By Yuzo U＇SUMI

The concept of primal ideals， introduced by L．Fuchs（3）for com－ mutative rings and generalized by C．W．Curtis（2）to integral nodular lattice ordered semigroups with as－ cending chain condition，shall be extended in this paper to modular lattices with maximum condition by our method in（4）．

$\S 1$.

Let I be a modular lattice with ascending chain condition and © be a set of lattice congruences on I sucn that any meet of a finite number of congruences in Θ is also in © ．We denote by a（ θ ）the greatest element congruent to an eje－ ment a by a congruence θ on L 。 The set of elements x satisfying $x(\theta)=1$ is denoted by $K(\theta)$ ．An element q is said to be primary（with respect to Θ ）if $q \in x(\theta)$ or $q=q(\theta)$ for everv θ in Θ ． An element a is called to be primal （with respect to Θ ）ii $a\left(\theta_{1} \cap \theta_{2}\right.$ ） $=a$ implies $a\left(\theta_{1}\right)=a$ or $a\left(\theta_{2}\right)=a$ for θ_{1} and θ_{2} in Θ ．

Theorem 1．l．Any primary element is primal．

Proof．Let q be a primary element． $q\left(\theta_{1}\right)>q$ and $q\left(\theta_{2}\right)>q$ imply $q\left(\theta_{1}\right)=1, q\left(\theta_{2}\right)=1$ and $1>q$ ， that is，$q\left(\theta_{1} \cap \theta_{2}\right)=1>q$ 。

Theorem 1．2．Any meet－irreducible olement is primal．

Proof．If an elerent a is not primal then a（ $\left.\theta_{1} \cap \theta_{2}\right)=a$ ， $a\left(\theta_{1}\right)>a$ and $a\left(\theta_{2}\right)>$ a for some
θ_{1}, θ_{2} in 0 ：Since a $\left(\theta_{1}\right) \cap$ $a\left(\theta_{2}\right\}=a\left(\theta_{1} \cap \dot{\theta}_{2}\right)=a$ ，a is meet－ reducible。

In a meet of elements of I ，if we can not replace any component by a element greater than j．t，we call the meet to be reduced．An irredun－ dant meet of primal ejements is said to be shortest if any meet of two or more components is not primal．Re－ duced and shortest meets are normal．

Theorem 1．3．Let $a=a_{1} n a_{2} \cap \ldots$ $n a_{n}$ be a reduced meet．Then $a(\theta)$

Proof．By the theorem jo3． $a(\theta)=a$ ensures that $a_{i}(\theta)=a$ for $i=1,2, \ldots, n$ ．If the condition is satisfied then a is primal by the definition．If $j t$ is not satisfied then there are θ_{i} such that $a_{i}\left(\theta_{i}\right)$ $=a_{i}$ and $a\left(\theta_{i}\right)>a$ for $i=1,2$ ， $\ldots, n^{\circ} \quad a \leq a\left(\theta_{1} \cap \theta_{2} \cap \ldots \cap \theta_{n}\right) \leq$ $a\left(\theta_{i}\right) \leqslant a_{i}\left(\theta_{i}\right)=a_{i}$ ．Hence $a\left(\theta_{1} \cap\right.$ $\left.\theta_{2} \cap \ldots \cap \theta_{n}\right)=a$ ．If a were primal then $a\left(\theta_{i}\right)=a$ for some i which is a contradiction．

Theorem：］．5．Any ejement i．s ex－ pressible as a normal meet of a finite number of primal elements．

Proof．First，i．f we represent the ejement as an irredundant meet of meet－irreducible ejements，it is necessarily reduced．Next，by the Theorem 1．4．，grouping its suitable components we obtain a shortest meet． It is easy to see the reducibility of this meet．（Only here we use the modularity of L_{0} ）

[^0]1．3．，$M(a)=M\left(a_{1}\right) \cap M\left(a_{2}\right) \cap \ldots \cap$ H（ a_{n} ）which is a irredundant meet of meet－irreducible elements in $M(\Theta)$ by the theorem 1．4．From the well known theorem for distributive lattices we obtain immediately

Theorem 1．6．If both $a_{1} \cap a_{2} n$ $\ldots \cap a_{n}=b_{1} \cap b_{2} \cap \ldots n b_{n}$ are normal meets of primal components， then $m=n$ and，after a suitable change of indices，$a_{i}(\theta)=a_{i}$ if and only if $b_{i}(\theta)=b_{i}$ for $i=1$ ， 2，．．．．n．

§ 2

Example 1．Let I be an integraj． rodular lattice ordered semigroup with ascending chain condition．A subset k is called to be k－system if it satisfies the condition that （1）k is not empty，（2）k is J－closed and（3） k is multiplicatively closed． To every k－system k ，we can make correspond a lattice congruence $\theta(k)$ of L when we defline that a and b are congruent by $\theta(k)$ if $a^{-1} b n$ $b^{-1} a$ is in k ．Then k is a class con－ taining 1 for $\theta(k)$ ．（See（4）） Now，we adopt the set of $\theta(k)$ for all k－systems k in I as our（1）． It is easy to see that any intersec－ tion of k－systems is again a k－sys－ tem and corresponds to the congruence which is the intersection of congru－ ences corresponding to each k－systems． For any element a ，the totality of such elements that $\mathrm{ax}^{-1}=$ a forms clearly a k－system to which corres－ ponding congruence in Θ is denoted by $k(a)$ ．

Theorem 2．1．$a(\theta)=a$ if and only if $\theta \leq k(a)$ ，for θ in Θ ．

Proof．Let $\theta \leq k(a)$ 。 $(a(\theta))^{-1} a$ is congruent to $]$ by θ ，hence by $\mathrm{k}(\mathrm{a})$ ，which shows $\mathrm{a}\left(\left(\mathrm{a}\left(\theta^{0}\right)\right)^{-1} a\right)^{-1}=a$ ． Since $(a(\theta))\left((a(\theta))^{-1} a\right) \leq a$ ，we get $a(\theta) \leqslant a\left((a(\theta))^{-1} a\right)^{-1}=a$ and hence $a=a(\theta)$ ．Conversely，if $\theta \neq k(a)$ then there is an element x such that x is congruent to 1 by θ but not by $k(a)$ ．We have ax ${ }^{-1}>a_{i}$ Since （ax ${ }^{-1}$ ）$x \leqslant a$ we get $\left(a x^{-1}\right)^{-1} a \geq x$ which proves that $\left(a x^{-1}\right)^{-1} a$ is congruent to 1 by θ ．Clearly，$a^{-1}\left(a x^{-1}\right)=1$ is also congruent to 3 ．by θ ．Thus ax^{-1} is congruent to a by θ ． Therefore $a(\theta) \neq a$ ．

Theorem 2．2．An element is primal if and only if it is primal in the sense of Curtis（2）。

Proof．Curtis（2）has defined the primalness of an element a by the condition that the k－system to which $k(a)$ corresponds be a dual．
prime ideal of I in the sense of lat－ tice theory．Now，Jet a be prima］
in our sense．Assume that $a(x \cup y)^{-1}=$ a．The J－closure of all the powers of x is a $k-s y s t e m$ to which corres－ ponding congruence denoted by θ_{1} ． Similarly θ_{2} for y ．Jf t is con－ gruent to l by $\theta_{1} \cap \theta_{2}$ ，then $x^{n} \leq t$ and $y^{m} \leq t$ for some n and m ，and so $(x \cup y)^{n+m-1} \leqslant t$ which shows that at ${ }^{-1}=a$ ．Hence $\theta_{1} \cap \theta_{2} \leq k(a)$ ． Therefore，say，$\quad \theta_{1} \leqslant k(a)$ or $a x^{-1}=$ a．Thus a is primal in the sense of Curtis．Conversely，if a is not primal in our sense，then $\theta_{1} \neq k(a)$ ， $\theta_{2} \neq k(a)$ and $\theta_{1} \cap \theta_{2} \leqslant k(a)$ for some θ_{1} and θ_{2} in Θ ．Let x be con－ gruent to J．by θ_{1} and not so by $k(a)$ ．Sirilarly y for θ_{2} and $k(a)$ ． Then $x \cup y$ is congruent to 1 by
$\theta_{1} \cap \theta_{2}$ and hence $k(a)$ ．Thus，a
is not primal in the sense of Curtis．
Exarple 2，Let I be a modular lattice of finite length，and (\otimes) be the totality of lattice congruen－ ces on J．It is well known that（1） is a Boolean algebra isomorphic to the lattice of all subsets of the set P of prime quotients i．gnoring the projectivity．The prime quotient b / a is said to be belonging to a ． By $k(a)$ we denote the ejement of (0) corresponding to the complement of the subset in P corresponding to all the prime quotients belonging to a． Then $a=a(\theta)$ if and only if $\theta \leqslant$ $k(a)$ ．An element a is primal if and only jif all the prime quotients be－ longing to a are projective．Thus， our theorems in §l yield the well known results that，in irredundant representations by meet－irreducible elements，the prime quotients be－ longing to components are unique］y determined．We remark finally that an element is primary if and only if all prime quotients in a chain connecting it to ？are projective．
（1）Garett Birkhoff；Lattice theory， rev．ed．，（1949）．
（2）C．W．Curtis；On additive ideal theory in general rings， Amer．J．Nath．，v． 74 （1952） pp．687－700．
（3）L．Fuchs；On primal ideals，Proc． Amer．Math．Soc．，V．1（1950） ppol－8。
（4）Y．Utumi；On primary elements of a modular Jattice，Kodai Math． Sem．Rep．（1952）．Pp．101－103．

Osaka Women＇s College．
（＊）Received Feb．5， 1953.

[^0]: For any element a，the set of θ in Θ satisfying $a(\theta)=a$ is a M－ closed subset of Θ which denoted by $M(a)$ ．It is well known that the set of all N－closed subsets in Θ forms a distributive lattice，by set－ inclusion，to which we refer as $M(\Theta)$ ． The derinition shows that an element a is primal if and only if $M(a)$ is meet－irreducible in $M_{1}(\Theta)$ ．If $a=$ $a_{1} \cap a_{2} \cap \ldots \cap a_{n}$ is a normal meet oi primal a_{i} ，then，by the theorem

