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Let fit) be a real measurable
function of a real variable t , and

{λk3r be an increasing positive se-
quence with certain gap conditions.
Asymptotic properties of the sequence
of functions i(\**) , such as
the asymptotic distribution of their
partial sums and almost everywhere
convergence or divergence of the series

XL c
κ
f(λκt) , a* constant coeffi-

cients, have been discussed by M.Kac,
0

R.Fortet,** R.Salem and A.3ygmund,
Λ

R.Fortet and J.Ferrand,
4
* and T.Kawata P

The object of this note is to prove
the following theorem which corresponds
to the law of the iterated logarithm
in the theory of probability. The proof
given here deponds on Kac's method of
approximating a gap sequence by a set
of independent functions.

Theorem. Let Ht) , ύίtsl . be a
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and hence, starting from (2), we can
inductively s*rw* onat we have
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Now, for any positive sequences {&»)
and [fa\ let us agree to write
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Consider the dyadic expansions of all
real numbers t , o ̂  t ̂  j >

where by Γctt) ve denote Rad-
macher's system of independent func-
tions, and put
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Then by the periodicity and Lipschitz
condition imposed on jit) we obtain
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iOwj is a set of inαθpendent func-
tions, each with common mean value 0
and the same is true of [fΛ
Hence, if we write



then by (5), (9)/and (10) the "varian-
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 and C* of the two terms

in the right-hand member of (11) are
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Therefore we can apply Kolmogoroff»s
theorem on the law of the iterated
logarithm, getting almost everywhere
in t

and similarly

03) .

Given τι , l e t us choose T̂ K such
t h a t n Λ W < u <ς yιH > then

Σ f<***)«Σ
and

Hence, by (11), (14), (15) and (16)
we get

for almost svory
the theroeπu β

 This proves




