KÖDAI MATH. SEM. REP. 22 (1970), 138–141

ON A CONFORMAL TRANSFORMATION OF A RIEMANNIAN MANIFOLD

By Hitosi Hiramatu

Ishihara and Obata [2] proved the following

THEOREM. If M is a differentiable and connected Riemannian manifold of dimension >2, which is not locally conformally Euclidean and if M admits a conformal transformation φ such that the associated function α_{φ} satisfies $\alpha_{\varphi}(x) < 1 - \varepsilon$ or $\alpha_{\varphi}(x) > 1 + \varepsilon$ for each $x \in M$, ε being a positive number, then φ has no fixed point.

On the other hand, the author [1] studied that a differentiable and connected Riemannian manifold admitting a conformal transformation, group of sufficiently high dimension is locally conformally Euclidean. In connection with the above theorem, in this note, the author will obtain results concerning the fixed point of a conformal transformation of a Riemannian manifold and concerning the locally conformally flatness of the Riemannian manifold.

Let \mathfrak{M} be a differentiable¹⁾ and connected Riemannian manifold with the fundamental metric tensor field g. A diffeomorphism φ on \mathfrak{M} is called a conformal transformation on \mathfrak{M} if there exists a positive valued function α_{φ} on \mathfrak{M} such that $\varphi g = \alpha_{\varphi} g^{2}$ holds, and a homothetic transformation on \mathfrak{M} if α_{φ} is constant on \mathfrak{M} . The function α_{φ} connected with φ is called the associated function of φ . The α_{φ} is necessarily differentiable. If α_{φ} is identically equal to unity, then φ is nothing else than an isometry on \mathfrak{M} .

Let φ be a conformal transformation on \mathfrak{M} and a_{φ} and A_{φ} denote $\inf \{\alpha_{\varphi}(x); x \in \mathfrak{M}\}$ (≥ 0) and $\sup \{\alpha_{\varphi}(x); x \in \mathfrak{M}\}$ $(\leq \infty)$ respectively. Then $a < A_{\varphi}$ if and only if φ is not a homothetic transformation, $a_{\varphi} = A_{\varphi}$ if and only if φ is a homothetic transformation and $a_{\varphi} = A_{\varphi} = 1$ if and only if φ is an isometry.

We shall denote by (A) the following property: there exists a real number ε such that $0 < \varepsilon < 1$ and such that for each point $x \in \mathfrak{M}$ either $\alpha_{\varphi}(x) < 1 - \varepsilon$ or $\alpha_{\varphi}(x) > 1 + \varepsilon$ holds. Since \mathfrak{M} is assumed to be connected and α_{φ} is continuous on \mathfrak{M} , $\{\alpha_{\varphi}(x); x \in \mathfrak{M}\}$ is a connected subset in real number space. Therefore the property (A) is equivalent to a property that only one of the following (1) and (2) occurs: (1) $\alpha_{\varphi}(x) < 1 - \varepsilon$ for all $x \in \mathfrak{M}$ and (2) $\alpha_{\varphi}(x) > 1 + \varepsilon$ for all $x \in \mathfrak{M}$. We remark that if (A)

Received November 13, 1969.

¹⁾ Here and hereafter, by differentiability we understand that of class C^{∞} .

²⁾ Definition of φ is as follows. If f is a function on \mathfrak{M} , $\varphi f = f \circ \varphi^{-1}$; if X is a contravariant vector field on \mathfrak{M} , $(\omega X)f = \varphi(X(\varphi^{-1}f))$ for all functions f on \mathfrak{M} ; if ω is a covariant vector field on \mathfrak{M} , $(\varphi \omega)X = \varphi(\omega(\varphi^{-1}X))$ for all contravariant vector fields X on \mathfrak{M} ; and so on.

is assumed the φ is not an isometry.

LEMMA 1. If (A) is assumed, then $a_{\varphi} > 1$ or $a_{\varphi^{-1}} > 1$, φ^{-1} being the inverse of φ and $a_{\varphi^{-1}} = \inf \{ \alpha_{\varphi^{-1}}(x); x \in \mathbb{M} \}.$

Proof. If the case (2) occurs, the result is clear. To prove our result, it suffices to consider the case in which (1) occurs. Considering the inverse φ^{-1} of φ , we have

$$(\varphi^{-1}\varphi)g = \varphi^{-1}(\alpha_{\varphi}g) = (\varphi^{-1}\alpha_{\varphi} \cdot \alpha_{\varphi} - 1)g$$

from which $1/\alpha_{\varphi} \circ \varphi = \alpha_{\varphi}^{-1}$ because $\alpha_{\varphi}^{-1} = 1$. It follows that $\alpha_{\varphi}^{-1} > 1$.

Under the condition (A), by considering the inverse φ^{-1} of φ if necessary, we can assume without loss of generality that $a_{\varphi} > 1$. Hereafter we shall use this fact.

LEMMA 2. If (A) is assumed, then for any given points p and q of \mathfrak{M} and for any given positive integer m the relation

$$d(\varphi^m p, \varphi^m q) \leq (a_{\varphi})^{-m/2} d(p, q)$$

holds, where d denotes the metric function on \mathfrak{M} connected with g.

Proof. Let $\sigma: [t_0, t_1] \rightarrow \mathfrak{M}$ be a piecewisely C'-differentiable curve joining p to q. Then the length $L(\varphi \circ \sigma)$ of the transformed curve $\varphi \circ \sigma$ joining φp to φq is given by the integral

$$\begin{split} L(\varphi \circ \sigma) &= \int_{t_0}^{t_1} \left[g_{(\varphi \circ \sigma)(t)} \left(\varphi \, \frac{d\sigma}{dt}, \varphi \, \frac{d\sigma}{dt} \right) \right]^{1/2} dt \\ &= \int_{t_0}^{t_1} \left[\frac{1}{\alpha_{\varphi}((\varphi \circ \sigma)(t))} \, g_{\sigma(t)} \left(\frac{d\sigma}{dt}, \frac{d\sigma}{dt} \right) \right]^{1/2} dt. \end{split}$$

Since $a_{\varphi} \leq \alpha_{\varphi}((\varphi \circ \sigma)(t))$ for all $t \in [t_0, t_1]$, we have

$$\begin{split} L(\varphi \circ \sigma) &\leq (a_{\varphi})^{-1/2} \int_{t_0}^{t_1} \left[g_{\sigma(t)} \left(\frac{d\sigma}{dt}, \frac{d\sigma}{dt} \right) \right]^{1/2} dt \\ &= (a_{\varphi})^{-1/2} L(\sigma), \end{split}$$

where $L(\sigma)$ denotes the length of σ . It follows from the above relation that

$$d(\varphi p, \varphi q) \leq (a_{\varphi})^{-1/2} d(p, q)$$

and consequently for any given positive integer m

$$d(\varphi^m p, \varphi^m q) \leq (a_{\varphi})^{-m/2} d(p, q).$$

HITOSI HIRAMATU

Now we shall prove the following

THEOREM 1. Let \mathfrak{M} be a differentiable, connected and complete Riemannian manifold and let φ be a conformal transformation on \mathfrak{M} . If (A) is assumed, then φ has only one fixed point.

Proof. From the assumption (A), by using Lemma 1, we can assume without loss of generality that $a_{\varphi} > 1$. Take any point p of \mathfrak{M} . Then, for any given positive integers m and l, we have by using Lemma 2

$$\begin{aligned} d(\varphi^{m}p,\varphi^{m+l}p) &\leq d(\varphi^{m}p,\varphi^{m+1}p) + d(\varphi^{m+1}p,\varphi^{m+2}p) + \dots + d(\varphi^{m+l-1}p,\varphi^{m+l}p) \\ &\leq (a_{\varphi})^{-m/2}d(p,\varphi p) + \dots + (a_{\varphi})^{-(m+l-1)/2}d(p,\varphi p) \\ &< (a_{\varphi})^{-m/2}d(p,\varphi p) \sum_{s=0}^{\infty} (a_{\varphi})^{-s/2}. \end{aligned}$$

It follows from the above relation that a sequence of points $\{\varphi^m p\}_{m=1}^{\infty}$ is a Cauchy sequence because the series in the right hand side of the above relation converges. Since \mathfrak{M} is assumed to be complete, the sequence of points has the limit point p_0 . It is easily proved that φ leaves p_0 invariant. Next, if x_0 and y_0 are two fixed points of φ , then from Lemma 2, we have

$$d(x_0, y_0) = d(\varphi^m x_0, \varphi^m y_0) \leq (a_{\varphi})^{-m/2} d(x_0, y_0)$$

for any positive integer *m* from which $d(x_0, y_0) = 0$ and hence $x_0 = y_0$.

From Theorem 1 and the already expressed theorem of Ishihara and Obata, we have

THEOREM 2. Let \mathfrak{M} be a differentiable, connected and complete Riemannian manifold of dimension >2 and let φ be a conformal transformation on \mathfrak{M} . If (A) is assumed, then \mathfrak{M} is locally conformally Euclidean.

As a corollary to Theorem 2, we have the following fact due to Ishihara and Obata [2].

COROLLARY 1. Let \mathfrak{M} be a differentiable, connected and complete Riemannian manifold of dimension >2, which is not locally conformally Euclidean. If \mathfrak{M} admits a conformal transformation φ , then α_{φ} can take value unity or an arbitrary value closed to unity.

Since \mathfrak{M} is assumed to be connected and α_{φ} is continuous, if \mathfrak{M} is compact, then the set $\{\alpha_{\varphi}(x); x \in \mathfrak{M}\}$ is compact and connected subset in real number space and hence is a closed interval. Therefore, we have

COROLLARY 2. Let \mathfrak{M} be a differentiable, connected and compact Riemannian manifold of dimension >2, which is not locally conformally Euclidean. If \mathfrak{M} admits a conformal transformation φ , then α_{φ} takes value unity.

140

Bibliography

- HIRAMATU, H., Riemannian manifolds and conformal transformation groups. Tensor 8 (1958), 123-150.
- [2] ISHIHARA, S., AND M. OBATA, On the group of conformal transformations of a Riemannian manifold. Proc. Japan Acad. 31 (1955), 426–429.

Faculty of Engineering, Kumamoto University.