proof of (i) of I in
Theorem 3, 1, we can find for any 0<ε<l a finite subset Λ^/ such that for any
/(£/ with /oc/

where Γj=(®jϊ1,)(8)l(/β).
(iii) implies (i): Since Tjt®%, it follows that the strong limit (x)Γ{€(x)%.
II. It is clear from I and the proof of Lemma 3. 2.
III. An operator A of the form ((x)jA)(8)l(/c) for some J^I commutes with
, for Γ,e2l/, because

^ϊ = (g)Λ Ttxt
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where A=l for cGl-J, and so

Hence ®T, belongs to (Θ3k)' = «8)Sl,)'.

The following corollaries are easily verified.

COROLLARY 3. 2. Let AeSί, <md A^O /or 00cA *€/. // ΣIIA-l||<+co,
Ar=((8>,rA)(8>l(/β) converges uniformly to (g) A €(8)91,. //" C/icSl? /or 0tfcA *€/

COROLLARY 3. 3. Lef £,€$? <wJ £,^0 and let β, be the projected subspace of

( i ) £=!

(ii) the range of E coincides with

COROLLARY 3. 4. Let Π||j;||<+oo and TC=UC\TC\ be the polar decomposition
of Tc. Then (®Te} = (®Uc)(®\Tc\) is the polar decomposition of ®T(.

§ 4. Infinite tensor products of normal positive linear f unctionals.

Let 2ϊ be a von Neumann algebra on €> and φ a normal positive linear func-
tional on 9ϊ. Then it is well known that φ can be written in the form φ—Σ^ι^χi
for *i€£ (ί=l,2, ») and IM| = ΣΓ

DEFINITION 4. 1. Let φ be a normal positive linear functional on a von Neumann
algebra 5ί on §. ^ is a characteristic number of 9 with respect to 21, if

where the supremum is taken over all expansions of φ. Particularly, if ^=^(1)
and 9=ΣΓ-ιωa?ί, #ι is called a characteristic vector of ^ with respect to Si. Let Si,
be a von Neumann algebra and φt a normal positive linear functional on SI, having
a characteristic vector #, of φt. The equivalence class ceΓ which contains (#,) is
called a characteristic class of (9,) whenever O,) is a Co-sequence.

THEOREM 4. 1. L#ί Sί, &# # ^6>^ Neumann algebra and φc a normal positive linear
functional on Sί{ whose characteristic number is γt for each eel. If 0<Π^,(l)<+oo
and there is a countable subset /0 of I such that Σ/0(^(l-)~~?'<)<+00 an& 9^—^χ,
for eel—Jo, then there exists uniquely a normal positive linear functional φ on (x)Si,
such that φ(ΐlκΛe) = (ΐlκφc(Ae))(ΐlκcφ((ΐ)) for AeSl, and every Km I.

Proof. Since /0 is at most countable, we may identify /0 with {i: i=l, 2, •••}
in the following. For any ε>0 we have #*€& for ί€/0 such that φt-ωX(^ and

It follows that
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and hence Σ|l-|kll2K+°°> that is, fe)eΓ0. Since (ar,)€Γ0 and
there is M>0 such that

ΠII^II^M and
K K

for any KaL Since for every /c/

*c Σ

and since for any 0<ε<l/2 there is f0ml such that \\φl—ωXe\\<ε for ί€/0
c, it

follows that

for every K<^f0
c. Denote φj = (®Jφl}®(®Jcωx) for /c/. Then for any / and /'<g/

with /oC/ and /

llpj-M^M'OI^^

Therefore we get a Cauchy net (φj: f^I}, whose uniform limit is a normal
positive linear functional φ on (x)9ϊ,. If As®^ for any K<^I, then (̂̂ 4®1(7ΓC))
=lim ^j(-A(8)l(A"c)) = ((8)je:̂ )(-A)IIjKc î(l). The uniqueness follows from the coincidence
of φ on a weakly dense subset Q9C£ of

DEFINITION 4. 2. Denote by ®φc the normal positive linear functional φ which
is obtained in the last theorem. The equivalence class c which contains the Co-
sequence (#,) in the last proof is called a characteristic class of (φt) and each xt is
called a quasi-characteristic vector of φt.

It is not clear whether the converse of this theorem holds or not;
Let φ be a normal positive linear functional on (g)5I, with ^(l)=l_and φt a

normal positive linear functional corresponding to the restriction of φ to 2t, by the
natural isomorphism between 91, and 2t,. If φ(ΐίκΛt)=Uκφt(At) for A€$, and every
K^I, then there is a countable subset /0 of / such that Σj"0(l~?0<+00 and
φc=ωXί for *€/— /o, where 7% is a characteristic number of <p,.

However if φ is a trace, then we can show in the following that the converse
is valid.
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Let Si be a von Neumann algebra on ξ) and 3 the center of 31. It is well
known that, since 3 is abelian, there exist a locally compact Hausdorff space Z, a
positive Radon measure v on Z with the carrier Z and an isometric isomorphism
of a normed *-algebra 3 onto a normed *-algebra L°°(Z, ι>). Since this isomorphism
is compatible with the usual order relation, g+ is mapped into the set 3+ of non

negative measurable functions on Z classified by the null set difference. Utilizing
this mapping we can identify 3+ with a subalgebra of 3+- Let μ be a Radon
measure on Z corresponding to a normal state φ on ,3 and Cη3 the operator cor-
responding to /e,3+. Then we may denote φ(C)=μ(f). Let Φ (resp. Φ') be a
canonical if -mapping of 31 (resp. 31') Then there is one and only one element / in
3+ such that for all Λ?eφ we have Φ(E$t'9x))=fΦ'(E(yi,xy). The operator C
which corresponds to /€,3+ is called a coupling operator of 31. Now we extend
the concept of coupling operator in more general case where 31 is finite and W is
not necessarily finite and assume that the operator admits +00 as follows. If 31
is finite and W is not finite, we will decompose it into a finite part WG and a
properly infinite part 31Ί-0 by the projection G in the center of St. Using the
coupling operator CG of 3IG, we define the coupling operator C of 31 such that C is
CG on Gξ> and +00 on (1-G)£>.

LEMMA 4. 1. Lei 31 60 a finite von Neumann algebra with the coupling operator
C on $. If φ is a finite normal trace on 31, then there exists a characteristic vector
x of ψ such that

Proof. Let C=$λdEλ be the spectral resolution of C and define G=fλ<ιdEλ.
Then we have

-E(W, *)))
e€£> e€g>

and since in the range of 1— G we have C^l so that there exists a separating
vector y for Sίi-β in the intersection of the carrier of φ and the range of 1 — G
such that the restriction of φ to 3ίι_c? is ωy and τ/=0 if the intersection is {0}.
Hence the first term of the right side is 0 and therefore

inf {φ(l)-φ(E(W, £))}=<?(G)-sup φ(GΦ(E(W, *))),

where Φ is the canonical If -mapping of St. Since C<1 in the intersection of the
carrier of φ and the range of G, we have a cyclic vector z for 3ίβ in it such that
the restriction of ψ to 3i#.# is ω* where E=E($la,z). Particularly z=Q if the
intersection is {0}. That is φ(GΦ(E($ί',zy))=φ(GC). Thus we have

inf
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Define x=y+z. Then

SUP φ(E(W, e)
e€£>

and

If I \x\ |2 <γ where γ is a characteristic number of φ, then there is a/eξ) such that
||a?'||>NI and φ-ωx,^0. Then

which is a contradiction. Thus x is a characteristic vector, for φ— ω^O.

THEOREM 4. 2. Let 21, &£ # /zm'fe von Neumann algebra with the coupling
operator Cc for every ;€/.

( i ) Let φc be a normal trace on % for each c€l such that 0<Π^(l)<+oo.
If Σ^<((1 — C,)+)<+oo, then there is one and only one normal trace φ on (x)% such
that φ(lίκΆ() = (Uκφc(Ae))(Uκcφc(l)) for Ate% and every KmL

( i i) Let φ be a normal trace on (x^C, with $0(1) =1 and φc a normal trace cor-
responding to the restriction φ\tyit of ψ to 2Ϊ, by the natural isomorphism between
31, and SΪ,. If φ^LκΆt)=^κφt(At) for AteWt and every Km I, then

Proof, (i) Let γt be a characteristic number of φt, then by Lemma 4.1 there
exists a characteristic vector xt such that ^^||^||2 and φc(ϊ)—γc=φ(((l—Cc)+).
Hence by Theorem 4.1 the desired normal positive linear functional φ=®ψc is
obtained. It suffices to show that φ is a trace. If y4e(x)% and £e(x)2l0 then there
exist Cauchy nets Aj and Bj which converges weakly to A and B respectively as
/ tends to /, where Aj=A(J)®l(Jc) and Bj=B(])®l(Jc) for some A(J) and JB(/)
in ®Λ. Hence by a fixed /'c/, AjBj, converges weakly to ABJf, and therefore

φ(ABj,)=lim φ(AjBj,)=lim φ(Bj,Aj)=φ(Bj,A).

It follows that

φ(AB)=lim φ(ABJr)=lim ^/^)=^

Thus φ is a normal trace.
(ii) Since ^(((x)^)7, (x)^)^®^1^/,^) for every (z^ΓQ and 9 is normal, it

follows that there is (y,)€Γ0 satisfying ^((x)£ί(^/,7/ί))>0. Thus

for every /^c/ and hence 0<%(^(Sl/,yί))^p(l), that is,
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for Λ^t. Then ψe=ωXl for some xte&t and φt—ωXt^Q. Since E($t',yt)=E($l/,xt),
it follows that ωxt(ΐ)=φt(E(yί/,yty). Hence by Lemma 4.1,

which implies Σp«((l-Q+)<+oo. Q.E.D.

The relation between infinite tensor products of operators and that of normal
positive linear functionals is given in the following corollary.

COROLLARY 4. 1. (i) (®φt)(®At)=ΐίφt(At) for ® A €(8)91,; and
(ii) if ((8ty>,)((8)A)>0 £A0w /or #«? ε>0 £/z£f£ exists JQ^I such that for any

fml with 7oC/

The expression of the central carrier of Pc which is given in the following
Lemma is suggested by Araki.

LEMMA 4. 2. Let's denote

P(c)=liml(/)(g)£(2I(/c)',

where x(K) = ®Kxc for (XC)GC and ^(K) = 0K^t for Kc.1. Then P(c) is the central
earner of Pc.

Proof. Since E(W(fcY, x(fc)) is a projection in 9I(/C), it follows that P(c) is a
projection in (8)21,. Since P(c) commutes with every element of Q210 it follows
that P(c) is an element of ((g)^,/- Thus P(c) is a central projection of (8)21, and it
majorates Pc. This is because the set of all ®#, such that (?/,)€ c and {c€ΐ: yt^xt}
is finite, is total in (x)0^, and moreover for such (x)?/{ we have

On the other hand, denote by P the central carrier of Pc. Since £(21(7)',
for every (#,)€c, it follows that l(/)(x)JE

l(2I(/c)/, #(/c))^P, which implies P(c)^P
and hence P—P(c).

COROLLARY 4. 2. L#£ 2ί, £0 # von Neumann algebra and φ( a normal positive
linear functional on 2ϊ, for each c€l. Let Gc and G be the carrier projections of
ψ( and (g)φc respectively. Let c be a characteristic class of (φ(). Then G = (®G,)P(c).

Proof. Let (#,)€C and xt a quasi-characteristic vector of φt for each re/. For
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any ε>0 there is f0ml such that \\ψj — ®φt\\<ε for all J<ml with /Oc/, where
φj = (®jφϊ®ωxm and χ(lc) = ®jcχc. Let Gj^<8)jGO<g)£(»(/c)', ^(/c)) Then Gj
is the carrier projection of φj satisfying Gj^G and {Gf. J^I] is a monotone in-
creasing Cauchy net, because φj^ψj, if /c/'<e/. Put the limit GQ=\imGj. Then
((8tyO(Go)=l and so G=G0. On the other hand, since φj^®φt and G^(x)G,, it
follows that Gj ^(x)G, and hence

Consequently G0 = ((g)Gl)P(c).

COROLLARY 4. 3. Let (#,)ec.
( i ) E(W\ *(/)) = (®£(9l,, xty)Pt; and
(ii) £(8(7)', a(/))

(i) Let ft, be the range of #=£(2l/,α?,) for (a?,)€c. By Corollary 3.3,
the range of ®Et is ®ft«. Since ®ft, is generated by the tensor product vectors
®yc with y,€ft, for all <€/ and (y,)eΓ0, if (y,)€c then (®Et)P,(®yt)^®yc

=Pc(®E()(®yc) and if (yf)4c then (®£ ί)Pe(®yί)=0=Pe(®S)(®^). Since the
orthogonal complement of ®ff, in (x)§, is generated by the tensor product vectors
®yt with yts8}- for some ^€/ and (^)eΓ0, (®^)Λ(®2/ί)=0=Pe(®£l

ί)(®^). Con-
sequently (®Ee)Pc=Pc(®Ee) and the range of (®£,)PC is generated by {® :̂ τ/,e^
and (τ/f)^c}. If (^)^(^) and #,€[910 #,], we have ®yfe[®3ί0 ®#J and hence
(®£l

<)Pe^-£'(5i(7), αr(7)). Since ©9ίt is dense in ®Sί0 the converse inequality
follows.

(ii) Define φ(=ωXc. Then ^ is a normal positive linear functional on 2ϊ£.
Since the carrier of φt is £(9ϊ/, xt\ the carrier of (x) {̂ is (®£"(9ί/, a?,))P(c) by
Corollary 4.2. On the other hand, since ®φί=ω®X[, its carrier is
The desired equality follows.

COROLLARY 4. 4. Lei O,)<=c βwd fe)eΓ0. //
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