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PROLONGATIONS OF HYPERSURFACES

TO TANGENT BUNDLES

BY MARIKO TANI

Introduction.

The prolongations of tensor fields and connections to tangent bundles have been
recently discussed in [1], [2], [3] and [4]. Ishihara, Kobayashi and Yano defined
and studied prolongations called complete, vertical and horizontal lifts of tensor
fields and connections. In this paper we introduce the notion of prolongations of
surfaces to tangent bundle, which seems to be a natural one, and develop the
theory of surfaces prolonged to the tangent bundle with respect to the metric
tensor which is the complete lift of the metric tensor of the original manifold. We
shall define in §3 the vertical and the complete lifts of the vector fields defined
along the surface, and choose two kinds of lifts of the normal vector field of the
surface as vector fields normal to the prolonged surface.

We shall recall in §4 some formulas for surfaces for the later use and give,
for prolonged surfaces, some of fundamental formulas containing the so-called second
fundamental tensors in § 5. In the last section the equations of Gauss, of Wein-
garten, and the so-called structure equations, those of Gauss, of Codazzi and of
Ricci, for the prolonged surface are formulated in the form of lifts of the corres-
ponding equations of the surface given in the base space.

§ 1. Notations.

For any differentiate manifold N, we denote by T(N) its tangent bundle with
the projection πN: T(N)-+N, and by TP(N) its tangent space at a point p of N.
2TCΛO is the space of tensor fields of class C°° and of type (r, s), i.e., of contra-
variant degree r and covariant degree 5 in TV. An element of ζΓ°0(N) is a C ^-func-
tion defined on N. We denote by 2W) the tensor algebra on N, i.e.,

Let M be an ^-dimensional differentiate manifold and V a coordinate neigh-
borhood in M and (#*) certain local coordinates defined in V. We introduce a
system of coordinates (#*, yl) in π^( V) such that (y*) are cartesian coordinates in
each tangent space TP(M), p being an arbitrary point of F, with respect to the
natural frame (d/dx*) of local coordinates (#*)• We call (x\ yl) the coordinates in-
duced in π]f(V) from (a?*), or simply the induced coordinates in π^(V). (cf. [3], [4]).
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Let S be a manifold of dimension n—l and c\ S-+M its imbedding. The dif-
ferential mapping de is a mapping from T(S) into T(M), which is called the
tangential map of c. We denote sometimes by B the tangential map de. Then the
mapping B induces its tangential map dB\ T(Γ(S))-»T(Γ(M)), which is denoted
sometimes by B. T(S) is a submanifold of dimension 2(n—l) in T(M) and T(T(S))
a submanifold of dimension 4(n—l) in T(T(M)). If we put

we have

e: S->M,

Λ=£: T(S)-+T(S, M)c Γ(M),

d£=£: T(T(S))— Γ(Γ(S), Γ(Λf))=Γ(Γ(S,M))cΓ(Γ(M)).

In terms of local coordinates (α?*), * has local expressions

#»=#*(«"),

where (&α) are local coordinates of S. Then B has local expressions

* = Ba*va, Ba? = dxl/dua

with respect to the local coordinates (a?1, #*)» and (ua, va) induced from (#*) and (ua),
respectively. In the sequel we sometimes identify S with the image e(S) and T(S)
with the image B(T(S)), respectively.

As for the tensor algebra, if we denote by £Γ(S, M) the tensor algebra associated
with T(S, M), B induces an isomorphism from £Γ(S) into £Γ(S, M). Similarly dB
induces an isomorphism from £Γ(Γ(S)) to g(T(S, M)). A mapping X which assigns
to each peS a tangent vector at p of M,

is called a vector field defined along S. SΓJ(S, M ) is nothing but the set of all
vector fields along S. Similarly a mapping T which assigns to each peS a tensor
of type (r, 5) at p

is called a tensor field of type (r, 5). along S, where T$(M) is the dual space of
TP(M). We denote by £Γί(S, M) the space of tensor fields of type (r, 5) along S,
then we see that H'SίS, M) = £Γί(S) In the following, elements of £Γ(S) are denoted
by /, X, ω and so on. On the other hand, elements of £Γ(S, M) are denoted by
/, X, ω and so on.
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In the next section, two kinds of isomorphisms of £Γ(Λf) into ζΓ(T(M)) or
£Γ(S) into c£(T(S)), which are called vertical and complete lifts, will be given. We
shall give in §3 two kinds of isomorphisms of £Γ(S, M) into &(T(S, M)), so-called
vertical and complete lifts from £Γ(S, M) to T(M).

§2. Vertical and complete lifts.

Let /, X, ω and F be a function, a vector field, a 1-form and a tensor field of
type (1, 1) in M, respectively. We denote respectively by fv, Xv, ωv and Fv, their
vertical lifts and by fc, XG, ωc and Fc their complete lifts. For a function / in M,
we have by definition

(2. 1) Γ=f πM

and

(2. 2) fc^yldif @i=d/to*)

with respect to the induced coordinates. Moreover these lifts have the properties:

(fxy=rχr, (fxr=fcxv+fvxc,
Xvfv=Q, XvfG=XGfv=(XfY, Xcfc=(Xf)G,

(2. 3) ωv(Xv) = Q, ωv(Xc) = ω°(Xv) = ω(X)v, ωcXc=ω(X)G,

FVXG=(FXY, FGXG=(FX)G,

[X, Y]°=[XG, YG], [X, Y]V=[XC, YV] = [XV, Yc]

(cf. [3], [4]).
For a tensor field of the form T=P®Q where P and Q are arbitrary tensor

fields, its vertical and complete lifts are given respectively by

(2.4)
Tc

(cf. [3], [4]). For the later use we note here the following formulas (cf. [3], [4]):

TG(XV, YC)=T(X, Y)G,

(2. 5) Tσ(X°, YV)=TV(XC, YC)=T(X,

TG(XG, YG)=TV(XV, YC) = TV(X

X and Y being arbitrary vector fields in M.

REMARK. Let 1 and Y be vector fields on T(M) such that Xf°=Yfc for all
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/€£Γ!(M), then X=Ϋ. Let & and $ be 1-forms on T(M) such that 2>(Xc)=lj(Xc)
for all -£€£Γo(M), then &=%. Consequently any tensor field on T(M) are com-
pletely determined by its action on the set of f° and Xc, f and j£ being arbitrary
elements of £T!(M) and £Π(M), respectively (cf. [5]).

§ 3. Vertical and complete lifts of £r

s(S9 M) to T(M).

We define now the lifts of elements of βr

s(S, M) to T(M). Let / be a func-
tion defined on S. The vertical lift /r of / to T(M) is defined by

In order to define the complete lift, for an arbitrary point p of S, we consider a
sufficiently small neighborhood U of p in M. In U we can construct a function /
such that / coincides with / on the connected component (C7fiS)° in UΓ\S conta-
ining p. We remark that a local extension / satisfies daf=daf along (UΓ\S)°.

Then the complete lift of / to π£(U) is defined as

in the local coordinates in π]£(U). We see that the restriction of f° to
is independent of the choice of /. In fact if we denote by # the operation of taking
restrictions to ^((ί/ΠS)0), we have

(3. 2) #/*= # (yidif)=ΌaBjdif=ιfdaf=υadaf

in πί((C7πS)°). Then we can define a function which coincides with ft/0' in each
coordinates neighborhood. We denote it by fδ and call the complete lift of / to
T(M).

Let X be an element of £Γi(S, M). Then Z^ being a tangent vector at
we shall define the vertical lift Xv to T(M) by

(3. 3)

and the complete lift to T(M) by

(3. 4) XcfG=(Xfγ

along S, where / is an arbitrary element of £ΓS(M). We see easily that this
definition is equivalent to the one that X5 is defined to be the restriction on
^jjf((£7nS)0) of Xc, where j£ is a local extension of J^ in £7. To see this, it is
sufficient to prove

Xΰf°=(#X°)fo for

because of Remark in § 2. For an arbitrary vector field X, Xf is a function which
takes the value
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at p. Therefore we have

Let ω be an element of 3l(S, M). We define the vertical lift ωγ to T(M) by

(3. 5) ω?(X5)=ω(Xf

and the complete lift ω5 to T(M) by

(3. 6)

X being an arbitrary element of £12(5", M). If we consider a 1-form ώ in a suf-
ficiently small neighborhood U of p such that ώ(Z) is a local extension of ω(X),
i.e.,

where X is a local extension of X. We call such ώ a local extension of ω to £7.
Then we have the complete lift ω°

in TΓ^CCί/nS)0), since ω(X)δ is defined by the restriction of the complete lift of a
local extension. That is, ώ° is a local extension of ω5 in the above sense.

We now extend these lifts to a linear mapping from £f(S, M) to £Γ(Γ(S,
under the condition:

(3.7)

where P and Q are arbitrary elements of £Γ(S, M).
We shall now sum up some properties of lifts derived immediately from the

definitions.

PROPOSITION 1. The lifts of £ΓS(S, M) to T(M) and the lifts of £ΓS(S) to T(S)
<zr0 related by

(3.8) 7F-/F, 7d?=/c'
That is

(3.9) fro<k=(foy, f<ΌΛ=(f W for /€£Γί(M).

TΛ^ /(/"is o/ vector fields tangent to S are tangent to T(S\ i.e.,

(3.10) (BXf=dB(Xv\ (BX)5=dB(Xc) for



90 MARIKO TAN I

Proof. (3. 8) and (3. 9) are easily seen from (2. 1), (2. 2), (3. 1) and (3. 2). As
for (3. 10), by virtue of (3. 3), (3. 4), (3. 8) and (3. 9), we have

and

for an arbitrary element / of £Γ2(M). Consequently from Remark mentioned in § 2,
we have (3. 10).

From definition of the lifts of elements of £Π(S, M), we have the formulas
similar to (2. 3) and (2. 4). Summing up, we have the following formulas.

Let / and X be arbitrary elements of £ΓS(S) and £Π(S, M) respectively, then
we have

c, ΫC)=T(X,

(3. 13) f°(X5, Ϋc)=f(X, Ϋ)G,

along S.

§4. Formulas for surfaces.

Let there be given a Riemannian metric G in M. If we denote by g the in-
duced metric on S from G, then by definition we have

g(X, Y)=G(BX, BY) for X, Ye3\(S).

We consider the Riemannian co variant differentiation V determined by G in M.

Then we have along S

(4.1) ϊBzBY=TzY+NzY for X,

where TXY and NxY are tangential and normal parts of VBχBY, respectively.
Then the correspondence T which assigns TxY to a pair of two vector fields X
and Y defines a covariant differentiation along S. Thus we introduce a connection
V on S by the condition

(4.2) BVχY=TxY

X and Y being arbitrary elements of £Γo(S). We can easily verify that V thus
defined is a Riemannian connection with respect to the induced metric g and we
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call V the connection induced on S from v, or simply the induced connection on S.
NxY being normal to S, we can put

(4. 3) NχY=h(X, Y)N,

N being the nomal vector field and h being a certain tensor field of type (0, 2) on S.
We call h the second fundamental tensor field and we define the tensor field H of
type (1, 1) by

g(HX, Y)=h(X, Y).

If we denote by K the curvature tensor field for the induced connection V , the
equations of Weingarten, Gauss and Codazzi for S in M are written respectively as

(4.4) VBXN=-B(HX\

(4. 5) g(K(X, Γ)Z, W)=G(£(BX, BY)BZ, BW)+g((HX)h(Y, Z}-(HY}h(X, Z\ W\

(4. 6) G(K(BX, BY)N, BW) = g(FxHY-PYHX, W)

X, Y and Z being arbitrary elements of £ΓJ(S).

S is said to be totally umbilical if there exists a scalar field m such that

h(X, Y)=mg(X, F)

for arbitrary elements X, Y of £ΓJ(S) We call m the mean curvature of S, and
have

- T-
n—l

Trace H.

If a totally umbilical hypersurface has the vanishing mean curvature, it is said to
be totally geodesic.

§5. The induced metric and connectioc on T(S).

Let G be the Riemannian metric given in M. Then the complete lift G° of G
* *

is the pseudo-Riemannian metric in T(M). We say that two vector field X and Y
are orthogonal on T(S) with respect to G°, when we have

on T(S) and we say that N is a normal vector field to T(S) when we have

GG(N, BX)=Q for

If we denote a mapping which assigns to each p^S a normal vector Np to S
by N, N is a vector field along S. We can define its vertical lift N^ and complete
lift N° to Γ(M) according to §3. Then we find that for each point xGT(S), (NΫ)X



92 MARIKO TANI

and (NG)X are normal vectors to T(S) with respect to GG and they are self-ortho-
gonal but not mutually orthogonal, i.e.,

(5. 1) G°(NG, NG) = GG(NΫ, NΫ) = 0,

for .X"€£Γo(S) These are direct consequences of (3.13). Moreover we can chose
{N?, NG} as the basis of normal space to T(S).

If we denote by g the induced metric on T(S) from Gc then we have

(5.2) g(X°, YG)=GG(BXG, BYG) for X, F€£ΓS(S).

The complete lift Vc of P to T(M) is by definition an affine connection in
T(M) characterized by the property

(5.3) PGcYG=(F%Y)G for 1, F€£Γi(M),

from which we also have

(5.4) facΫ
v=(PϊΫ)v for

It is known that, v being the Riemannian connection with respect to G, Vc is the
Riemannian connection of T(M) with respect to the pseudo-Riemannian metric GG.
(cf. [4] Prop. 7. 5). Similarly the complete lift ΨG of the induced connection V on
S is the Riemannian connection with respect to gc.

Denoting by V the connection induced on T(S) from Vc, along T(S) we have

(5.5) Ϊ2σBY<>=B(PxoY<>)+NzoYo for X, F€£ΓS(S),
JS Jί.

where NxcYG is the normal part of P£vCBYG. Then we can put
B X.

(5. 6) NzoY°=h(X°9 Y^Nr+K&o, YG)NG,

where h and k are certain tensor fields of type (0, 2) which are called the second
fundamental tensor fields with respect to NΫ and Ne, respectively.

PROPOSITION 2. The connection Ϋ induced on T(S) from 7° is the complete lift
of the connection V induced on S from V . That is to say, V is the Riemannian
connection of T(S) with respect to g° satisfying the condition

(VxYr for X,

Proof. First we shall show

(5.7) VZcBYG=(VBχBYγ for X,
±>Λ.

Recalling the definitions of lifts of BX in § 3, we introduce vector fields X and Ϋ
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on a sufficiently small neighborhood U such that X ana Y coincide respectively
with BX and BY on (J7nS)°. Then we have

since VXΫ is a vector field on U which coincides with VBχBY on (Z7nS)°. By the
the same reason we have the following formulas which will be used in the next
section.

(5.8) for

Now by virtue of (3. 11), (3. 13), (4. 1), (4. 3) and (5. 7), we get

(5. 9) F£ cBY°=B(VχY)c+hG(X°, YG}N*+hv(X
B X

On the other hand by (5. 5) and (5. 6) we have

(5. 10) F£ cBYG=B(Pc

xcYG)+h(XG, YG)NΫ+k(XG, YG)NC.
B X

Therefore we obtain

(q.e.d.)

REMARK. It is known that if K is the curvature tensor fiele of F, then Kc is
the curvature tensor field of Vc. (cf. [4]). Similarly, the complete lift of the cur-
vature tensor field K of the induced connection V on S is the curvature tensor
field of VG. Therefore from this Proposition the curvature tensor K of F (=^PC) is
the complete lift of the curvature tensor field of F.

Moreover from (5. 9) and (5. 10) we have

PROPOSITION 3. The complete and vertical lifts of the second fundamental
tensor field of S are the second fundamental tensor fields with respect to NΫ and
N5, respectively.

T(S) is said to be totally umbilic if and only if at each point of T(S), there
exists differentiate functions λ and μ such

}=μg(X, )

for any X, Ϋ€ζΠ(T(S)). Then we find

(5. 11)

μ= 2(»-l)'Trace
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in terms of local coordinates. If both λ and μ vanish, T(S) is said to be totally
geodesic. The mean curvature vector field M of Γ(S) is defined by

which is independent of the basis chosen in the space normal to T(S). The mean
*

curvature m of T(S) in T(M) is defined to be the magnitude of the mean curvature

vector field, (i.e. m=Gc(M,M)).

PROPOSITION 4. If T(S) is totally umbilic, then S is totally geodesic. T(S) is
totally geodesic if and only if S is totally geodesic in M.

Proof. If we assume that T(S) is totally umbilic, then the second fundamental
tensor of S always vanishes, because Trace hv is zero. Conversely, if S is totally
geodesic, T(S) is also totally geodesic from Proposition 3.

PROPOSITION 5. The mean curvature of T(S) vanishes.
*

Proof. If we denote the mean curvature by m, by virtue of (5. 1) we have

m=Gc(M, M)=2λμ, 2(n-l)λ=Ύrace Hv, 2(n-l)μ=Ύrace H°.

Now from (5. 11), we have Proposition 5.

§6. The structure equation of T(S).

In this section we shall investigate the equations of Gauss and Weingarten
and the structure equations (i.e., the equations of Gauss, Codazzi and Ricci) on
T(S) in T(M). These are written in the following form:

BX

(6.1) for
Vί ΰN

δ=-BH°X°
B X

g(K(Xc, YC}ZC, WG)=GG(KG(BXG,BYG)BZG, BWG)

(6. 2) +g((HGXG)hv(YG, ZG)+(HvXG)hG(YG, ZG)

- (HG YG)hv(XG, ZG) - (Hv YG)hG(XG, ZG\ WG)

where ft is the Riemannian curvature tensor field of VG on Γ(S).

(6. 3) KG(BXG,

Proof. By virtue of (2. 3), (3. 10), (4. 4) and (5. 8), (6. 1) is reduced to

^ -BHVXC,
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and

VZχCN
5 = (VsxNΫ = - (BHX)G = - BH°XG.

Next as for (β. 2), we note first that K is the complete lift of K, then we find

K(XG, YG)ZG=KG(XG, YG)ZG, for X,

because of Remark mentioned in § 5.
We shall derive the formulas for the later use

KG(X°, YG)ZG=(K(X, Y)Z)G,

KG(BXG, BYG)BZC=(K(BX, BY)BZ)G,

(6. 4) KG(BXG, B YG)N? = (K(BX, B Y)Nγ,

KG(BXC,BYC)NC=(K(BX, BY)N)G,

KG(N?, NG)BXG=(K(N,

In fact, from (2. 3) and (5. 3) we have,

o, YG)ZG=

By making use of (5. 6) and (5. 7), the others are also obtained.
Now we have

G, YG)ZG, WG)=g((K(X, Y)Z}G, WG)

= GG((K(BX, BY}BZ)C, (BWΫ)

+Q((HX}h(Y, Z)-(HY)h(X, Z))G, WG)

=GG(KG(BXG, BYG)BZG, BWG)

+ g((HGXG)hv( YCZG} + (HvXG)hG( YG, ZG}

, ZG)-(HvYG-)hG(XG, ZG\ WG}

from (4. 4).
As for (6. 3), by making use of the equations of Codazzi and Ricci (4. 5), (4. 6)
(6. 4), we have
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KG(BXG, BYG)NΫ=

-VG

fcHvXG\

KG(BXG, BYG)NG=(K(BX, BY)N)G

and

Thus we have (6. 1), (6. 2) and (6. 3), which are the equations of Weingarten, Gauss

and Codazzi and Ricci on T(S) in T(M), respectively.
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