NOTE ON DIRICHLET SERIES. (VII)
ON THE DISTRIBUTION OF VALUES OF DIRICHLET SERIES ON TRE
VERTICAL LINES

By Chuji tanaka
(1) INTRODUCTION. Let u® put
(1.1) $\quad F(\delta)=\sum_{1}^{\infty} a_{n} \exp \left(-\lambda_{n} \lambda\right)$
($A=\sigma+i t$, $0 \leqq \lambda_{1}<\lambda_{2}<\cdots<\lambda_{n} \rightarrow+\infty$)
Ir $F(S)$ has the uniform con-vergence-abscissa $\sigma_{u}<+\infty$, then for $\sigma_{u}<\sigma$, $\bar{F}\left(\sigma^{\prime}+i t\right)$ is an almost periodic function of t by H.Bohr's theorems. ([l] pp. 48-49, [21) If we assume only the existence of the simple con-vergence-abscissa $\sigma_{\Delta}<+\infty$, what we can say about the behaviour of Dirichlet series on the vertical line $\quad \mathcal{R}(s)=\sigma>\sigma_{s} \quad$? Concerning this problem, we have not any knowledge except K. AnandaRau's short note.([3]) In this present Note, we shall establish

THEOREM. Let (1.1) have the simple convergence-abscissa
$\sigma_{s}<+\infty$, Then, on the vertical
line $\mathcal{R}(s)=\bar{\sigma}>\sigma^{\prime} s$, next three cases are possible:
(a) On $x(s)=\sigma>\sigma_{s}$, $F\left(\sigma^{\prime}+\nu t\right)$ is bounded and it is an almost perjodic function of t
(b) on $x(s)=\sigma>\sigma_{s} \quad, F(\sigma+i t)$ is bounded and it has no linit as $t \rightarrow+\infty \quad(\underline{ }$ ($-\infty$). Furthermore, for any given $\varepsilon(>0)$ In the vertical strip: $\sigma_{s}<\sigma-\varepsilon<x(s)$ $<\sigma+\varepsilon, F(\delta)$ assumes every value, except perhaps two (∞ included), infinitely many times.
(c) (n) $\mathcal{R}(s)=\sigma>\sigma_{s}, F(\sigma+i t)$
is unbounded, but it is impossible that we have simultaneously
$\lim _{\operatorname{m}}|\hat{\hbar}(\sigma+i t)|=+\infty,|\arg \cdot F(\sigma+i t)-\theta| \leqslant \vartheta<\pi / 2$, $\lim _{t \rightarrow+\infty}$ (or- ∞)
where $\theta(0 \leqslant \theta<2 \pi), v(0<v<\pi / 2)$: arbitrary but fifed constants.
(2) LEMMAS. For its proof, we need next Lemmas.

LEMMA 1. Let (1.1) have the simple convergence-abscissa $\sigma_{\Delta}<+\infty$. Then we have

$$
\begin{aligned}
& =\sum_{\lambda_{n}\langle\omega} a_{n} \exp \left(-\lambda_{n} s\right)\left\{1-\exp \left(\nu\left(\lambda_{n}-\omega\right)\right)\right\} \\
& -\frac{1}{2 \pi L} \int_{\beta-\infty}^{\beta+i \infty} \frac{\nu \bar{F}(z) \exp (\omega(z-s))}{(z-s)(z+\gamma-\beta)} d z .
\end{aligned}
$$

for $\max \left(\sigma_{s}, \sigma-\nu\right)<\beta<\sigma, \quad \sigma=x(s)$, where ω, ν are arbitrary but fixed positive constants.

PROOF By Perron's formula ($\frac{1]}{1]} 9$), we have
$(2.7)-\sum_{\lambda_{0} \leqslant \omega} a_{n} \exp \left(-\lambda_{n} s\right)-F(s)$
$=\frac{1}{2 \pi r} \int_{\beta-i \infty}^{\beta+i \infty} \frac{F(z) \exp (\omega(z-s))}{z-s} d z$
for $\sigma<\beta<\sigma=x(s)$;
(22) $\quad \sum_{\lambda_{n}<\omega} a_{n} \exp \left(-\lambda_{n}(s-\nu)\right)$.
$=\frac{1}{2 \pi \nu} \int_{\beta-i \infty}^{\beta+i \infty} \frac{\bar{r}(z) \exp (\omega(z-\alpha+\nu))}{(z-s+\nu)} d z$
for $\quad \sigma-\nu<\beta$. Hence, by
(2.1), (2.2),
$\sum a_{n} \exp \left(-\lambda_{n} s\right)\left\{1-\exp \left(r\left(U_{n}-\omega\right)\right)\right\}-F(s)$
$\sum_{n}<\omega$
$=\frac{1}{2 \pi \tau} \int_{\beta-i \infty}^{\beta+i \infty}\left\{\frac{1}{z-\delta} \cdot \frac{1}{z+\gamma-1}\right\} \bar{z}(z) \exp (\omega(z-\delta) \alpha z$
$=\frac{1}{2 \pi i} \int_{\beta \rightarrow i \infty}^{\beta+i \infty} \frac{\nu \Gamma(z) \exp (\omega(z-\delta)}{(z-s)(z+\gamma-S)} \alpha z$
ior $\cdot \max (\sigma s, \sigma-\nu)<\beta<\gamma=x(s)$. q.e.d.
LEMMA 2. Let (1.1) have the
simple convergence-abscissa $\sigma_{s}<+\infty$. If $|F(d)| \leq M$ on $x(s)=\sigma_{0}>\sigma_{s}$, then $|\vec{F}(S)| \equiv M$ for $\mathcal{X}(s) \geq \sigma_{0}>\sigma_{s}$.

PROOF. since $\sigma_{s}<\sigma_{0}$, tor sulficiently small $\varepsilon(>0)$ we have
$\sigma \ll \sigma_{0}-\varepsilon<\sigma_{0}$,
so that $F(S)$ is evidently
8 imply convergent for $s=\sigma_{0}-\varepsilon$.
Hence, by the well-known theorem ([1] p.8), we have
(23) $\quad|F(\sigma+i t)|=o(\mid t)$
uniformity for $\sigma_{0} \sigma$. Putting
$\Delta=r e^{i \varphi}=\sigma+i t$, we have by
(2.S),

$$
\begin{aligned}
& |F(S)| \\
= & |F(\sigma+i t)| \\
= & 0(|t|) \quad \text { for }|\varphi| \leq \pi / 2 \\
= & 0(r|\cos g|) \\
= & 0(r)
\end{aligned}
$$

whence, for any off oven $\varepsilon(>0)$,
(2.4) $|\pi(s)|=0(\exp (2 r))$ for $|\varphi| \leq \pi / 2$

Since $|F(s)|=M$ on $x(s)=\sigma_{0}$ by (2.4) and Phragmen-Lindelố's theorem ([4] p.43) we have $|F(S)| \leq M \quad$ for $x(s) \geq \sigma_{0} \quad$. q.o.d.

IFBMA 3. Let (1.1) have the simple conyergence-abscissa $\sigma_{1}<+\infty$ - Then we have

$$
a_{n}
$$

$=\lim _{T \rightarrow \infty} \frac{1}{T} \cdot \int_{\alpha}^{\alpha+T} F(\sigma+i t) \exp \left(\lambda_{n}(\sigma+i t)\right) d t$

$$
(n=1,2, \cdots .)
$$

for $\sigma_{1}<\sigma$, where α : an arbitrary but fixed constant.

REMARK. It is well known that this formula is valid tor f< σ, whore \mathcal{F} is the boundednessabscissa, whin is defined as follows: tor any given ε (>0)
r($\sigma+i t$) is regular and uniformly bounded for $\mathcal{F}+\varepsilon \leqslant \sigma$ (521 p.25)

But the existence of \mathcal{F} is not necessary for the validity of this formula.

PRoOF. I.et us put
$\exp \left(\lambda_{n}, \boldsymbol{P}\right) T(S)$
$\left.=a_{n}+\sum_{i=1}^{m=1} a_{i} \exp \left(\left(\lambda_{i}-\lambda_{i}\right) d\right)+\sum_{i=\infty+1}^{\infty} a_{i} \operatorname{exo}\left(-\Lambda_{i}-\lambda_{n}\right) \beta\right)$
$=a_{n}+g_{1}(\Delta)+\exp \left(-\tau_{n} d\right) \cdot g_{2}(\Delta)$,
where
(i) $\left.g_{1}(s)=\sum_{i=1}^{\pi-1} a_{i} \exp \left(u_{i}-\lambda_{i}\right) \lambda\right)$,
(ii) $g_{2}(s)=\sum_{i=n+1}^{\infty} a_{i} \operatorname{exi}\left(-\lambda_{i}^{\prime} \rho\right)$,

$$
\tau_{n}=\lambda_{n+1}-\lambda_{n}>0, \quad \lambda_{1}^{\prime}=\lambda_{1}-\lambda_{n+1} \geq 0
$$

Hence we have

$$
\text { for } 4 \geq n+1
$$

$$
\begin{aligned}
& \text { (2.5) } \frac{1}{T} \int_{\alpha}^{\alpha+T} F(\sigma+i t) \exp \left(\lambda_{n}(\sigma+i t)\right) d t \\
& =a_{n}+\frac{1}{T} \int_{\alpha}^{\alpha+T} g_{1}(\lambda) \alpha t+\frac{1}{T} \int_{\alpha}^{\alpha+T} \exp \left(-\tau_{n}\right) g_{2}\left(s_{1} \alpha t\right. \\
& =a_{n}+I_{1}+I_{2}, \text { Ray }
\end{aligned}
$$

With regard to I_{1}, we have I_{1}
$=\frac{1}{T} \int_{\alpha}^{\alpha+T} g_{1}\left(A_{1}\right) d t$
$=\frac{1}{T} \cdot \sum_{i=1}^{n-1} a_{i} \cdot \int_{\alpha}^{\alpha+T} \exp \left(\left(\lambda_{n}-\lambda_{i}\right)(\sigma+i t)\right) d t$
$\left.=\frac{1}{T} \cdot \sum_{\text {that }}^{n=1} a_{i} \exp \left(\Lambda_{n}-\lambda_{i}\right) \sigma\right) \cdot\left[\frac{\exp \left(\left(\lambda_{n}-\lambda_{i}\right)(t)\right.}{i\left(\lambda_{n}-\lambda_{i}\right)}\right]_{\alpha}^{\alpha+T}$

$$
\text { (2.6) } \leqq \frac{2}{T} \cdot \sum_{i=1}^{\mid I, 1}\left|a_{i}\right| \cdot \frac{\exp \left(\left(\lambda_{n}-\lambda_{i}\right) \sigma\right)}{\lambda_{n}-\lambda_{i}}=O\left(\frac{1}{T}\right)
$$

Now let us define the angular domain p as follows:

$$
\left\{\begin{array}{l}
\text { (i) }\left|\arg \left(s-\sigma_{0}\right)\right| \leqslant \vartheta \leq \pi / 2, \sigma_{\lambda}<\sigma_{0}<\sigma_{0} . \\
\text { (ii) } \sigma+i \alpha \in P
\end{array}\right.
$$

As regards I_{2}, by Cauchy's
where (i) λ_{2} is the intersecting point of two straight lines:

$$
\begin{gathered}
g(\delta)=\alpha+T, \quad \arg \left(A-\sigma_{0}\right)=\vartheta, \\
s_{1}=\sigma_{1}+i \alpha, \quad \sigma_{1}=x\left(d_{2}\right)
\end{gathered}
$$

By the well-known theorem ([i] p.5), $g_{3}(s)$ converges uniformly in P, so that there exists a constant K such that

$$
(2.8) \quad\left|g_{2}(A)\right|<K \text { for } A \in D \text {. }
$$

Since $f(S)=\alpha$ is contained
in p, by (2.8) we have

$$
\text { (2.9) } \begin{aligned}
\left|I_{1}^{\prime}\right| & \leqslant \frac{1}{T} \int_{\sigma}^{\sigma} \operatorname{ex}(-\tau, \sigma) K d \sigma^{\prime} \\
& <\frac{K}{T} \int_{\sigma}^{+\infty} \exp \left(-\tau_{n} \sigma\right) \alpha \sigma^{\prime}=O(1 / T)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { theorem we have } \\
\left.(2 . \tau) \quad I_{2}=\frac{1}{i T} \int_{(m+i \alpha}^{\sigma+i \alpha}(\alpha)=\sigma\right) \\
\sigma+c(\alpha+T) \\
e x p\left(-\tau_{n} d\right) g_{2}(s) \alpha s
\end{array} \\
& =\frac{1}{i T} \int_{\sigma+i \alpha}^{A_{1}}+\frac{1}{i T} \int_{(\alpha,(s)=\alpha)}^{A_{2}}+\frac{1}{i T} \int_{A_{2}}^{\sigma+i \alpha+T)}
\end{aligned}
$$

Since the segment: $\alpha \leqslant f(s) \leqslant \alpha+T$, $x(s)=s_{1}$ is contained in p, by (2.8) we get
$1 I_{2}^{\prime} \mid$
$\leqq \frac{1}{T} \int_{\alpha}^{\alpha+T} \exp \left(-\tau_{n} \sigma_{1}\right) k \alpha t=K \exp \left(-\tau_{n} \sigma_{1}\right)$
Since $\sigma_{1}=O(T)$, we have evidently
(2.10) $\quad\left|I_{2}{ }^{\prime}\right| \leqslant K \exp \left(-\tau_{n} O(T)\right)=o(T)$

$$
\text { as } T \rightarrow+\infty
$$

Since $g_{2}(s)$ is simply convergent for $\sigma \Delta<\sigma$, by the abovementioned theorem' ([1] p.8) we have

$$
g_{2}(\sigma+\iota t)=0(1 t \mid)
$$

uniformly tor $\sigma_{0} \leqslant \sigma$. Hence,

$$
\begin{aligned}
(2.7 Y)\left|I_{3}^{\prime}\right| & \leqq \int_{\sigma}^{\sigma_{2}} \exp \left(-\tau_{n} \sigma\right)\left|\frac{g_{2}(\sigma+\iota \alpha+\tau)}{T}\right| d \sigma^{\sigma} \\
& <o(\gamma) \int_{\sigma}^{\infty} \operatorname{exo}\left(-\tau_{n} \sigma\right) d \sigma=o(\gamma) \\
& \text { as } T \rightarrow+\infty
\end{aligned}
$$

By (2.7), (2.9), (2.10), (2.11),

$$
\left|I_{2}\right|<0(r) \text { as } T \rightarrow+\infty \text {, }
$$

so that by (2.5), (2.6) we get
$\lim _{T \rightarrow \infty} \frac{1}{T} \int_{\alpha}^{\alpha+T} F(\sigma+i t) \operatorname{exs}\left(\lambda_{n}(\sigma+i t)\right) d t=a_{n}$
q.e.d.
(3.) PROOF OF THEOREM. We distinguish three cases:
(a) on $x(s)=\sigma>\sigma_{s}, \quad F(s)$ is bounded and it is also bounded on $\mathcal{R}(s)=\sigma^{\prime}\left(\sigma_{\Delta}<\sigma^{\prime}<\sigma^{\prime}\right)$, where σ^{\prime} is a suitable constant.
(b) On $R(s)=\sigma>\sigma_{d}$, $F(s)$ is bounded, but it is not so on $x(s)=\sigma^{\prime} \quad$, for every σ^{\prime} $\left(\sigma_{\Delta}<\sigma^{\prime}<\sigma\right)$ -
(c) on $x(s)=\sigma>\sigma_{s}, \quad \vec{F}(s)$ is unbounded.

Case (a): Applyjng Lemma 1 , in which we put $\sigma_{\lambda}<\sigma^{\prime}<\sigma-\gamma<\beta<\sigma$, we have

$$
\begin{aligned}
& \text { (3.1) } \quad F(s)=\sum_{\lambda_{n}\langle\omega} a_{n} \exp \left(-\lambda_{n} \lambda\right)\left\{1-\exp \left(\gamma\left(\lambda_{n}-\omega\right)\right)\right\} \\
& -\frac{1}{2 \pi \nu} \int_{\beta \rightarrow i \infty}^{\beta+i \infty} \frac{\nu F(z) \exp (\omega(z-s))}{(I-\rho)(I+\gamma-s)} d z
\end{aligned}
$$

By Lemma 2 , there exists a constant M such that

$$
|F(s)| \leqq M \quad \text { for } \quad R(s) \leqq \sigma^{\prime}
$$

Then we have

$$
\begin{aligned}
& \left|\frac{1}{2 \pi i} \int_{\beta \rightarrow \infty}^{\beta+i \infty} \frac{\nu F(z) \exp (\omega(z-s))}{(z-\delta)(z+\nu-s)} \cdots d z\right| \\
& \left.\leqq \frac{\mu \nu}{2 \pi} \cdot \exp (-\omega(\sigma-\beta)) \int_{-\infty}^{+\infty} \frac{1}{(z-\alpha)(z+\gamma-\rho)}| | \alpha z \right\rvert\, \\
& =\frac{\mu \nu}{\pi} \exp (-\omega(\sigma-\beta)) \int_{0}^{\infty} \sqrt{\left.\left[\tau^{2}+(\beta-\gamma)^{2}\right]\left[\tau^{2}+\left(\beta+\gamma^{-}\right)^{2}\right]\right]} d \tau \\
& =O(1) \exp (-\omega(\sigma-\beta)) \text {, }
\end{aligned}
$$

where $O(1):$ a constant independent upon t. Hence by (3.1) we get
$F(\sigma+i t)$
$=\sum_{\lambda_{n}\langle\omega} a_{n} \exp \left(-\lambda_{n}(\sigma+i t)\right)\left\{1-\exp \left(\nu\left(\lambda_{n}-\omega\right)\right)\right\}$

$$
+O(\exp (-\omega(\sigma-\beta)))
$$

Since $\sigma-\beta>0, O(\exp (-\omega(\sigma-\beta)))$ tends to 0 unficrmly for
$-\infty<t<+\infty$, so that

$$
\begin{aligned}
& \text { (3-2) } \quad \pi(\sigma+i t) \\
& \left.=\lim _{\omega \rightarrow+\infty} \sum_{\lambda_{n} \leqslant \omega} a_{n} \exp \left(-\lambda_{n}(\sigma+i t)\right)\left\{1-\exp \left(\nu u_{n}-\omega\right)\right)\right\} \\
& \text { for }-\infty<t<+\infty \text {. On the other } \\
& \text { hand, } \left.\sum_{\lambda_{n}\langle\omega} a_{n} \exp \left(-\lambda_{m}(\sigma+i t)\right)\left\{1-\exp \left(\nu u_{n}-\omega\right)\right)\right\} \\
& \text { is an almost periodic } \\
& \text { function of } t \text {, so that by (3.2) } \\
& F(\sigma+c t) \text { is also an almost } \\
& \text { periodic function of } t \text { (} 55] \\
& \text { p.186), which proves (a) or our } \\
& \text { theorem. } \\
& \text { Case (b): Since } F(s) \text { is } \\
& \text { bounded on } x(s)=\sigma \text {, by } \\
& \text { Lemma } 2 \text { there exists a constant } \\
& M \text { such that } \\
& \text { (3.3) }|F(s)| \leqq M \text { for } R(s) \geqq \sigma \\
& \text { Let us del'ine the rectangle } R(\varepsilon) \\
& \text { as follows: } \\
& |\mathcal{P}(s)-\sigma| \leqq \sigma, \quad|f(s)| \leqq 1+\varepsilon, \quad(\varepsilon>0)
\end{aligned}
$$

On account oi' the hypothesis, on $x(S)=\sigma$ - $\frac{e}{2} F(s)$ is unvounded. Then without any loss of generality we can assume that $F(S)$ is unbounded for $x(s)=\sigma-\frac{c}{2}$
$g(\Delta) \geq 0$, so that there
exists a sequence $\left\{S_{n}\right\}$ such that
(3.4) $\left\{\begin{array}{l}\text { (i) } x\left(S_{k}\right)=\sigma-\frac{\rho}{2}, \quad \delta\left(S_{k}\right) \rightarrow+\infty \\ \text { (ii) } \lim _{k \rightarrow \infty}\left|F\left(S_{k}\right)\right|=+\infty\end{array}\right.$

Now in $R(\varepsilon / 2)$ we consider the functions-family $\left\{F_{n}(s)\right\}=\{r(s+i 2 n)\}$
（ $r=1,2, \ldots$ ）．By（3．4）in
$k(\varepsilon / 2)$ there exists a sequence
$\left\{s_{k}\right\}$ such that
（3．5）$\left\{\begin{array}{l}\text {（i）} x\left(s_{k}\right)=\sigma-\frac{\varepsilon}{2}, \\ \text {（ii）} S_{k}=s_{k}+\iota 2 n_{k}, \\ \text {（iii）}\left|F_{n_{k}}\left(s_{k}\right)\right| \rightarrow+\infty \text { as } k \rightarrow+\infty\end{array}\right.$
Then $\left\{F_{n}(s)\right\}$ is not normal in
$R(\varepsilon / 2)$ ．In iact，by（3．3） and（3．5），any partial sequence of $\left\{F_{n_{k}}(s)\right\}$ neither tends to ∞ uniformly nor tends to the finite analytic f＇unction in $R(2 / 2)$ Fience，there exists at least one not－normal point of $\left\{F_{n}(s)\right\}$ in $R(\varepsilon / 2)$ ，so that in $|x(s)-\sigma|<\varepsilon$ ，
$g(\delta)>-I-\varepsilon$ ，a fortiori in the vertical strjp：$|x(s)-\sigma|<\varepsilon \quad \pi(s)$ assumes every vaiue，except per－ haps two（ ∞ included），infi－ nitely many times，which proves the second part of（b）ol our theorem．

If $\quad \pi(\sigma+i t)$ should tend to the finite value β as $t \rightarrow+\infty$ ， then without any loss of gene－ rality，we could assume that
$\beta=0$ ．In fact，it suifices to consider $F(\delta)-\beta$ instead of
$F(S)$ ．Hence there exists a constant $T_{0}(\varepsilon)$ such that
$|\bar{F}(\sigma+i t)|<\varepsilon$ for $t>T_{0}(\varepsilon)$
Therefore by Lemma 3 we have

$$
\text { (3.6) } \begin{aligned}
a_{n} & =\lim _{T \rightarrow \infty} \frac{1}{T} \cdot \int_{\alpha}^{\alpha+T} F(\sigma+i t) \exp \left(\lambda_{n}(\sigma+i t)\right) a t \\
& =\lim _{T \rightarrow \infty}\left\{\frac{1}{T} \int_{\alpha}^{T_{0}}+\frac{1}{T} \int_{T_{0}}^{\alpha+T}\right\} \\
& =\lim _{T \rightarrow \infty}\left(I_{1}+I_{2}\right), \text { say }
\end{aligned}
$$

Then we get
$\left.\left|I_{1}\right| \leqq \frac{1}{T} \cdot \max _{\alpha-\alpha t \xi T_{0}}|F(\sigma+i t)|\left(T_{0}-\alpha\right) \cdot \exp U_{n} \sigma\right)=O\left(\frac{1}{T}\right)$ ，
$\left|I_{2}\right| \leqq\left(T+\alpha-T_{0}\right) \cdot \frac{1}{T} \varepsilon \exp \left(\lambda_{n} \sigma\right)=O(\varepsilon)$

$$
\text { as } T \rightarrow+\infty
$$

Hence，by（3．6）we have

$$
\left|a_{v}\right| \leqslant O(1)+O(\varepsilon)
$$

Letting $\quad \varepsilon \rightarrow c, \quad a_{n}=0$
！$n=1,2, \ldots$ ），whis．ch f．s impos－ sible．Thus the first part of （b）is proved．

Case（c）：JI＇we shoula have simultaneousiy

$$
\left.\lim _{t \rightarrow+\infty} \mid \boldsymbol{| F r}-\infty\right)
$$

$|\arg \pi(\sigma+i t)-\theta| \leqslant v<\pi / 2$.
then without any loss of gene－ rality we could assume that
$\lambda_{1}=0, \theta=0$ ．In fact，it suffices to consider $F(S) \exp (-\nu \theta)$ $+\alpha$ instead of $F(S)$ ， where

$$
\begin{array}{ll}
\alpha=0, & \text { if } a_{1} \neq 0, \\
& \lambda_{1}=0 \\
\alpha>0, & \text { if } a_{1} \neq 0, \\
\lambda_{1}>0
\end{array}
$$

Then，by Leman 3，we get
（3．T）$\quad a_{1}=\lim _{T \rightarrow \infty} \frac{1}{T} \cdot \int_{\alpha}^{\alpha+T} F(\sigma+i t) d t$
Since $\quad \lim _{t \rightarrow+\infty}|\hbar(\sigma+i t)|=+\infty$ ，
$|\arg \bar{F}(\pi+i t)| \leqq v<\pi / 2$ ，we have
（3．8）$\left\{\begin{array}{l}\text {（i）}|\hbar(\sigma+i t)|>K \text { for } t>T_{0}(K) \\ \text { where } k: 2 n \text { arbitrary } \\ \text { posjive constant．} \\ \text {（ii）} R\{\hbar(\sigma+L t)\} \geqq \operatorname{cod} \vartheta|F(\sigma+c t)|\end{array}\right.$
By（3．7），（3．8）

$$
\begin{aligned}
& R\left(a_{r}\right)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{\alpha}^{d+T} R\{F(\sigma+i t)\} d t \\
& \geq \overline{\lim }_{T \rightarrow \infty} \frac{\cos v}{T} \int_{\alpha}^{\alpha+T}|\hbar(\sigma+i t)| d t \\
& =\operatorname{cRv} \lim _{T \rightarrow \infty}\left\{\frac{1}{T} \cdot \int_{\alpha}^{T_{0}}+\frac{1}{T} \int_{T_{0}}^{d+T}\right\} \\
& \geq C R \vartheta\left\{\overline{\lim }_{T \rightarrow \infty} \frac{\left(T_{0}-\alpha\right)}{T} \min _{\alpha \leq t \leqslant T_{0}}|F(\sigma+i t)|\right. \\
& \left.+\lim _{T \rightarrow \infty} \frac{T+d-T_{0}}{T} K\right\}=K \cos v
\end{aligned}
$$

Ietting $K \rightarrow+\infty, x\left(a_{1}\right)=+\infty$ ， which is impossivle．Thus（c） of our theorem is proved．
（＊）Received September 25，2951．
$[1]$ G．Valiron：＂Théorie genérale des séries de Dirichlet，＂ Mémorial des sciences mathématiques，Fasc．XVII， （1926）
〔2〕 H．Bohr：＂Über eine quasi－ periodische Eigenschaft Dirichletscher keihen mit Anwendung aut die Diri－ chletschen L－Funktionen，＂ Math．Ann．Bd．85．（l921）．
［3］K．Ananda－Rau：＂Note on a property of Dirichlet＇s series．＂Lond．Math．Soc． Bd． 19 （1920）．
〔41 R．Nevanlinna：＂Eindeutige analytische Funktionen，＂ Borlin（1936）．
［5］N．Wiener：＂The Fourier inte－ gral and certain of its applications，＂Cambridge （1933）．

Mathematical Institute， Waseda University，Tokyo．

