AUTOMORPHISMS OF A FREE NILPOTENT ALGEBRA

By Мотоісні Oкuzumi

Let F be a finite dimensional nilpotent algebra over a field K with index of nilpotency $\rho: F \supset F^{2} \supset F^{3} \supset \cdots \supset F^{\rho-1} \supset F^{\rho}=0$. Let $u_{1}, u_{2}, \cdots, u_{n}$ be a system of generators of F such that u 's are linearly independent over K modulo F^{2}. We shall call F a free nilpotent algebra if the generators $u_{1}, u_{2}, \cdots, u_{n}$ satisfy only relations $u_{i_{1}} u_{i_{2}} \cdots u_{i_{\rho}}=0\left(1 \leqq i_{1}, i_{2}, \cdots, i_{\rho} \leqq n\right)$; we shall denote it by $F=F\left(u_{1}, u_{2}, \cdots, u_{n} ; \rho\right)$.

Let N be a nilpotent algebra over K with index of nilpotency ρ generated by n elements $a_{1}, a_{2}, \cdots, a_{n}$ and let F be as above. Then we can find a homomorphism φ of F onto N defined by $\varphi\left(u_{i}\right)=a_{i}$, so that N is isomorphic to the residue class ring F / \mathfrak{p} where \mathfrak{p} is the kernel of φ. Thus we may say that the study of nilpotent algebras can be reduced to that of free nilpotent algebras and their ideals.

In this note we shall consider a free nilpotent algebra and its automorphism groups. The first section is preliminary and we make some considerations about the relations between nilpotent algebras and free nilpotent algebras. In the second, we study automorphisms of a free nilpotent algebra. Throughout the note, we assume that the characteristic of the ground field K is 0 , and algebras mean associative finite dimensional algebras over K.

1. Preliminaries. The following theorem is well known.

Theorem 1. Let N be a nilpotent algebra over a field K with index of nilpotency ρ, then N is generated by a system of elements $a_{1}, a_{2}, \cdots, a_{n}$ whicn form a basis of N modulo N^{2}. And any such system of elements generates N.

We call such a system of elements a minimal generating system of N. From theorem 1, we get

Corollary. Every nilpotent algebra N over K with index of nilpotency ρ is isomorphic to a residue class ring of a free nilpotent algebra F with index ρ by a two-sided ideal \mathfrak{p} which is contained in F^{2}.

If $a_{1}, a_{2}, \cdots, a_{n}$ generate N, the isomorphism mentioned in the above corollary is induced by the mapping of F onto N defined by

$$
F \ni u_{i} \rightarrow a_{i} \in N, \quad i=1,2, \cdots, n .
$$

If we take another minimal generating system $a_{1}^{\prime}, a_{2}^{\prime}, \cdots, a_{n}^{\prime}$, we have the following
Received November 27, 1967; revised January 25, 1968.
expressions

$$
\begin{equation*}
a_{i}^{\prime}=f_{2}\left(a_{1}, a_{2}, \cdots, a_{n}\right)=f_{i}(a), \quad i=1,2, \cdots, n \tag{1}
\end{equation*}
$$

where $f_{i}\left(x_{1}, x_{2}, \cdots\right)$ are non-commutative polynomials in $x_{1}, x_{2}, \cdots, x_{n}$ over K. Thus, if we define a new generating system of F corresponding to the above formula

$$
\begin{equation*}
u_{i}^{\prime}=f_{i}(u), \quad i=1,2, \cdots, n \tag{2}
\end{equation*}
$$

then $u_{1}^{\prime}, u_{2}^{\prime}, \cdots, u_{n}^{\prime}$ are linearly independent modulo F^{2}. So, they form a minimal generating system of F.

If an automorphism $\bar{\sigma}$ of N is given by the formula (1), then we can define the corresponding automorphism σ of F by the formula (2). Let $p(u)$ be a polynomial belonging to the kernel of the original mapping of F onto N, then $p(u)$ is transformed to $p\left(u^{\sigma}\right)$ by means of the automorphism σ. And,

$$
p\left(a^{\sigma}\right)=(p(a))^{\bar{\sigma}}=0
$$

So, the kernel of the mapping is invariant under the automorphism σ.
Conversely, an automorphism σ of F leaving the kernel invariant induces an automorphism of N.

Next, we shall consider ideals of F. Let \mathfrak{p} be an ideal of F. Then we can take a kind of generating systems S of \mathfrak{p} (in the sense $\mathfrak{p}=S F+F S$) by means of the following diagram.

F	F^{2}	F^{3}	F^{4}	\cdot	\cdot	\cdot	$F^{\rho-2}$	$F^{\rho-1}$

Here, P_{1}, P_{2}, \cdots are $\left(K\right.$-) subspaces of F and $P_{2}^{\prime}, P_{3}^{\prime}, \cdots$ are sets of (K-)linearly independent elements of \mathfrak{p}; they are chosen as follows. Set $Q_{1}=\{x \in F \mid x F \subset \mathfrak{p}, F x \subset \mathfrak{p}\}$, which is a subspace of $F . \quad P_{1}$ is a subspace of F such that $Q_{1}=Q_{1} \cap F^{2} \oplus P_{1} . \quad P_{2}^{\prime}$ is a system of elements in \mathfrak{p} which forms a basis of \mathfrak{p} modulo $F^{3}+\left[P_{1}\right]$ ($\left[P_{1}\right]$ means the ideal generated by $\left.P_{1}\right) . \quad P_{2}$ is a subspace of F such that $Q_{1} \cap F^{2}=\left(p \cap F^{2}+F^{3}\right)$ $\cap Q_{1} \oplus P_{2}$, and so on.

Thus, if we choose a linearly independent system of elements in $P_{1}, P_{2}^{\prime}, P_{2}$, $\cdots, P_{\rho-1}^{\prime}, P_{\rho-1}$, then we obtain a generating system of \mathfrak{p} as an ideal. And the K module ($P_{1}, P_{2}, \cdots, P_{\rho-1}$) consists of elements which are two-sided zero divisors of F modulo p. The K-module $F_{1}=\left(P_{1}, P_{2}, \cdots, P_{\rho-1}, \mathfrak{p}\right)$ corresponds to the ideal whose elements are all two-sided zero divisors of N. The corresponding ideal

$$
N_{1}=\{b ; b x=x b=0 \text { for all elements } x \in N\}
$$

is called two-sided zero ideal of N.
Similarly, we make the same considerations in the residue class ring F / F_{1}, then we obtain F_{2} whose elements are all two-sided zero divisors modulo F_{1}, and so on. Thus, we have the following series of ideals in F.

$$
F_{1} \subset F_{2} \subset F_{3} \subset \cdots \subset F_{\rho-2} \subset F_{\rho-1}=F .
$$

Correspondingly, in N we have

$$
N_{1} \subset N_{2} \subset N_{3} \subset \cdots \subset N_{\rho-2} \subset N_{\rho-1}=N .
$$

Each ideal F_{2} of the series is invariant with respect to automorphisms leaving \mathfrak{p} invariant, because in N the corresponding ideal is invariant with respect to all automorphisms of N.

2. Automorphism groups of a free nilpotent algebra.

Let F be a free nilpotent algebra over a field K with minimal generating system $u_{1}, u_{2}, \cdots, u_{n}$ and index ρ. Then we can choose the following basis of F over K which will be called the normal basis of F :

$$
u_{1}, u_{2}, \cdots, u_{n} ; u_{1}^{2}, u_{1} u_{2}, \cdots, u_{n}^{2}: \cdots ; u_{1}^{\rho-1}, u_{1}^{\rho-2} u_{2}, \cdots, u_{n}^{\rho-1} .
$$

The normal basis of F is briefly written in the following form:

$$
\left[U^{1} ; U^{2} ; \cdots ; U^{\rho-1}\right] .
$$

Let σ be an automorphism of F over K. We shall give the representation of σ by means of the normal basis. (In this representation, we shall write automorphisms as left operators.)

Let

$$
\sigma\left(u_{i}\right)=\sum_{p=1}^{\rho-1} U^{p} a_{p i} \quad i=1,2, \cdots, n
$$

where $a_{p c}$ are matrices of type ($n^{p}, 1$). Or, briefly,

$$
\sigma\left(U^{1}\right)=\sum_{p=1}^{\rho-1} U^{p} A_{p}
$$

Then, from the properties of automorphism,

$$
\begin{aligned}
\sigma\left(u_{i} u_{j}\right)=\sigma\left(u_{i}\right) \sigma\left(u_{j}\right)=\left(\sum_{p=1}^{\rho-1} U^{p} a_{p z}\right)\left(\sum_{q=1}^{\rho-1} U^{q} a_{q \jmath}\right)= & \sum_{l=2}^{\rho-1} U^{l} \sum_{p+q=l} a_{p i} \times a_{q \jmath} \\
& (i, j=1,2, \cdots, n),
\end{aligned}
$$

where $a_{p} \times a_{q]}$ is a right direct product as in [9]. In the present note we shall use the symbol \times in this sense. In matrix form, we have

$$
\sigma\left(U^{2}\right)=\sum_{l=2}^{\rho-1} U^{l} \sum_{p+q=l} A_{p} \times A_{q} .
$$

Similarly, we have

$$
\sigma\left(U^{i}\right)=\sum_{l=\imath}^{\rho-1} U^{l} \sum A_{p_{1}} \times A_{p_{2}} \times \cdots \times A_{p_{i}} .
$$

Therefore, the automorphism of F is represented by the following matrix:
(3) $\left[\begin{array}{cccc}A_{1} & 0 & 0 & 0 \\ A_{2} & A_{1} \times A_{1} & 0 & 0 \\ A_{3} & A_{1} \times A_{2}+A_{2} \times A_{1} & A_{1} \times A_{1} \times A_{1} & \cdot \\ \cdot & & \cdot & 0 \\ \cdot & & \cdot & 0 \\ \cdot & & & 0 \\ A_{\rho-1} & A_{1} \times A_{\rho-2}+A_{2} \times A_{\rho-3}+\cdots+A_{\rho-2} \times A_{1} \cdots A_{1} \times A_{1} \times \cdots \times A_{1}\end{array}\right]$
in which the i - j-block is the sum of j-th direct products $A_{p_{1}} \times A_{p_{2}} \times \cdots \times A_{p_{j}}$, where $\sum_{p_{k}}=i$.

In the expression (3), if $A_{1}=E$, we call the corresponding automorphism monic; and automorphism corresponding to the following type of matrix pseudo-diagonal:

$$
\left[\begin{array}{cccc}
A_{1} & 0 & 0 & 0 \\
0 & A_{1} \times A_{1} & 0 & 0 \\
0 & 0 & A_{1} \times A_{1} \times A_{1} & \cdot \\
\cdot & & & \cdot \\
\cdot & & & \cdot \\
\cdot & & & 0 \\
& & & A_{1} \times A_{1} \times \cdots \times A_{1}
\end{array}\right]
$$

Then, we have the following proposition immediately.
Proposition 1. Any automorphism σ of a free nilpotent algebra F can be written as a product of a pseudo-diagonal automorphism and a monic one, and the expression is unique.

In general, a pseudo-diagonal automorphism and a monic one are not commutative to each other. For instance

$$
\left[\begin{array}{cc}
E & 0 \\
B & E \times E
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
0 & A \times A
\end{array}\right]=\left[\begin{array}{cc}
A & 0 \\
B A & A \times A
\end{array}\right] .
$$

So, if commutative, we obtain the equation

$$
B A=(A \times A) B .
$$

But this can not be true in general, since B is arbitrarily given.
We have defined monic automorphisms of a free nilpotent algebra by means of representation, but we can define them directly for a nilpotent algebra N as follows.

Definition. An automorphism σ of a nilpotent algebra N is called monic in case $a^{\sigma}-a$ lies in N^{r+1} whenever a lies in N^{r} for $r=1,2, \cdots$.

Then, we have
Proposition 2. Let F be a free nilpotent algebra over K with index ρ, then the following three conditions are equivalent to each others.
(1) σ is monic as in the first meaning.
(2) σ is as in the definition.
(3) σ is an automorphism such that $a^{\sigma}-a \in F^{2}$ for all $a \in F$.

Proof. We shall prove (3) \rightarrow (2). Others are evident. It is sufficient to prove it when a is a monomial in F^{r}. In that case,

$$
\left(u_{i_{1}} u_{i_{2}} \cdots u_{i_{r}}\right)^{\sigma}-u_{i_{1}} u_{i_{2}} \cdots u_{i_{r}}=u_{i_{1}}^{\sigma} u_{i_{2}}^{\sigma} \cdots u_{i_{r}}^{\sigma}-u_{i_{1}} u_{i_{2}}^{\sigma} \cdots u_{i_{r}}^{\sigma}+u_{i_{1}} u_{i_{2}}^{\sigma} \cdots u_{j_{r}}^{\sigma}-\cdots-u_{i_{1}} u_{i_{2}} \cdots u_{i_{l}} .
$$

Therefore, $a^{\sigma}-a \in F^{r+1}$.
The following theorem is due to Dubisch and Perlis [5].
Theorem 2. The totality of monic automorphisms of a free nilpotent algebra F form a nilpotent normal subgroup \mathfrak{M} of the automorphism group \mathbb{G} of F.

Proof. Let \mathfrak{M}_{\imath} be the subset of all the monic automorphisms leaving all elements of F^{i} invariant, then these automorphisms are represented as the following form

$$
\left[\begin{array}{cccccc}
E & & & & & \\
0 & E \times E & 0 & & & \\
\cdot & & E \times E \times E & 0 & & \\
\cdot & & & & & \\
\cdot & & & & & \\
0 & & & & & \\
A_{\imath} & 0 & & & & \\
\cdot & A_{\imath} \times E+E \times A_{\imath} & 0 & & 0 & E \times E \times \cdots \times E
\end{array}\right]
$$

Then, it is easily verified that the following series is a central series of \mathfrak{M}.

$$
\mathfrak{M}=\mathfrak{M}_{\rho} \supset \mathfrak{M}_{\rho-1} \supset \cdots \supset \mathfrak{M}_{2} \supset \mathfrak{M}_{1}=e .
$$

Any monic automorphism is expressed in the following form (4)

$$
M=\left[\begin{array}{cccc}
E & 0 & 0 & 0 \\
A_{2} & E \times E & 0 & 0 \\
A_{3} & A_{2} \times E+E \times A & \\
\cdot & & \\
\cdot & & \\
\cdot & & \\
A_{\rho-1} & & \\
\hline
\end{array}\right]=\left[\begin{array}{cc}
E & 0 \\
A_{2} & E \times E \\
A_{3} & A_{2} \times E+E \times A_{2} \\
\cdot & \\
\cdot & \\
\cdot & \\
A_{\rho-2} & \\
0 &
\end{array}\right]\left[\begin{array}{lll}
E & 0 & 0 \\
0 & E \times E & \\
\cdot & \\
\cdot & \\
0 & & \\
A_{\rho-1} & 0 & \cdots E \times \cdots \times E
\end{array}\right] .
$$

In brief,

$$
M=M_{1} M_{2}, \quad M_{2} \in \mathfrak{M}_{2}
$$

In the above expression, M_{1} and M_{2} are uniquely determined from M, and they are commutative to each other. The totality of M_{2} form the abelian group \mathfrak{M}_{2}.

In case of a free nilpotent algebra F, every element a of F is quasi-regular, and there is an element b such that

$$
a+b+a b=a+b+b a=0
$$

Then an inner automorphism J of F is defined by the formula

$$
\begin{equation*}
x^{J}=x+b x+x a+b x a \quad \text { for } \quad x \in F . \tag{5}
\end{equation*}
$$

The totality of inner automorphisms $J=J_{a}$ given by (5) form, as a varies over all elements of F, a group \Im; and from (5), it is evident that $\Im \subset \mathfrak{M}$ and $\mathfrak{\Im}$ is a normal subgroup of \mathbb{C}.

Nil automorphisms are defined as such automorphisms fixing all the absolute zero divisors of F in [5], but in case of a free nilpotent algebra they coincide with monic automorphisms.

Now let \mathfrak{A} be an algebra over K with a unity element 1 possessing F as its radical. Then from the assumption on K, \mathfrak{A} splits, $\mathfrak{A}=S+F$, where S is a semisimple subalgebra of \mathfrak{A} which is isomorphic to the residue class ring \mathfrak{A} / F. Then the totality of regular elements of \mathfrak{A} form a multiplicative group $\mathfrak{A ^ { \times }}=S^{\times}(1+F)$, where S^{\times}is the multiplicative group consisting of all regular elements of S. In the followings we shall consider the effect of inner automorphisms of \mathfrak{A} (by regular elements of \mathfrak{U}) on the radical F.

Let a be a regular element of S, then the left and right multiplications a_{l} and a_{r} induce endomorphisms of F^{+}. Now, we consider, formally, the representation of multiplication endomorphisms by means of normal basis of F.

Let a be a regular element of S and let the effect of a_{r} on U be as follows:

$$
u_{i} a=\alpha_{11} u_{1}+\alpha_{12} u_{2}+\cdots+\alpha_{1 m} u_{n}^{\rho-1}, \quad i=1,2, \cdots, n .
$$

In matrix form,

$$
U^{1} a=\left[U^{1} ; U^{2} ; \cdots ; U^{\rho-1}\right]\left[\begin{array}{c}
A_{1} \\
A_{2} \\
\cdot \\
\cdot \\
\cdot \\
A_{\rho-1}
\end{array}\right] .
$$

Then, we have

$$
u_{i} U^{1} a=\left[u_{i} U^{1} ; u_{i} U^{2} ; \cdots u_{i} U^{\rho-1}\left[\begin{array}{c}
A_{1} \\
A_{2} \\
\cdot \\
\cdot \\
\cdot \\
A_{\rho-1}
\end{array}\right]\right.
$$

$$
=\left[U^{1} ; U^{2} ; \cdots ; U^{\rho-1}\right]\left[\begin{array}{c}
0 \\
\cdot \\
\cdot \\
0 \\
A_{1} \\
0 \\
\cdot \\
\cdot \\
0 \\
A_{2} \\
\cdot \\
\cdot \\
\cdot \\
\cdot
\end{array}\right] .
$$

Therefore,

$$
U^{2} a=\left[U^{1} ; U^{2} ; \cdots ; U^{o-1}\left[\begin{array}{c}
0 \\
E \times A_{1} \\
E \times A_{2} \\
\cdot \\
\cdot \\
\cdot \\
E \times A_{\rho-2}
\end{array}\right]\right.
$$

Hence, with respect to the normal basis of F, a_{r} is represented by the matrix

$$
\left[\begin{array}{cccc}
A_{1} & 0 & 0 & 0 \\
A_{2} & E \times A_{1} & 0 & \\
A_{3} & E \times A_{2} & E \times E \times A_{1} & \\
\cdot & \cdot & \cdot & 0 \\
A_{\rho-1} & E \times A_{\rho-2} & E \times E \times A_{\rho 3} & E \times E \times E \times \cdots \times A^{1}
\end{array}\right]
$$

Similarly, let b_{l} be as follows.

$$
b U=\left[U^{1} ; U^{2} ; \cdots ; U_{\rho}^{-1}\right]\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\cdot \\
\cdot \\
\cdot \\
A_{\rho-1}
\end{array}\right]
$$

Then, b_{l} is represented by the matrix

$$
\left[\begin{array}{ccccc}
B_{1} & 0 & 0 & & 0 \tag{7}\\
B_{2} & B_{1} \times E & 0 & & \\
B_{3} & B_{2} \times E & B_{1} \times E \times E & 0 & \\
\cdot & \cdot & \cdot & & \\
B_{\rho-1} & B_{\rho-2} \times E & B_{\rho-3} \times E \times E & . & . \\
~ . ~ & B_{1} \times E \times E \times \cdots \times E
\end{array}\right]
$$

Now, we can define left and right multiplication operators a_{r}, b_{l} of F by the formula (6), (7) respectively. Then we get

THEOREM 3. Let a_{r} and b_{l} be the multiplication operators of $F\left(F^{2} \neq 0\right)$ defined by (6) and (7) respectively, and if the product $b_{l} a_{r}$ becomes automorphism of F, then, in the representation (6) and (7), A_{1} and B_{1} are scalar matrices and $A_{1} B_{1}=E$. That is, $b_{l} a_{r}$ is a monic automorphism. And B_{i} are uniquely determined by A for $i=1,2, \cdots, \rho-2$.

Proof. We use the representation (6) and (7) directly. Then

$$
\left[\begin{array}{cccc}
B_{1} & 0 & 0 & 0 \\
B_{2} & B_{1} \times E & 0 & \cdot \\
B_{3} & B_{2} \times E & B_{2} \times E \times E & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
B_{\rho-1} & B_{\rho 2} \times E & B_{\rho-3} E \times E & B_{1} \times E \times \cdots \times E
\end{array}\right]
$$

$$
\left[\begin{array}{ccccc}
A_{1} & 0 & 0 & 0 \\
A_{2} & E \times A_{1} & 0 & 0 \\
A_{3} & E \times A_{2} & E \times E \times A_{1} & & \\
\cdot & \cdot & \cdot & & \\
\cdot & \cdot & \cdot & & \\
\cdot & \cdot & \cdot & & \cdot \\
A_{\rho-1} & E \times A_{\rho-2} & E \times E \times A_{\rho-3} & \cdot & \cdot \\
E \times E \times \cdots \times A_{1}
\end{array}\right]=\left[D_{i j}\right] .
$$

In order that the product D corresponds to an automorphism, D must be of form as in (3). Therefore, the matrix

$$
\left(B_{1} \times E\right)\left(E \times A_{1}\right)=B_{1} \times A_{1}
$$

must be equal to the matrix $B_{1} A_{1} \times B_{1} A_{1}$. Hence,

$$
A_{1} \times A_{1}^{-1} B A_{1}=E
$$

Consequently, A_{1} and B_{1} are scalar matrices and the product of them is equal to E. Next, we shall prove that B_{i} are uniquely determined by A for $i=1,2, \cdots, \rho-2$. For $i=1$, we have proved above.

$$
A_{1}=\lambda E \quad \text { and } \quad B_{1}=\frac{1}{\lambda} .
$$

We assume that for all numbers $i<s, B_{i}$ is uniquely determined by $A_{1}, A_{2}, \cdots, A_{i}$. Then,

$$
\begin{aligned}
D_{s, 1} & =B_{s} A_{1}+g\left(A_{1}, A_{2}, \cdots, A_{s-1}\right), \\
D_{s+1,2} & =\left(B_{s} \times E\right)\left(E \times A_{1}\right)+f\left(A_{1}, A_{2}, \cdots, A_{s-1}\right) .
\end{aligned}
$$

Comparing with (3), we have

$$
\begin{gather*}
D_{s+1,2}=\left(B_{s} A_{1}+g\left(A_{1}, A_{2}, \cdots, A_{s-1}\right) \times E+E \times\left(B A+g\left(A, A, \cdots, A_{s-1}\right)\right)\right. \tag{9}\\
+h\left(A_{1} A_{2}, \cdots, A_{s-2}\right) .
\end{gather*}
$$

From (9) and (10), the assertion is proved.
Corollary. A bound algebra \mathfrak{A} over K possessing a free nilpotent algebra F as its radical and unity element 1 must be $K+F$, if $F^{2} \neq 0$.

Proof. From our assumption on K, \mathfrak{Q} splits: $\mathfrak{A}=S+F$. Let us consider the regular representations of \mathfrak{A} by use of a basis of S and the normal basis of F. Then for any regular element a of S, by theorem 3, there exists an element λ of K such that $(a-\lambda)_{r}$ and $(\alpha-\lambda)_{l}$ induce nilpotent multiplicative operations on F.

The set of elements in S which are nilpotent multiplicative operators on F form a nilpotent ideal of S. This follows from the assumption that \mathfrak{U} is bound to F. Hence we have $a-\lambda=0$. Since S is generated by regular elements we get $\mathfrak{A}=K+F$.

References

[1] Artin, E., C. J. Nesbitt, and R. M. Thrall, Rings with minımum condition. Unıv. Michıgan Publ. Math., No. 1 (1944).
[2] Asano, S., On the radical of quası-Frobenius algebras. Kōdai Math. Sem. Rep. 13 (1961), 135-151.
[3] Deuring, M., Algebren. Berlin (1935).
[4] Dickson, L. E., Algebras and their arithmetics. Chicago (1923).
[5] Dubisch, R., and S. Perlis, On total nilpotent algebras. Amer. J. Math. 73 (1951), 139-404.
[6] Hall, M., The position of the radical in an algebra. Trans. Amer. Math. Soc. 48 (1940), 391-404.
[7] Hazlett, O., On the classification and invariantive characterization of nilpotent algebras. Amer. J. Math. 38 (1916), 109-138.
[8] Jacobson, N., Structure of rings. Amer. Math. Soc. Colloquium Publ., Providence (1956).
[9] Macduffee, C. C., The theory of matrices. New York (1956).
Training Institute for Engineering Teachers, Tokyo Institute of Technology.

