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DEFICIENCIES OF AN ALGEBROID FUNCTION

By MlTSURU OZAWA

1. Let f(z) be an ^-valued transcendental algebroid function in \z\<oo defined
by an irreducible equation

where the coefficients A0, ,An are entire functions without any common zeros.
It is well known that if a transcendental meromorphic function / has two full

deficient values #ι, #2, that is, d(ajtf)=l, y=l, 2, then/is either of positive integral
order or of infinite order.

In this note we shall be concerned with an extension of the above fact to
algebroid functions. The problem is the following: Does δ(afc,f)=l for k=l, •••, n+l
imply the positive integrity of order of /? We could not answer to this question
in any way.

In general, n+1, the number of full deficient values, cannot be improved.
This is evident for the one-valued case. We now construct a two-valued transcen-
dental algebroid function having a further property. Let g be an entire function
of finite order λ satisfying J(0, g)=l with the Valiron deficiency Δ. The existence
of such functions for any given order λ was shown in [3]. Let f(z) be a two-
valued entire algebroid function, which is defined by

Evidently 5(0,/)=δ(oo,/)=l. Further we have F(z,l)=g, F(z,-l)=-g. Hence
by Valiron's theorem, which is listed as Lemma 1 below,

r N(r, +!,/) , 1 Λm . πhm — 7fτ, — ̂  — =lιm - -, — r— =1— J(0, ςr)=0.
7=^ T(r,f) T^ m(r,g)

This shows that Δ(+ !,/)—!. If λ is finite but is not any positive integer, then /
does not have any full Nevanlinna deficient value, which is shown by Theorem 1
below.

2. Lemmas.
LEMMA 1. Valiron [4]. Let A(z) be max(|A>|, •••, \An\). Let μ(r,A) be

2nπ

Then

1 f 2 *
— \ log A(reM)dθ.
nπ Jo
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\T(r,f)-μ(r,A)\=0(l).

LEMMA 2. Selberg [2]. There are at most 2n values ak for which

LEMMA 3. Suppose that

then

μ(r,B)=μ(r9A)+0(ΐ),

B=max(\Bι\, ',\Bn+1\).

Proof. By the given equations

and hence

B^cAy c=maκ(cv).

This implies that

By solving the given equations we have

n+l

which implies similarly

LEMMA 4.

{1-3(0, F(z,«))} lim-^^P^7 γiiiίγ Λ\

Proof.

^- N(r,0,F(z,a)) ,. m(r,F(zta))
11ΠΓ 7— r̂; Γ7— lim ~, TΓ—
r-*oo m(r9F(z9o)) ^̂  nμ(r,A)

^ihΞ"^?v;^;r^ =BE
r-»oo ^//(r, 1̂) r-»oo r̂, /i;

This implies the desired result.

LEMMA 5. Suppose that there is at least one index j satisfying

m(r, —r-) ̂  cm(r, A),

then
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(l-c)m(r, A)^nμ(r, A)^m(r, A).

Proof. Evidently we have m(r, A)— m(r, l/A)=nμ(r, A). Let E be the set on
\z\=r in which A<1. Then

for every μ. Hence we have

m(r> i ) - oS m(r i) - Kr i) -m(r> ̂
which implies

(1— <:)m(r, A)^nμ(r, A).

The second half is evident.

3. In connection with Lemma 5 there happens another problem. Are there
any algebroid functions satisfying

^̂  m(r, A)

Now we construct a two-valued algebroid function satisfying

7^ m(r, A)

for a given positive number ε.
Let aw be

™ ^ — ̂ >

with a fixed p satisfying 0<|0<9/10. Let g(z) be

oo 210-7-! / « \ oo

Π Π (I+^-)=ΠAX«).
^=0 Λ=0 \ ^'fc / .7=0

Let ^(r) be the number of zeros of g(z) in \z\^r. Then

fO, if

if

if

satisfies the following inequalities
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for rj<r^rj+ι, rj=2wJ'/p. Hence

— logw(r) p— log 210 7'+log 2 lO'+l
l™ logr - !ίS Iog2^ = !SS "'

Further

265

— log n(r) ^

r_oo logr ' m-^oo log(rTO+l)

Therefore the order of n(r) is equal to p.
Next we prove

Take the sequence {rm}. Then

10m log 2

log 2

as m-^oo. This implies the desired fact.
This condition implies the following fact by Shea's reasoning [3].

1=1., ,
r-»oo m(r,g) m->oo (rw,

Still we need further properties of g(z). Let gv(z) be g(z)jhv(z). Then

with an absolute constant c. In order to prove this we should firstly remark that
the minimum of \gv(z)\ on |<ε|=n is attained at z=— rv. Evidently on |^|=rv

Now we shall consider

Taking its logarithm we have

On the other hand

-

(-n)|= Π

l=v+l

1-
n+A/210*

1 _ _
n

for fey+1. Further for /^

n rv+ι 2
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Hence, by log(l—x)^— 2x for 0<αKl/2,

n

> f; 2lol— = -2U,
l=v+l Yl

= (9-10,0)9 *

Therefore

, v ^ 0 100^
(9-10/o)9 '

min \
\z\=rv

This shows that

Now we prove

where D(δ) is a constant being independent of v and satisfies .D(̂ )-*0 when
In order to prove this inequality we need

S S/2
log\l-e-ίθ+Ake-iβ\dθ

0

δ 1 Γδ/2 1
^ —j-log (2—2Ak) + -jΓ \ log -3

4 Z Jo 1—o

This is not so difficult to prove. Indeed

S
δ/2

0

k_

r^+k ' "

1 Γ^- 2-L

Further we need
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δ/2 1 δ

This inequality is easily obtained by 1— cos 0=2 sin2 (0/2) and by sm(θ/2)^θ/π.
Under these preparations we proceed to the original inequality.

2l°v-1 2 Γδ/2

= - Σ — \ log |l-e-"
fc=0 7Γ Jo

"
7Γ Z 7Γ

Here by Shea's result [3]

with a positive constant jfiΓ being independent of v. Therefore we have the desired
result. Here

D(δ)= -j^ (-3 log-| - | log 2+ W log π-δ log|-).

Hence Z>(<5) does not depend upon ι> and D(δ)-^Q when 5-̂ 0.
Next we prove

2 Γ3/2 δ
- \ log |g(r^)|^^sin^-m(r, g).
π Jo ^

By the well known representation

^ 1 r f f/2 1 <5
= sin — — \ log I g(reίθ) \dθ^-^ m(r, g) sin — .

ώ 7Γ Jo ^ ^

Finally we consider

Here δ is a positive number which is sufficiently small For the two-valued
algebroid function /, whose order is p,
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2μ(r, A}=m(r, A)-m(r, -^

m(r, g)^

0

9 pi/2

^m(r, g)+ — \ log \g(re*')\ dθ,
π Jo

r iog+ττι_<#=Jff-δ/2
 s b(r^)|

Hence

2μ(r,A)

2 / I Γβ /

-̂ -r ~m(r,g) \π J0

- log+ dθ\

Thus

Now we can choose δ so that
«>

—

This implies the desired result.

The following fact is suggestive: Assume

min J(0,Λj)=0.
o^y^w

Then

m(r, A)~nμ(r, A).

The proof of this fact is almost immediate. Since

m At- Π
r-̂

there is an index /0 such that m(r,l/Aj0)=o(m(r,A)). This implies that m(r,l/A)
= o(m(r, A)) and hence m(r, A)~nμ(r, A).

This fact enables us to say that m(r, A)~nμ(r, A) if a coefficient A3 satisfies

P— m(r,
— 7j - ΓΓ

r-.cx, (logr)2 ^<00.

Indeed in this case

m(r,
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is well known. Hence J(0, Aj)=0. This leads to the desired fact.
Especially every entire algebroid function satisfies

\m(r,A)-nμ(r,A)\=0(l).

4. In what follows we denote the following condition by (A):
There is at least one index j satisfying

m\r, -jr} =

THEOREM 1. Suppose that there is an index » satisfying

Σ m(r, Aj)^dm(r, Av), d<l

and that f satisfies the condition (A). If there is a non-zero finite value a with
d(#,/)=l, then the order of f is a positive integer, unless it is oo.

Proof. By

avAv=F(z,a)—Σ

and hence

(l—d)m(r, Av)^m(r, F(z,

By Lemma 5

(1—c)m(r, Av) ̂  (1—c)m(r, A) ̂  nμ(r, A)

n

^Σ
j=o

Hence

nμ(rt A) ̂  •* ' ^ m(r, F(z, a]

By Lemma 4 we have <5(0, F(z, a))=l. Since F(z,a) is entire, its order must be a
positive integer, unless it is oo. Since

m(rίF(z,a))^ ]

l+d

both orders of F(zy a) and / are coincident with each other, which gives the desired
result.

THEOREM 2. Suppose that there are two indices μ^ vϋ (n>μ0>μ0>0) such that

1
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and that f satisfies the condition (A). Further suppose that there is a non-zero
finite value b such that m(r,F(z,b))=o(μ(r,A)'). If there are μ0— y0+l non-zero
finite values a3 such that δ(aj,f)=l, then the order of f is a positive integer, unless
it is co.

Proof. Firstly by Lemma 5 Q—c\m(r,A)^nμ(r,A)^m(r,A). Since

Among the given {#/} there is at least one ak such that

tf/o

Hence we have

μ^a^Av=F(zyak)- Σ
j*μo,

By solving the equation we have

Let A* be max(|^J, |AJ). Then

nμ(r,A)^m(r,A)^m(r9A*)+ Σ
j*μo,»

=m(r, A*)+naμ(r, A)

and

m(r, A*)^m(r, g)+m(r,

Further

(z,ak))+ Σ nt(r, Aj)+O(ΐ)
j*μo,»o

r, F(z, ak))+(na+ε)μ(ry A)+O(ΐ).

Hence

m(r,F(z,ak))
lim - 7 — TT — ̂ 1— 3α>0.

Then by Lemma 4 we have <5(0, F(z, ^))=1, which implies the positive integrity
of order of F(z, ak), unless it is oo. Since

m(r, F(z, ak))^m(rt

*£
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we have the desired result.

By a slight modification of proof we have the following

THEOREM 3. Suppose that there are two indices μQ,v0 (n>μo>uo>0) such that

Σ m(r, Aj)^naμ(r, A)

and that there is a non-zero finite value b such that

m(r, F(z, b))^nβμ(r, A)

with 0^3α-|-/3<l. Further suppose that f satisfies the conditions (A). If there
are μ0—^o+l non-zero finite values {#/} such that d(ajyf )="]., then the order of f
is a positive integer, unless it is oo.

DEFINITION. Let p be a 3-vector (a, b, 1) satisfying

m(r, aAμo+bAVQ+A.J=o(μ(r, A)).

Then this vector is called exceptional for (AμQ, AVQ, A£Q).

THEOREM 4. Suppose that there are three indices μ0, VQ, ε0 (w>//o>yo>εo>0)
such that

Σ w(r,Ay)=0(Kr,A))

and that there are two exceptional vectors pi, p2, for (Aμo, Avo, AεQ). Further suppose
that there is a non-zero finite value a satisfying δ(a,f)=l and (aμQ~ε\ av°~ε°, I)φ^pι+/^p2,
λ+μ=1 and that f satisfies the condition (A). Then the order of f is a positive
integer, unless it is oo.

Proof. Let pi, p2 be (a, β, 1), (j, δ, 1) respectively. Then

a β I

T 9

since (<2/(°~ε°, βe°~v°, l)<$;φι+/4>2, λ+μ=l. Hence we can solve the equations:

Then we have

This implies

3

\^Σ \cij\\fA,
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- X r , A)-o(μ(r, A)) ^ ; m(r, Aj)-

= Σ

^ Σ ̂ (r,
1=1

max

Thus we have

lim
n

-7J-.
3

Then Lemma 4 implies ^(0, F(z, a))=l. Thus the order of F(z,ά) is a positive
integer, unless it is oo. Then Lemma 5 implies the desired result.

THEOREM 5. Let fa, j=l, •••, n be a system of linearly independent (n+V)-vectors
(<xjn, αy.n-i, — , 1) satisfying

m(r, ajnAn+aJtn-ιAn-ι-{ ----- \-A0)=o(μ(r, A)).

Suppose that there is a value a such that δ(a,f)=l and

Further suppose that f satisfies the condition (A). Then the order of f is a positive
integer, unless it is oo.

Proof. Let

and

Here

<χjμAμ=fj, ;=!,-, n, ajo=l

/ i a Aμ—fn+i

... i

Oίnn Oίn,n-l '" 1

an an ... i

and

r, /y)=o(μ(r, Af), =1, —,
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Therefore by solving the above equations

nμ(r\ A)^m(r, A)

^»ι(r,/n+ι)+ Σ w
J=l

=m(r,fn+ι)+o(μ(r,A)).

This shows that

τ=^ nμ(r,Ά)

By Lemma 4 <5(0, F(z, 0))=1, which implies that F(zy a) has either a positive integral
order or an infinite order. By Lemma 5 we have the desired result.

THEOREM 6. Let pi, •• ,:pw £0 ^ linearly independent n+1 vectors satisfying

$l = ((Xln, (Xι,n-l, •", <*Z1, 1),

m(r, aιnAn+-+A^nβιμ(r9 A\ Σ ft<l, #^0.
i=l

Suppose that f satisfies the condition (A) α^J that there is a value a such that
δ(a,f)=l and

the order of f is a positive integer, unless it is oo.

Proof. Essentially the same method as in Theorem 5 does work. We have

nμ(r, A)=nμ(r, max
\ l^l^n+

Hence

»(l- Σ
\ 1=1

which implies the desired result.

5. We can make use of recent results in the theory of meromorphic functions

[1].

THEOREM 7. Let f be an algebroid function of order less than 1/2. Suppose
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that there is an index v satisfying

Then there are at most two deficient values 0 and oo, for which <5(0,/)=1 and
<5(oo,/)=l if they are actually deficient values.

Proof. In the first place we assume that i^O, n. Then

m(r, Av)—o(m(r, AJ))^m(r, F(z, a))

holds for every finite #^0. Further we have

n

nμ(r, A)^m(r, A)^ 2 m(r> Aj)=m(r, AVι
J=Q

and hence

m(r,F(z,ά)) ̂
iim J-
^ nμ(r,A) ~ '

Therefore by Lemma 4 1— <5(0, F(z, a))^l— δ(a,f). On the other hand we have
m(r,F(z,a))^m(r,A)+O(l) and m(r, A)=nμ(r, A) in a set of r of positive upper
density. Hence the order of F(z, a) is less than 1/2 and this implies <5(0, F(z, a))=0.
Hence δ(a,f)=Q. It is very easy to show that δ(0,/)=5(oo,/)=l in this case.

If v=n, then δ(0,/)=l and δ(a,f)=Q for ^^0. If y=0, then 5(oo,/)=l and

THEOREM 8. Let f be an algebroid function of order less than 1/2 satisfying
the following conditions'. 1) There are two indices μQ, VQ such that

Σ m(r,Aj)=o(m(r,A)),
j*μo,vo

2) for every b^Q, oo,

m(r, b«r>»A

and 3) ίAβrβ are at most two constants bι,b2 for which αδl<l, α&2<!> bιμo-
Then β(0,/)=l, δ(oo,/)=l

Proof. In the first place we prove α&j+αr&g^l. ί>ι and &2 are not 0 and oo
and satisfy bιμQ~VQ^bz

μQ~VQ. Hence we can solve

Tb$n
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Hence

This implies the desired result.
In general

=m(r, A*)+o(m(r, A))^m(r, A)+o(m(r, A)).

Further nμ(r, A)=m(r, A) in a set of r of positive upper density. Hence nμ(r, A)
=m(r, A)~m(r, A*) holds in a set of r of positive upper density.

By the assumption for every non-zero finite b,

abm(r, A*)

μt+b"*AV()+ Σ
j*t*0,»0

r, A*)+o(m(r, A))~abm(r, A*).

Therefore

m(r, F(z, b))~abm(r, A*)— abm(r, A)=oίτ>nμ(r, A)

in a set of r of positive upper density. Hence by Lemma 4

On the other hand δ(0,Ffo&))=0 which implies δ(b,f)^l— ab. Further these are
μQ—vo solutions of zμQ~VQ=bμQ-v°. We denote them by bωj, ωjμQ~v°=l. Hence

This holds only for bι and &2 at most. Hence

Σ 3(a,f) ^ *

If there is a non-zero finite b for which αδ=0, there is no non-zero finite deficient
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value other than b. In this case we have

Σ δ(a,f)=μ0—ι>0.
α=¥0,oo
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