ON COMPLEMENTED MODULAR LATTTCES MEET-HOMOMORPHIC TO A

MODULAR LATTICE

By Yuzo UTUMI

Let L be a modular lattice.
An element e of L is called a [ -
element when it satisfies the condi-
tion that, xny ge implies
(evx)ay se . For instance,
every neutral element is a w-
element,

The purpose of this note is to
prove the following

Theorem I, Let L be a modular
lattice with the maximum condition
and 6 bhe a meet-homomorphism of

L onto a complemented modular lat-
tice such that

{1) &%= o implies (av 0 = 4°
for every + .

Then the inverse image of 0 forms

an ideal generated by some -

element ¢ and a condition for
a’ = 4¢ is that

(2) anx $€ if and only if 4nxse,

Conversely, for any ¢ -element
e the condition (2) defines an
equivalence in L . The set of all
the corresponding classes in L forms
a complemented modular lattice meet-
homomorphic to L satisfying (I)
where x® means the class contain-
ing X o

First, let € be any element of
L .« By as b , 18 meant that
anx g €& Iimplies 4ax §€
This relation is a quasi-order., Then
the following properties hold obvi-
ously.

(3) If a3 4 then azed

(4) If a % { and cx.d then
anc & An 4

(5) as,e if and only if ase,

(6) & g% for every x .

The relation " 43%et and 4Zea "
is an equivalence. The totality of the
corresponding classes in L forms a
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partially ordered set M by the order
induced from €¢ . From (4), any
two elements of ™M have the meet
such that a%n~ 4= (a~4)?  where

x¢ is the class contalning «x .,
{5) and (6) imply that the ideal gene-
rated by e forms a class e?
which 1s O-element of ™M . Jf e
is a m-element, then a’= o implies
(av$)?=4° | because of the definition
off m=-element.

Lemma I. An element e of L is
a p-element if and only If {gave
implies P

Proof, Let ¢ Dbe a “-ale-
ment.., Assume tsave and aaxs€.
Then ez (ev@) ax 2 {n%X o Thus 4sea .
Conversely, assume that the condition
of the lerma is fulfilled. Let an{se .
Since ave g, @ we get, (ave)af se
which implies that e 1is a ® -
element.

Lerma 2, If e is a ® ~ele-
ment, then (avb)~¢ Se implies
ancbve) s, 4 .

Proof. a.a(Lv:)s(o.«(ch))Vé
= (4ve)a(avé)w §v((avdlac), From the Lerma
I, we get an(lve) §o4 ir
(avd)yance s ¢ .

Corollary. If e 1is a [
element, then ,2.4 s$e and (avé)~cit
imply gqa(dverse o

Let e bo a # =~elenment, and
a' be one of the maximal elements
of L among x guch that anxse .
Now, to prove that al.i% (a“(ln (a-~8)"))?
We aSSuMme Aafex , 4EeXk and xayse.
Let Ce(and) and na(avidnct)) Ay o
Since ga(xnadnc)§(and)ncge and e
is a ¢ =-element we obtain
Qaltzabac)ve)ge, But, maxgysx se .
ThUS  an(C %aén€)vR) A X = Ralxadac)vinnx))bCe
Since ag,=x we get aa(cxaényvmn)fe.
Hence xa4a~cnlavn) g e from the
corollary of the Lémma 2. Since 4fex
we have 4dacalavn) § € » But,
Gan §angfe slnce asex and x.yge,
Thus, again from the corollary of
the Lemma 2, it follows that s =mn
(avténc)) s € which proves av(datanl)) e x o
Next, we assune (v tdne))a z €
Then aa(Cin)vE)se from the corol-



lary of the Lemma 2, We have andn
((éad)vc)m anbncrv(dnt)) R an((fac)vE) 5 € .
From the maximallty of e=(a ~l)
we get (dap)ve = ¢ and 4.2 & ¢ .
Thus 4.2 <(avénac))at s € which
proves 4t vidac) . But,
from (3) we get a4 %, av (4n¢) .
Whence a?, 4? = (avsner)? and

M forms a lattice,

Now, 4a¢v a? = (avian (anar )’ =
(av(a'r2)) = \avan? since xse im-
plies x= I o If (ava)au e
then an~(a'vu) g e by the corol-
lary of the Lemma 2. From the maxi-
mality of at  , we get usa’
Thus, U= un(ava’h £ ¢ which im-
plies a.arze1 OP (ava)? =1°%
Hence a’v a? = 1 . Evidently
a%na? = (a4~ a)?=0" . Whence a?
is a complenent of ab

To prove the modularity of ™M |
we assume afed and
vnlavldada(aniad)’)) ¢ € Where as (anénd)’
we take one containing C=cand) o
Let Cnd =p and ""‘“"I""‘(="‘
Since av(drda(aniad)) 2 avbndnc)
= av (dap) we get wa(awddapr)te,
Then, ez wa(avep)) wnCand)videp)

e wnda (CandIvp) = wa (Cand)“P) o Since
@nd)aps anp = anfacse we have
andn(pvw) s € I'rom the corollary
of the Lemma 2., By the assumption

as,d we get an~(povw)fe

From the Lerma 2 @ep)nw Sep .
Since avp z w we have wz.p .
Thus w2, da and wg, va(avldap)se
which 1mpfies @vian)'ad)) nd 2ea v
(gaal,.(ulul)’). Therefore (a%,(¢)nd®s
abv (4°~d¥) and ™ is modular,

Conversely, let ™M be a comple-
mented nmodular lattice meet-homomor-
phic to L by the mapping ¢ .
Assume the condition (I) is true,
It e Js a mgkimal element ot the
inverse image of 0, then e 1is a
p -element, For, If anéée then
(Cevarntl)? = (@varla 49 =alaif=canr®o .

Next, let a®=4% . Ir anxse

then (4na x)‘-{;eﬂ x®= af, xa.(anx)‘.o or
Laxge , and conversely., In

the case asd w 4¢ , We may assume
a®g ¢¢ . Then there exists a rela-

tive complement x¢ of a’~4® in

the interval b, 4°] , Ir z'w=o

then {%. g?~4? which contradicts

our assumption, Hence x’4 o

We have (an YL a¥ax? = A.A‘.ﬂ#,‘l’

and (#ax)a L% x’ = x? +0 , which

imply A%, . Thus the proof

ot' the Theorem I 1s complete,

By & ¢ =element, 1t 1s meant
an element &' for some a and fixed
e . Then,
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Theorer: 2. In the classificatlon,
of L , of the Theorem I, every
class contains at least one ¢ -
clement. And an element of L 1is
a ¢ -element if and only if it is
a maximal element in the class con-
taining iv.

Proof. We can select (&) such
that (a")' & & « Then (ca)')?zal.

But, since both (¢4 ")® and «?
are complements of ("’ , the
modularity implies (ca’)? = a6
and a® contains ca! o
Now, let @” =zx¢ and a'gx .
Ifr a' < x then =x~a $ ¢ .
But a~a se , hence a' §¢x
which contradicts our assumption
and we get a'= x , (onversely,

let ¢ be a maximal element of the
class containing it. Then for ¢/

such that “@9D' z 4 we have ((49'¢
and 4 is a ¢ -glement.

Remark. Above we assumed the
maximum condition for L , but
used it essentially only for the
exlstence of ' . If we have the
condition U (as~4)= Usae A 4 5
where {a4t is a simply ordered
subset of L , then all the results
above hold in almost same form, for
instance, after defining a ®-
ideal instead of our f¢ -elenment.,
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