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1« Introduction.

In the three dimensional Euclidean
space -βj , let M be a bounded,
closed set which contains infinitely
many points, and let Γ̂  be the
distance between the points p and ft .
G. Pόlya and G.Szegδ W defined the fol-
lowing quantities: ,

U"
 ίΛ

 — R̂ '

contains infinitely many points. We
™ and J£*

J
 as follows sdefine

(A)

The class of functions *(
r
) contains

some kind of the convex functions, for
instance f (r) ~ -~e-

λr
 Λ>O

(
^

and

= J>

X being an arbitrary real number.
D*** is called the transfinite dia-
meter of r| » and R

1
*"

7
 is the quan-

tity v Mch corresponds to the quantity
j_

Jkw ί ΓW j Trt^j } "" defined in two

dimensional tluclidean space & z where
the T

n

(?
> mean Tchebycheff's polyno-

mials with respect to the set M .
In S1

2
 , and &^ , Id.Fekete^ , G.

POlya and G.Szegb^^, and O.l ̂ostman^
have already proved that P

/CM
 «= R

(A<)

for χ*-
t
Λ with j £ <*<3

In this paper, replacing the func-
tions r

λ
 by a more general one,$( Γ),

as in the case of the generalized po-
tential^

1 (5r)
 , we shall investigate

the case where £
(Sί
 and R

(f)
 coincide,

and further relations between these
quantities and the generalized poten-
tial.

3. Existence of &** K
ΛΛ->+«*>

The following proof of the existence
of &$

M
 K*' and ̂ ^

}
 is due to the

method of G.Pόlya and G.Szegb W . Let
ξ, be an arbitrary point of the

space .α
 9

 and pzrt , and let A
denote, the diameter of irl . We descri-
be the sphere S" with radius 2<*.
about a point. % .of M . If one of

$
v
 » say ^ , lies outside S" >

then we denote the intersecting point
of the segment /J P and the boundary
of S by )J . Then we have

and hence

Therefore, we may replace the points
which IJLe outside S. by those of the
spherical surface s , obtaining a
relation analogous to (1). Now, we
confine ourselves to the case where all
the points £ belong to the closed
sphere ς . Then we clearly have

2 Definitions.

vie consider a function 3K
r
) with

following properties:

> o,

f o

and continuous, monotone
decreasing in the strict
sense, for r>o

for r—>-»

Let M be a bounded and closed set
in an Euclidean space ll , which

This minimum is the continuous
function of the points Γ,

 /
 p?

n
 »

Let ί,....̂
n
 i ί.̂  , In be "arbi

trary points of 5 , then

^ Mm.

By taking the maximum with respect to
/β, » we obtain



no

5 Relations between 2>
(<

and

We consider the points K X
which satisfies th© equalities5

(2)

K )Since Φ(K ) * 0
 9

 by the lemma

below, there exists the limit

C3) ^

i) If ^ >

tinuity of

ii) if A~

H i ) if ^

0
 ; W 9

 get, by the con-

f
 then |

* * then ^n
1
?^ o

In every case, we write Sig^^ -K ' .

Lemma* Let \^n\ be & sequence of
real numbers which satisfies- the condi-
tion

Then the sequence JTCJ is either con-

vergent or divergent to — <=£>
 β

Since

By the monotony of 3>(r) » we obtain

and hence it follows

( I ) Vn

Letting n —? + °° , we have

4. Existence of i**^^

We consider the identity

where ^ indicates the sum with
respect to ^ except the case when
/<~i Since

(1) becomes

i.e.

(2)

By taking here the minimum of the
first teem, we obtain,

6 The preliminary,remarks on
the generalized potential, **)

Let -̂  be the Borel's ̂ Mβngen-
koerper

>;
, and /< denote a completely

additive set function defined for the
sets measurable in the Borβl sense
which we call the. mass-distribution.
We say that /* is a positive mass-
distribution, if /<(-e) Zo , -ec £
The closed set F is called the
kernel of the mass with respect to Λ ,
when F consists of points which bear
the mass actually. In the following
section, the integrals are considered
in the sense of Stiβltjes-Lebβsge-Radon
We now introduce the generalized poten-
tial by the integral of the form

Λ denoting a positive mass-distribu-
tion Then the well-known properties
of the potential are as follows:

(i) i
8
 lower semi-continuous,

Since 2> ΐ σ * WΘ obtain

( ϋ ) If $<π is a convex function
of r t and F is the kernel
of the mass, then

12)

(3) and hence, in Si - F
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UJ Δ \λίf» > 0

That is, "•<•?> is subharmonic in
Λ - F Consequently, by the maximum

principle, if
 U(pJ

 is continuous on
Jl-F , the maximum of ucp) is taken

at a boundary point of ji-π $ namely
on the kernel p .

(ϋi) If
tribution Λ

converges to the dis-
t h θ n w β h a v e

where u.tρ;
 t
 u

n
t

tials due to /* ,
and i<ΛJ . l*/

4
**

corresponding to

are the poten~
*n respectively,
the energy integrals

i< 7 '

Now let if*) = i, < f, < < ̂« =
 /¥
 ,

and let e,; be the set of points
satisfying the inequalities £;.. < ΨΛrxϊi
( ΐ « /, 2, '

 n
 ) and put <IΛ =

/<(<?<J , then* for sufficiently large
n , we have

- 2_ i

Similarly,

J ̂
<r —

7« JLemmas

For the function ^*
r
^ we consi-

der the several conditions { <* ) &( T )

is convex function of r , (.β ) .&**-—--

- -ft > o and ( r ) li*^ ψ-l^J = ί > σ

where c is an arbitrary positive
constant, and A , i are constants de-
pending, on $fri only. We shall prove
a lemma analogous to that of 0.Frost-
man (*)

Lemma 1. The necessary and suffi-
cient conditions t^at the potential

 ai
V

is continuous on the bounded and closed
set F are as followst for any posi-
tive t there corresponds a positive
number % such that the value of the
potential

 L
V at p due to the mass

within the sphere $
%
 whose centre is

at a point p of F and its radius
S is less than ζ

Necessity. We denote by \λ' , \x' the
potentials due to the mass interior and
exterior to the sphere »$* , then u." is
continuous and evidently satisfies the
conditions of the lemma* Hence, it suf-
fice to show the lemma only for the po-
tential is u/ . W e consider the
sphere S

Λ
 with radius a about Ύ

e
*

and denote by α.cp> the potential

where
that

denotes the function such
^ , If <£ -c /V and

^ =
 w
, " , if

 φ
 δ/V

As nip; is continuous on the
closed and bounded set S

Λ
F , u<p>

is bounded there* Hence, for any posi-
tive ε , we can take a constant ι%
depending only on ε and not on /> ,
such that

Let .am =-/y
o

such that, n
we get

. I f we take Γ1,/V ,
>/v > /V

β
 , by (1),

where /<
 ;
 Λ/*, have the meaning

analogous to i
(
 ^, respectively,

Put ΦK) =/Y , $ίf,j'= ft , r, > Γ
2

Denoting the ring domain % whose
centre Is at ΐ and whose radii are
T , f

7
 , we have

from which, by (2), (3), and (4), we
finally get

This inequality holds for any M, N 2#
o

which implies that the value of the po-
tential at ? due to the mass within
the sphere about ? with radius ϊ ,
is less than £ q«θ«d

Sufficiency. Thai the condition is
sufficient is clear*

Corollary. Let $
( r ;
 _ satisfy the

condition { β ), and let f
1
 denote the

kernel of the mass. If ^
C
P? is con-

tinuous on F , then it is continuous
throughout the space fi.

 #

Proof o By the continuity of ufp;
on F , for a given ε /we can take
S ^ ° such that the value of the

potential at f>
 9
 due to the mass with-

in ^
2
-\ » is less than ίL * in the

case when dist Cf. F / > ^
 2

 , let the
point f is the one of the nearest
points of R from f>

 9
 and we describe

the sphere S
s
 about % . Then as

r
p w
^ » m f F we have Mf) g, f$ιs'γ<™)

< 4-e«5 « Therefore uιr»
 p
 is

continuous at t>
 β

ΐn the case where dist ( f , F

since
{ Γ%mJ

remembering the condition ( β ), we have

si
- 5 -



exists a positive mass-distribution
which minimizes ic/<> , that is if,
for all admissible /* ,

T

where £ i s the same constant as the
one appearing in ( β )•

As ε is arbitrary, U<N i s con-
tinuous at /> , and hence also in the
whole space*

Learns* 2β If &W
condition ( Γ ), then

satisfies the

z lψ) ,

then it is an equilibrium-distribution.

Proof. Now we put ic^ί = 7
 9

 and

follow the method of O.Frostman
 (
*

}
. We

procede according to the next four steps*

Let F denote the kernel of the mass

witb respect to ^

> Ύ for

all points of M except the points of
the set whose spatial measure 5s zero.

Now

where ^(p) denotes the mean value
of u φ with respect to the sphere

S about t>
 9
 and A is a positive

constant depending on the function Φ(r)
only*

Proof.

(I) ΛUf

and it cannot always be 2c/») ̂  Y~t - ,

by the semi-continuity of ϋcp, > for

any ξ> o Assume that Hip) £ v-2l

on the set E whose spatial measure is

positive. We transport the mass m of

σcfc) on E , ocp
β
> being a neigh-

bourhood of /> where we have ΰ if) >

r-ε

In such a transportation of the mass,
we can make the potential due to the
mass-distribution to be bounded. For
example, we may take a new distribution
a- such as:

where v is the volume of Sα
Is the volume element at m

and <fcm
The

integral I, - jϊr $ f Γ T ^ is the func-

tion of
 Γ

P* only, and if we change

the integral region S
Λ
 to the unit

sphere and put r
τ<
f r , then I, is

continuous for r > o and tends to o

with r . How from the inequalities

we obtain, by ( T ) ,

o. —^ ^
 #
 Γhβrefore

for

takes the

positive maximum

in o<r<-*-<*>

A for a value of r
and hence (1) becomes

> 0 on E

cCf>0)-t E

Γt

For all positive number k < I , the
distribution /t + A$- is non-negative
and represent the positive unit mass-
distribution on M . By the hypothesis

SI > o

But on the other hand, we have

SI = 2-fc [
 3

Π

< - if 2w€-

By the methods used In the above
proofs, the conditions (β ), ( Γ ) are
necessary. In the case where £

ί|r
; is

assumed merely to be convex, I cannot
ensure that corollary to Lemma 1, and
Lemma 2 are holds or not

Lemma 3. Let *<
r
) satisfy the

conditions (*), ( β ) , ( T ) and let M
be a bounded, closed set whose bound-
ary satisfies the condition of Poincare
By H we denote an arbitrary positive
unit mass-distribution on H and put

If there

If we take A so small that
this is absurd. Therefore letting ι-+o
and we obtained the results mentioned
above*.

ii) *<P> Z Y f
0 r a

ii the

points of Λl without exception.

Let P be the point of M (inner
or boundary point). By the hypothe-
sis we can take the cone c with
vertex /> and lies within n Let
the volume ratio between sphere about
Ψ and the cone c be o < f < / .

Let S , 4 denote the sphere about
p with radius R , r respectively.

Now we can proceed under 1°, 2°.



1° Ju' is the potential due to the
mass /<' within S , and take the
radius ft so small that u' cp> < ~
holds.

2° ΰ" denotes the potential due
to the mass /* outside S , and
take ^ such that %*Λ , u"f ̂.i < 5"<p/
+ :f- In fact, tnis is true, for by
the continuity of u

Λ
 in 4 , K

being fixed and we have must only to
take r small enough. Let m

Cid
 denote

the mean of α on C4 Then as,
except the point set of measure zero
in CΔ , we have ΰ :> V ,

Clearly, it holds

(2) m
c
'
d
 £ -i-mj '

By Lemma 2 and the hypothesis 2°,

therefore

is measurable in the sense of Lebβsguβ
for o<

 Γ
 < •*• *° Under *• we mean

an arbitrary positive mass-distribution
of unit mass on the set M Then we
have

p<sM n J n

Π

By taking the minimum of the first
member, we get

Letting n —» + ̂  ? we have

T

Under the condition (* ), we can apply
the maximum principle to the last mem-
ber, and hence we get

J

As £ is arbitrary, letting
we have without exception

i ϋ ) iΛCf) > Ύ

every point of P
is never hold at

In fact, i f ΰffiJ > V , f, €f
holds, then there exists a neighbour-
hood o(ft) of ft such that jeocr,)
and IZίp; > ^ and hence Hr> s T #
But this is absurd. Therefore we must
have σ<p) = y p * F

iv)
of π without exception.

for all points

Since *^
r
) is convex, the maxi-

mum principle of subharmonίc functions
holds good. As ύcpj is continuous
on P , by the corollary to the Lemma
1, it is continuous throughout the
space Si όy the maximum principle,
the maximum of £ (p) is attained on
F . Therefore we have ϋnp) £ V ,
P e iλ Remember5ng the results

of (ii) we have ΰ w — 'V for all
points of M without exception*

Remark. I cannot yet determine
whether the equilibrium-distribution
is always unique or not under our as-
sumptions.

9. Relations between P
(i)
 and

energy-integral

Suppose that Φ(r) and ft arβ^

as in No.8

At first, it is clear that for any

(I)

Considering the lower limit of the last
member, we have

Letting , it follows

8* Relations between R
ιf)

and the potential*

Let the function
 φ(r}

 satisfy the
conditions ( » ), (0 ), and ( T ), and
let the set M satisfy the condition
of Polncare It is clear that **>

Now by O.Prostman's method we proceed
as follows: take the points f

tt
— , f>

in such a manner that ' *"

- 7 -



And put the mass ~~ on each point ̂  ,
Such a distribution on n is clearly a
positive unit mass distr5bution, which
we denote by /c

n β
 Then we have;

Since the sequence ί/M ^
s
 bounded,

we can select , if necessary, a conver-
gent subsequence

 9
 which we denote also

by IΛ»| and we denote its limiting
distribution bv /t*

 β
 First by n~»*<x3 ,

we get from (1)

Then by /y *
 wβ

 get the relation

Prom (2) and (3), we see that /** is
the one that minimizes the energy-inte-
gral, so that by Lemma 3 of No.7, μ*
becomes one of the equilibrium-distri-
bution pi of the unit mass. There-
fore we can write

Proof
θ
 By the definition

for any unit mas a -distribution /< .
Considering the maximum of the first
member ,we get

and, by
 n
 — >

By the condition (̂  ), we can apply
the maximum principle to the second
member

 9
 and (1) becomes

(2)

By (2) of Nθo5 and (5) of No.9, we.
have, for any ̂ ,

Using here /* in the place of
and remembering the relation

we get

i.e.,

In (1) by substituting
we get

/* by

l(ί)

and hence

Therefore, we obtain

Theorem 1« If the set /I satisfies
the conditions of Poincare", and if Φίr>
satisfies the conditions (*-•), (£:••)>
and ( Γ ) , then

so* Thθorais 2. If the' set M
satisfy the conditions of the 'fheorβra
1, then It holds

'ί . Now we consider a closed and
bounded set n , and denote by T the
component of the complementary domain
of t̂ wί4ch contains the points at
infinity. We approximate T by auch
regular regions T

n
 that Λ-T^wί^

satisfy the condition of Foincarβ. As
in the case of ,No*9, there exists a unit
mass -distribution , /<* on ξ such

that

Then it is
t̂
 evident that Λ

IF
«)* ί,/**̂ '̂*̂

The sequence |Λ«) converges to /< (if
necessary we .apply the.selection theo-
rem), and ,/< beαpuies 'the, unit mass -
distMbution on n , in the following
aense, i.e., for n large enough, the,
points outside F

n
 also lie outside

tt . Therefore^ we have /< CM; = | and
Λ(H-MJ« 0. We denote ίtf

}
«"<p']

and j(/o by r and T̂  respectively.
As

O

- 8 -
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(2) Mζ i^....έ^-^Vn

with F^ = VFn .

Then according to the relat ions

(3) 'V
n
 ύ Λ.«

we get

Therefore we have

(5>
 w - v

On one hand, by the properties of
J)^

)
 and ?}

φ)

 f
 we have

Ju the other, considering the rela~
tion (3), we obtain

(7) ψ
n
 ss hm. V^ s= hm $ΓR

1
*

}
( F

rt
 J ] ̂  ΦίX^n)]

and

By (6), (7) and (7'), we have

By (5) and (8),

Therefore, we obtain the

Theorem 3 Iί *<
r
^ satisfies

the cond3 tiona ( <* ), ( β ), and { T ),
and -Λt is a bounded and closed set,
then we have

and G.Szego t
3
) proved that p '-x '-c

 1

in the case where Sfo ̂ ^ i
(ii) G Pόlya and G.Szego(') showed the
same relations in the case where
$ir) = -f- 9 (lii) O.Frostman

(
 '

proved the relation p
t4)
 = π

KΦ)
 in ths

case where φcr) = -p > ί ύ * < 3
O.tYostman defined the capacity of Λ ,
when φir) is a more general one, as
follows: let /* and ΰcpί be the
equilibrium-distribution of unit mass
on n and its potential respectively

s

and put v
n
 --.C^fr-ucpj , TΛJ; = ί^ fc. I9 >» it̂ j

then the capacity of n is defined by

In the case (lii) we have also P —ft
(c4>

__, £«*> Now we have demonstrated that
^

 =R
(Φ) ι

n
 the case where δtπ sa-

tisfies the conditions" ( « ), (# )* and.
(?")• Therefore, O Frostman's defini-
tion of the capacity In the case (iJi)
Is natural in the sense mentioned
above. But in this case, it So in-
convenient that the distribution which
gives equilibrium-potential does not
uniquely determined. From this point
of view, the Vallee Poussin's defini-
tion of capacity has also the same In-
convenience

Now, we consider the Theorem 3 again*
First, we have clearly u<p> ύ V

n

Secondly, we have κ
Λ
) = f ui

γ)
^

ι?y
 ̂γ

n

If there exists a mass-point p
o
 of t\

such that wίp
o
) < v , then by the

lower semi-continuity of ucp; , we
can take some neighbourhood <?<?„) of

£ where uψ is less than v
n

Then we have K/o < V
n 9

 this is
absurd Hence, except a subset ε of
Λ where μ ̂  o , it must be -urp>
= 7

rt
 . If the capacity of E is

positive, we can distribute the posi-
tive mass on E whose energy integral
Is finite. And by the same method
used in (i), Lemma 3, No.7, we can con-
struct a unit mass-distribution u
such as If i/) <!(/*) * This con-
tradicts clearly with the definition
of !(/>•} * Therefore, the capacity of
E must be zero* Thus we haveϊ

Theorem 4. If the capacity of a
bounded and closed set Λi is positive
and if Φtπ satisfies the condi-
tions (« ), ( β ) and (T ), then we have

Remark. T^ and "^ are inde-
pendent on the manner of approximation
of the closed domain by F

rt
 , And

the distribution /< in Theorem 3 is
the one which minimizes the energy-
integral among all the positive distri-
butions of the un3t mass.

except trie point-set E
is o

whose capacity

Remark. The potential
 u
^ of the

Theorem 4 is the equilibrium-potential
on n In all cases we have the
fundamental relationsj

12. Relations between &*\ K
m

and the capacity.

Joncerning the relation between 3>
Λ)

*
W)
 and the capacity c

<4)
 of the '

bounded, closed set At , (i) M Fekete
- 9 -
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