ON COMPLEMENTED MODULAR LATTICES MEET-HOMOMORPHIC TO A

MODULAR LATTICE

By Yuzo UTUMI

Let L be a modular lattice. An element e of L is called a μ element when it satisfies the condition that, $x \land y \not\in e$ implies $(e \lor x) \land y \not\in e$. For instance, every neutral element is a μ element.

The purpose of this note is to prove the following

Theorem I. Let L be a modular lattice with the maximum condition and θ be a meet-homomorphism of L onto a complemented modular lattice such that

(1) $a^{\theta} = o$ implies $(a \sim b)^{\theta} = b^{\theta}$ for every b.

Then the inverse image of 0 forms an ideal generated by some μ element e and a condition for $\alpha^{\theta} = 4^{\theta}$ is that

(2) an x ≤ e if and only if bax ≤ e.

Conversely, for any μ -element c the condition (2) defines an equivalence in \bot . The set of all the corresponding classes in \bot forms a complemented modular lattice meethomomorphic to \bot satisfying (I) where χ^{\bullet} means the class containing χ .

First, let e be any element of L . By $a \mathbf{z}_{\ell} \mathbf{\delta}$, is meant that $a \wedge \mathbf{x} \leq \mathbf{e}$ implies $\mathbf{\delta} \wedge \mathbf{x} \leq \mathbf{e}$. This relation is a quasi-order. Then the following properties hold obviously.

(3) If $a \neq b$ then $a \neq b$

(4) If $a \ge b$ and $C \ge d$ then and $z \ge b$ d

(5) $a \leq e$ if and only if $a \leq e$.

(6) $e \leq x$ for every x.

The relation " $4 \le 4$ and $4 \le 4$ " is an equivalence. The totality of the corresponding classes in L forms a partially ordered set M by the order induced from ξ_e . From (4), any two elements of M have the meet such that $a^{\theta} \wedge t^{\theta} = (a \wedge t)^{\theta}$ where x^{θ} is the class containing x. (5) and (6) imply that the ideal generated by e forms a class e^{θ} which is 0-element of M. If eis a μ -element, then $a^{\theta} = 0$ implies $(a \vee t)^{\theta} = t^{\theta}$, because of the definition of μ -element.

Lemma I. An element e of L is a μ -element if and only if $f \leq a \lor e$ implies $f \leq a$.

Proof. Let e be a μ -element. Assume $4 \leq a \lor e$ and $a \land x \leq e$. Then $e \geq (e \lor e) \land x \geq f \land x$. Thus $f \leq e$. Conversely, assume that the condition of the lemma is fulfilled. Let $a \land f \leq e$. Since $a \lor e \leq e \land \forall e get (a \lor e) \land f \leq e$ which implies that e is a μ element.

Lemma 2. If e is a μ -element, then $(a \lor l) \land c \leqq e$ implies $a \land (l \lor c) \leqq e$.

Proof. $a \land (l \lor c) \leq (a \land (l \lor c)) \lor b$ = $(l \lor c) \land (a \lor l) = f \lor ((a \lor l) \land c)$. From the Lemma I, we get $a \land (l \lor c) \leq b$ if $(a \lor l) \land c \leq b$.

Corollary. If e is a t'element, then $a \land b \leq e$ and $(a \lor b) \land c \leq e$ imply $a \land (b \lor c) \leq e$.

Let e be a μ -element, and a' be one of the maximal elements of L among x such that $a \wedge x \leq e$. Now, to prove that $a' \cup 4'' \equiv (a'(4 \cap (a \cap 4)'))''$ we assume $a \leq x$, $4 \leq x$ and $x \circ y \leq e$. Let $e = (a \cap 4)'$ and $n = (a \cup (4 \cap c)) \cap 3'$. Since $a \cap (x \cap 4 \cap c) \leq (a \cap 4) \cap c \leq e$ and e is a μ -element we obtain $a \cap (x \cap 4 \cap c) \leq (a \cap 4) \cap c \leq e$ and e is a μ -element we obtain $a \cap (x \cap 4 \cap c) \leq (a \cap 4) \cap c \leq e$ and e is a μ -element we obtain $a \cap (x \cap 4 \cap c) \leq (a \cap 4) \cap c \leq e$ and e is a μ -element $x \in a \cap (x \cap 4 \cap c) = (a \cap 4) \cap (a \cap 4)) \in e$. Hence $x \cap 4 \cap 4 \cap 4 \cap 4 \cap 4 \cap (a \cap 4) \cap (a \cap 4) \cap (a \cap 4) \cap (a \cap 4)) \in e$. Thus, again from the corollary of the Lemma 2, it follows that $n = n \cap (a \cap (4 \cap 4)) \leq e$ which proves $a \cup (4 \cap (a \cap 4)) \leq e x$. Next, we assume $(a \cup (4 \cap 6)) \cap x \neq e$. Then $a \cap ((4 \cap 5) \cap 4) \in e$ from the corollary of the Lemma 2. We have and a $((4n2) \cup c) = an((4nc) \cup (4nc)) i a n((4nc) \cup i) i e$. From the maximality of $e = (a \cap 4)'$ we get $(4n2) \cup c = c$ and 4n2 i c. Thus $4n2 \leq (a \cup (4nc)) \cap 2 \leq e$ which proves $4 \leq a \cup (4nc)$. But, from (3) we get $a \leq a \cup (4nc)$. Whence $a^{i} \cup d^{i} = (a \cup (4nc))^{i}$ and M forms a lattice.

Now, $a^{\theta} \cup a^{i^{\theta}} = (a \vee (a^{i} \wedge (a \wedge a^{i})^{i})^{\theta} = (a \vee (a^{i} \wedge (a \wedge a^{i})^{i}))^{\theta} = (a \vee (a^{i} \wedge a^{i}))^{\theta}$ since $x \leq e$ implies $x^{i} = I$. If $(a \vee a^{i}) \wedge a \leq e$ then $a \wedge (a^{i} \vee a^{i}) \leq e$ by the corollary of the Lemma 2. From the maximality of a^{i} , we get $u \leq a^{i}$. Thus, $u = u \wedge (a \vee a^{i}) \leq e$ which implies $a \vee a^{i} \geq e$ or $(a \vee a^{i})^{\theta} = I^{\theta}$. Hence $a^{\theta} \vee a^{i^{\theta}} = I^{\theta}$. Evidently $a^{\theta} \wedge a^{i^{\theta}} = (a \wedge a^{i})^{\theta} = o^{\theta}$. Whence $a^{i^{\theta}}$ is a complement of a^{θ} .

To prove the modularity of M, we assume ased and $v_n(ar(4ada(an(ad)')) \le \ell$ where as (an(ad)')we take one containing $c_{-}(an(ad)')$. Let $(n, \ell = p)$ and $v_n(avp)_n d = w$. Since $av((4ada(an(ad)')) \ge av((ada(c))))$ $= av((4ada) (an(ad)')) \ge av((ada(c))))$ Then, $\ell \ge w_n(av((adp))) \ge w_n((add) v((dnp))))$ $= w_ndn((add)vp) = w_n((add)vp)$. Since $(and)_np \le an(av(dnp)) \ge w_n((add)v((dnp)))$ $= w_ndn((add)vp) = w_n((add)vp)$. Since $an(dn(p)w) \le \ell$ from the corollary of the Lemma 2. By the assumption $a \le d$ we get $a_n(pvw) \le \ell$. From the Lemma 2. $(avp)_nw \le \ell$. From the Lemma 2. $(avp)_nw \le \ell$. Thus $w \le dnp$ and $w \le v_n(av(dnp)) \le \ell$ which implies $(av((an(a)(n(d)))) d \le av))$ ((4ndn(an(ad))). Therefore $(av(\ell), nd^{\ell}) \le d^{\ell}$ $a'v((\ell^n d^{\ell}))$ and M is modular.

Conversely, let M be a complemented modular lattice meet-homomorphic to L by the mapping θ . Assume the condition (I) is true. If e is a maximal element of the inverse image of 0, then e is a μ -element. For, if and if the $((e^{-a})_{A}\ell)^{\theta} = (e^{-a})^{\theta} \wedge \ell^{\theta} = a^{\theta} \wedge \ell^{\theta} = (a^{-a})^{\theta} \circ$. Next, let $a^{\theta} = t^{\theta}$. If $a \wedge x \leq e$ then $(t_{0} \times)^{\theta} = t^{\theta} \wedge \ell^{\theta} = a^{\theta} \wedge \ell^{\theta} = (a_{0} \times)^{\theta} \circ 0$ or $\ell \wedge x \leq e$, and conversely. In the case $a^{\theta} \neq \ell^{\theta}$, we may assume $a^{\theta} \notin \ell^{\theta}$. Then there exists a relative complement x^{θ} of $a^{\theta} \wedge \delta^{\theta}$ in the interval $[\theta, \ell^{\theta}]$. If $x^{\theta} = o$ then $\ell^{\theta} = \frac{a^{\theta} \wedge \ell^{\theta}}{a^{\theta} + a^{\theta} + a^{\theta} \wedge \delta^{\theta}} = o$ and $(4\pi x)^{\theta} = 4^{\theta} \wedge x^{\theta} = x^{\theta} + o$, which imply $a \geq t^{\theta} + x^{\theta} + o$, which imply $a \geq t^{\theta} + x^{\theta} + o$, which imply $a \geq t^{\theta} + x^{\theta} + o$, which is complete.

By a c-element, it is meant an element & for some a and fixed c. Then, Theorem 2. In the classification, of L , of the Theorem I, every class contains at least one C element. And an element of L is a C-element if and only if it is a maximal element in the class containing it.

Proof. We can select (a')' such that $(a')' \ge a$. Then $((a')')^{\beta} \ge a^{\beta}$. But, since both $((a')')^{\beta}$ and a^{β} are complements of $(a')^{\alpha}$, the modularity implies $((a')')^{\beta} = a^{\beta}$ and a^{β} contains (a')'. Now, let $(a')^{\beta} = x^{\beta}$ and $a' \ge x$. If a' < x then $x \land a \le e$. But $a' \land a \le e$, hence $a' \ge x$ which contradicts our assumption and we get a' = x. Conversely, let 4 be a maximal element of the class containing it. Then for $(4')' \le 4$ and 4 is a e-element.

Remark. Above we assumed the maximum condition for L, but used it essentially only for the existence of a^{\dagger} . If we have the condition $U_{\alpha}(a_{\alpha}, \epsilon) = U_{\alpha}a_{\alpha} \wedge \frac{\epsilon}{2}$, where $\{a_{\alpha}\}$ is a simply ordered subset of L, then all the results above hold in almost same form, for instance, after defining a μ -ideal instead of our μ -element.

(*) Received July 26, 1952.

Osaka Women's College.