1. Introduction.

In the three dimensionsl Euclidean space Ω_{3}, let M be a bounded, closed set which contains infinitely many points, and let $r_{p q}$ be the distance between the points p and q. G. Pblya and (i.Szegö (') defined the following quantities:

$$
R_{n}^{(\lambda)}=\operatorname{Mim}_{P_{\nu} \in \Omega_{3}} \operatorname{Max}_{p \in M}\left\{\frac{r_{p p_{1}}^{\lambda}+\cdots+r_{P}^{\lambda}}{n}\right\}^{\frac{1}{\lambda}}
$$

$$
\lim _{n \rightarrow+\infty} R_{n}^{(\lambda)}=R^{(\lambda)}
$$

and

$$
\begin{align*}
& D_{n}^{(\lambda)}=M_{p_{\nu} \in M}\left\{\left(\sum_{k<\nu}^{1 ;-n} r_{p, \nu}^{\lambda}\right) /\binom{n}{2}\right\}^{\frac{1}{\lambda}} \tag{I}\\
& \lim _{n \rightarrow+\infty} D_{n}^{(\lambda)}=D^{(\lambda)}
\end{align*}
$$

$\lambda^{\lambda_{j}}$ being an arbitrary real number. is called the transfinite diameter of M, and $R^{(2)}$ is the quantity ohich corresponds to the quantity $\lim _{n \rightarrow+\infty}\left\{\operatorname{Max}_{i \in M}\left|T_{n}(\xi)\right|\right\}^{\frac{1}{n}}$ defined in two dimensional Luclidean space, Ω_{2} where the $T_{n}(z)$ mean Tchebycheff's polyno-
 P61ya and G.Szego ${ }^{(1)}(3)$, and 0. Frostman ${ }^{(4)}$ have already proved that $D^{(\lambda)}=R^{(N)}$ for $\lambda=-\alpha$ with $1 \leq \alpha<3$

In this paper, replacing the func$t i o n s r^{\lambda}$ by a more general one, $\Phi(r)$, as in the case of the generalized potential ${ }^{(4)}{ }^{\prime(5)}$, we shali investigate the case where $D^{(\Phi)}$ and $R^{(\Phi)}$ colncide, and further relations between these quantities and the generalized potential.
2. Definitions.

We consider a function $\Phi(r)$ with following properties:
$\Phi(r)\left\{\begin{array}{l}=+\infty \quad \text { for } r=0 ; \\ >0 \text { and continuous, monotone } \\ \quad \begin{array}{l}\text { decreasing in the strict } \\ \text { sense, for } r>0 ;\end{array} \\ \rightarrow 0 \text { for } \quad r \rightarrow+\infty\end{array}\right.$

Let M be a bounded and closed set in an Euclidean space i2, which
contains infinitely many points. We define $R_{n}^{(i)}$ and $D_{n}^{(1)}$ as-follawis:

$$
\begin{equation*}
\Phi\left(R_{n}^{(\Phi)}\right)=\operatorname{Max}_{P_{\nu} \in \Omega} \operatorname{Min}_{P \in M} \frac{\Phi\left(r_{P P_{1}}\right)^{+\cdots+\Phi\left(\left(_{P P_{A}}\right)\right.}}{n} \tag{A}
\end{equation*}
$$

$$
\begin{equation*}
\Phi\left(D_{n}^{(\overline{(})}\right)=\operatorname{Min}_{P_{\mu} \in \Gamma} \frac{\sum_{k<N}^{\prime \cdots, n} \Phi\left(r_{p_{\mu} P_{V}}\right)}{\binom{n}{2}} \tag{B}
\end{equation*}
$$

The class of functions $\Phi(r)$ contains some kind of the convex functions, for instance $\Phi(r)=\frac{1}{r} e^{-\lambda r} \quad \lambda>0^{66}$.
3. Existence of $\lim _{n \rightarrow+\infty} R_{n}^{(\$)}$

The following proof of the existence of $\lim _{n \rightarrow+\infty} R_{n}^{(\infty)}$ and $\lim _{n \rightarrow+\infty} D_{n}^{(i)}$ is due to the method of G.Pólya and G.szegö (1). Let
p be an arbitramy point of the space Ω, and $P \in M$, and let d denote the diameter of M. We describe the sphere S with radius 2α about a point. q of M. If one of
A_{i}, say P_{1}, lies outside S. then we denote the intersecting point of the segment $P_{1} p$ and the boundary of S by $\overline{p_{i}}$. Then we have $\Phi\left(r_{p p_{t}}\right) \leqq$
$\Phi\left(r_{-p}\right)$ and hence

Therefore, we may replace the points which lie outside S by those of the spherical surface S, obtaining a relation analogous to (i). Now, we confine ourselves to the case where all the points P belong to the closed sphere \bar{S}. Then we clearly have

$$
\operatorname{Mim}_{p \in M} \frac{\Phi\left(r_{p p_{1}}\right)+\cdots+\Phi\left(r_{p p_{n}}\right)}{n}<+\infty
$$

This minimum is the continuous function of the points p_{1}, \ldots, p_{n}. Let $i_{1}, \ldots . . t_{m} ; q_{1}, \ldots, q_{n}^{\prime}$ be 'arbi:trary points of $\bar{S}^{\prime \prime}$, then

$$
\begin{aligned}
& \operatorname{Mim}_{n \in M} \frac{\Phi\left(r_{p p_{1}}\right)+\cdots+\cdots\left(r_{P p_{m}}\right)+\Phi\left(r_{r q_{1}}\right)+\cdots+\Phi\left(r_{p q_{m}}\right)}{m+n} \\
& \leqq \operatorname{Mim}_{p \in M} \frac{\sum_{p=1}^{m} \Phi\left(r_{p q}\right)}{m+n}+\operatorname{Mim}_{p \in M} \frac{\sum_{v=1}^{n} \Phi\left(r_{p q_{p}}\right)}{m+n}
\end{aligned}
$$

By taking the maximum with respect to p_{μ}, p_{L}, we obtain
$\operatorname{Max}_{\left(p_{Q}, q_{v}\right)} \operatorname{Min}_{p \in M} \frac{\Phi\left(r_{p p}\right)+\cdots+\Phi\left(r_{p p_{m}}\right)+\Phi\left(r_{p q}\right)+\cdots+\underline{+\infty}\left(r_{p q_{n}}\right)}{m+n}$

$$
\begin{aligned}
& \leqslant \operatorname{Max}_{p,} \operatorname{mim}_{p \in M} \frac{\phi\left(r_{p r}\right)^{+\cdots+\cdots+\Phi\left(r_{p p_{m}}{ }^{3}\right.}}{m+n} \\
& +\operatorname{Max}_{(q)} \operatorname{Min}_{p \in M} \frac{\underline{q}\left(r_{p g_{t}}\right)+\cdots+\Phi\left(r_{p} q_{n}\right)}{m+n}, \\
& \text {..e } \\
& \text { (2) } \quad(m+n) \Phi\left(R_{m+n}^{(\Phi)}\right) \leqq m \Phi\left(R_{m}^{(\phi)}\right)+n \Phi\left(R_{n}^{(\phi)}\right)
\end{aligned}
$$

Since $\Phi\left(R_{n}^{(\Phi)}\right) \geqq 0$. by the lenma below, there exists the limit

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \Phi\left(R_{n_{1}}^{(i)}\right)=A \geqq 0 . \tag{3}
\end{equation*}
$$

1) If $+\infty>A>0$, we get, by the continuity of $\Phi, \lim _{n \rightarrow+\infty} \Phi\left(R_{n}^{(\phi)}\right)=\$\left(\lim _{n \rightarrow \infty} X_{n}^{(\phi)}\right)=A$; ii) if $A=0$, then $\lim _{n \rightarrow+\infty} R_{n}^{(\phi)}=+\infty$; 111) $+I^{\prime} A=+\infty$, then $\lim _{n \rightarrow+\infty} R_{n}^{(4)}=0$ In every case, we write $\lim _{n \rightarrow+\infty} R_{n}^{(\Phi)}=R^{(\$)}$.

Lerma** Let $\left\{a_{n}\right\}$ be a sequence of real numbers which satisfies the condition

$$
a_{m+n} \leqq a_{m}+a_{n} ; m, n=1,2, \cdots
$$

Then the sequence $\left\{\frac{a_{n}}{n}\right\}$ is either convergent or divergent to $-\infty$.
4. Existence of $\lim _{n \rightarrow+\infty} D_{n}^{(d)}$

We consider the identity
(1) $\sum_{\mu<U}^{1, \cdots n} \Phi\left(r_{p} p_{\nu}\right)=\frac{1}{n-2} \sum_{n=1}^{n} \sum_{k}^{(p)} \Phi\left(r_{p r}\right), p \in M$,
where $\sum^{-i k i}$ indicates the sum with respect to p_{p} except the case when $\mu=k$. Since

$$
\binom{n-1}{2} \Phi\left(D_{n-1}^{(\phi)}\right) \leqq\binom{ n+1}{2} \sum_{\mu<v}^{(h)} \Phi\left(\Gamma_{\rho} \Gamma_{v}\right)
$$

(1) becomes

$$
\begin{aligned}
\sum_{\mu<\nu}^{\cdots} \Phi\left(r_{p_{\mu} p_{V}}\right) & \geqq \frac{1}{n-2} \sum_{n=1}^{n}\binom{n-1}{2} \Phi\left(\begin{array}{l}
\left(p_{n-1}\right) \\
\end{array}\right) \\
& =\binom{n}{2} \Phi\left(\begin{array}{l}
D_{N-1}^{(\Phi)}
\end{array}\right)
\end{aligned}
$$

1.0.
(2) $\quad \sum_{\mu<\nu}^{9, \cdots, n} \frac{\Phi\left(t_{k} \rho_{1}\right)}{\binom{n}{2}} \geq \Phi\left(D_{n-1}^{(\phi)}\right)$

By taking here the minimum of the first term, we obtain,

$$
\Phi\left(D_{n}^{(\phi)}\right) \geqq \Phi\left(D_{n-1}^{(\phi)}\right), \text { i.e. } \quad D_{n-1}^{(\phi)} \geqq D_{n}^{(\$)}
$$

Since $D_{A}^{(X)} \geqslant 0$, we obtain
5. Relations between $D^{(\xi)}$ and $R^{(6)}$.

We consider the points $P_{i}, P_{f} \in M$, which satisfies the equalities:

Since

we get

$$
\binom{n+1}{2} \Phi\left(D_{n+1}^{(k)}\right) \leqq \frac{1}{2} \sum_{k=1}^{n+1} n \Phi\left(R_{n}^{(\$)}\right)
$$

$$
\text { : } e
$$

$$
\Phi\left(D_{n+1}^{(\mathbb{1})}\right) \leqq \Phi\left(R_{n}^{(\Phi)}\right)
$$

By the monotony of $\Phi(r)$, we obtain

$$
D_{n}^{(\phi)} \geqq, D_{n+1}^{(\$)} \geqq R_{n}^{(\$)}
$$

and hence it follows

$$
\begin{equation*}
D_{n}^{(\Phi)} \geqq R_{n}^{(\Phi)} \tag{1}
\end{equation*}
$$

Letting $n \rightarrow+\infty$, we have

$$
\begin{equation*}
D^{(\Phi)} \geqq R^{(\underline{(x)}} \tag{2}
\end{equation*}
$$

6. The preliminłary. remaiks on the generalized potential. (4)
Let, $\&$ be the Borel's "Mengenkoerper", and μ cienote a completely additive set function defined for the seta measurable in the Borel sense Which we call the mass-distribution. We say that μ is a positive mass distribution, if $\mu(e) \geq 0$, ecd. The closed set F is called the kernel of the mass with respect to μ when F consists of points which bear the mass actually. In the following section, the integrals are considered In the sense of Stieltjes-Lebesge-Radon. We now introduce the generalized potential by the integral of the form

$$
\begin{equation*}
u(p)=\int_{\Omega} \Phi\left(r_{p q}\right) d \mu(q) \tag{1}
\end{equation*}
$$

μ denoting a positive mass-distribution. Then the well-known properties of the potential are as follows:
(i) u(p) is lower semi-continuous,
(i1) If $\Phi(r)$ is a convex function
of r is the kernel
of the mass, then
the mass, then
(2) $\Delta \Phi(r)=\Phi^{\prime \prime}(r)-\frac{2}{r} \Phi^{\prime}(r) \geqq 0$, fon $r>0$, and hence, in $\Omega-F$

$$
\begin{aligned}
& =\operatorname{Min}_{P_{i, j} \in \eta} \sum_{i<j}^{1, n_{j}^{n+1}} \Phi\left(r_{i P_{i}}\right) .
\end{aligned}
$$

That is, $u(p)$ is subharmonic in $\Omega-F$. Consequently, by the maximum principle, if u(p) is continuous on $\Omega \sim F$, the maximum of u($;$) is taken at a boundary point of $\Omega-F$, namely on the kernel F.
(1ii) If $\left\{\mu_{n}\right\}$ converges to the distribution μ, then we have

$$
\text { (5) } \quad u(p) \equiv \lim _{n \rightarrow \infty} a_{n} \alpha_{n}(p)
$$

(6) $\quad I(\mu) \leqq \lim _{n \rightarrow+\infty} 1\left(\mu_{n}\right), I(\mu)=\iint_{\Omega} \delta\left(v_{p q}\right) d \mu(p) d \mu(q)$
where u(p), $u_{n}(p) \quad$ are the poten-
tials due to μ, μ_{n} respectively,
and $I(\mu)$, $\left.I \mu_{n}\right)$ the energy integrals
corresponding to $, \mu, \mu_{n} \quad$.
7. Lemmas.

For the function $\Phi(r)$
we consi-
$\Phi(T)$
is convex function of I, (. β) $\lim _{r \rightarrow 0} \frac{\Phi(c r)}{L(r)}$ $=k>0 \quad$ and $(r) \quad \lim _{r \rightarrow+\infty} \frac{\phi(r+c)}{\Phi(r)}=\ell>0$
Where c is an arbitrary positive constant, and k, l are constants depending on Φ ir only. We shall prove a lemma analogous to that of O.trostm man (4).

Lemma 1. The necessary and suificient conditions that the potential upp is continuous on the bounded and closed set F are as follows: for any positive ε there corresponds a positive number δ such that the value of the potential us at P due to the mass within the sphere S_{δ} whose centre is at e point P of F and its radius δ is less than ε.

Necessity. We denote by $u^{\prime}, u^{\prime \prime}$ the potentials due to the mess interior and exterior to the sphere S, then $u^{\prime \prime}$ is continuous and evidentiy astisfles the conditions of the lemma. Hence, it suf. fice to show the lemme only for the potential is u^{\prime}. We consider the sphere S_{a} ith radius a about $P \in F$ and denote by $u(p)$ the potential

$$
u(p)=\int_{S_{a} \cdot F} \Phi\left(r_{p q}\right) d \mu(q)=\lim _{N \rightarrow+\infty} \int_{S_{Q} F} \Phi_{A}\left(r_{p q}\right) d \psi(q)
$$

where Φ_{N} denotes the runction such that $\Phi_{N}=\Phi$, if $\Phi<N$ and

$$
\begin{aligned}
& \Phi_{N}=N \\
& u(p), \\
& \text { if } \quad \phi \geqq N \\
& \text { is continuous on the }
\end{aligned}
$$

$\begin{array}{ll}\text { As } u(p) & \text { is continuous on the } \\ \text { closed and boundea set } S_{a} F, ~ w(p)\end{array}$ is bounded there. Hence, for any positive ε., we can take a constant N_{c} depending only on ε and not on p, such that

$$
\text { (i) } \quad\left|u(p)-\int_{S_{\dot{\alpha}} F} \Phi_{N}\left(r_{p q}\right) d \mu(q)\right|<\frac{\varepsilon}{\Sigma},
$$

for $\quad N \geqq N_{0}, \quad p \in S_{a} \cdot F$.
Let $q(\delta)=N_{0}$. If we take M, N, such that, $M>N \geqq N_{0}$, by (1), we get

$$
\begin{gather*}
\mid u(p)-\int_{S_{Q} \cdot K} \Phi_{N}\left(r_{p q}\right) d \mu(q) ;<\frac{\varepsilon}{5} \tag{2}\\
\left|u(p)-\int_{S_{M} F} \Phi_{M}\left(r_{p q}\right) d \mu(q)\right|<\frac{6}{5}
\end{gather*}
$$

Now let $\overline{C B}(a)=\hat{X}_{0}<l_{1}<, \quad<\ell_{n}=N$ and let $e_{:}$be the set of potnts satisfying the inequalities $\ell_{i-} \leqq f(r)<i_{i}$ $(i=1,2, n)$ and put $\Delta \mu_{i}=$ $\mu\left(e_{i}\right)$, then, for sufficiently large n, we have

Siminesiyn

$$
\text { (4) } \quad \int_{S_{a} F} \Phi_{M}\left(\xi_{F}\right) d \mu\left(q_{j}\right)-\sum_{1}^{m} \tilde{l}_{i} \Delta \bar{F}_{i} \left\lvert\,<\frac{\varepsilon}{5}\right.
$$

where $\vec{l}_{i}, \overrightarrow{\Delta y}$ have the meaning analogous to l_{i}, Δ_{4}^{μ} respectsvejy Put $X\left(r_{1}\right)=N, \Phi\left(r_{2}\right)=M, r_{1}>r_{2}$ Donoting the ring domair R whose sentry is ot ψ and whose radiz are $T_{1} * r_{2}$ * we have

from which, by (2), (3), and (4), we finally get

$$
\int_{R F} \Phi\left(r_{P q}\right) d x(q) \left\lvert\,<\frac{4 \varepsilon}{5}+\frac{\varepsilon}{5}=\varepsilon\right.
$$

This inequality holds for sny $M, N \geqq N$, Which implies that the value of the pom tential at P due to the mass within the sphere about P with radius f; is less than \mathcal{E}. q.e.d.

Sufficiency. That the condition is sufficient is clear.

Corollary. Let $\overline{\text { Gu }}$, satisiy the condition (β), and let T dencte the kernel of the mass. If w(p) 18 continuous on F, then it is continuous throughout the space $\hat{\Omega}$

Proof. By the continuity of urps on Fo, ror a giver ε, we can take δ :o such that the value of the potential at P, due to the mass with-
 case when dist $(P, F\rangle$,$ร , lot the$ point ? is the one of the nearest points of F from P, and we describe the sphere S_{5} about q. Ther as
 $<+\infty$ - Therefore uin in is continuous at p.

In the case where dist (P, Fi ? $: \bar{N}$, since $2 \Gamma_{p ; n} \geqslant \gamma_{p m}+T_{q q} \geqq r_{q m}, \quad \Phi\left(r_{p q}\right)<\Phi: r_{q m}$;
remembering the condition (β), we have

$$
u_{\delta}(p)=\int_{S_{\delta}^{\prime} F} \Phi\left(r_{p m}\right) d m(m) \leqq \int_{S_{2 \varepsilon} F} \Phi\left(r_{p m}\right) d k(m)
$$

$$
\begin{aligned}
& \leqq \int_{S_{2 \delta} F} \Phi\left(r_{q m} \cdot \frac{\Phi\left(r_{p m}\right)}{\Phi\left(r_{q m}\right)} d \mu(m) \leqq \int_{S_{2 \delta} F} \Phi\left(r_{q u} \frac{\Phi\left(r_{m}\right)}{\Phi\left(q_{p m}\right)} d \mu(m)\right.\right. \\
& \leqq \frac{i}{k} \int_{S_{t} F} \Phi\left(\xi_{m}\right) d \mu(m)+\frac{\varepsilon}{2}<\frac{1}{k} \cdot k_{k} \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=r,
\end{aligned}
$$

where f is the same constant as the one appearing in (β).

As ε is arbitrary, $u(p)$ is continuous at p, and hence also in the whole space.

Leman 2. If $\Phi(r)$ satisfies the condition (r), then

$$
m_{s}(p)<A \cdot u(p)
$$

where $m_{s}{ }^{(p)}$ denotes the mean value of u(q) with respect to the sphere S about p and A is a positive constant depending on the function $\Phi(r)$ only.

Proof.
(1) $\quad m_{s}(p)=\frac{1}{v} \int_{S_{Q}} d \tau_{m} \int_{\Omega} \Phi\left(r_{q m}\right) d \mu(q)$
$=\int_{\Omega} \operatorname{dr}(q) \int_{S_{a}} \frac{1}{V} \Phi\left(r_{q m}\right) x \tau_{m}$

$$
=\int_{\Omega}^{\Omega} \Phi\left(r_{p q}\right) d \mu(q) \int_{S_{a}} \frac{1}{T} \frac{\Phi\left(r_{q m}\right)}{\Phi\left(r_{p q}\right)^{3}} d \tau_{m}
$$

where v is the volume of S_{a} and $d \tau_{m}$ is the volume element at m. The integral $I_{1}=\int_{S_{\alpha}} \frac{1}{v} \frac{\Phi\left(r_{q w}\right)}{\Phi\left(r_{p q}\right)} d r_{m}$ is the funetion of $r_{p g}$ only, and if we change the integral region S_{∞} to the unit sphere and put $r_{r q}=r$, then I_{1} is continuous for $r>0$ and tends to o with r. Now from the inequalities

$$
\frac{\Phi\left(r_{p q}-a\right)}{\Phi\left(r_{p q}\right)} \geqq \frac{\Phi\left(r_{q m}\right)}{\Phi\left(r_{p q}\right)} \geqq \frac{\Phi\left(r_{p q}+a_{1}\right.}{\Phi\left(r_{p q} ;\right.}
$$

we obtain, by $(T), \frac{\Phi\left(r_{(m)}\right)}{\Phi\left(r_{p q}\right)} \rightarrow \ell$ for

$$
q \rightarrow \infty \text {. Mheretore } I_{1} \text { takes the }
$$

positive maximum A for a value of r in $0<r \leqq+\infty$, and hence (1) becomes

$$
\text { (2) } \quad m_{s}(p) \leqq A \cdot \int_{\Omega} \Phi\left(r_{p q}\right) d u(q)=A \cdot u(p)
$$

By the methods used in the above proofs, the conditions (β), (γ) are necessary. In the case where Φ ir, is assumed merely to be convex, I cannot ensure that corollary to Lemma 1, and Lemma 2 are holds or not.

Lemme 3. Lot $\Phi(r)$ satisfy the conditions $(\alpha),(\beta),(J)$ and let M be a bounded, closed set whose boundary satisfies the condition of Poincare. By r we denote an arbitrary positive unit mass-distribution on M and put

$$
I(\mu)=\iint_{M} \Phi\left(r_{p q}\right) d \mu(p) d \mu(q) \quad \text {. If there }
$$

exists a positive mass-distribution μ which minimizes $I(\mu)$, that is if, for all admissible μ,

$$
I(\bar{\mu}) \leqq I(\mu)
$$

then $\vec{\mu}$ is an equilibrium-distribution.
Proof. Now we put $I(\bar{\mu})=T$, and follow the method of 0.prostman (4). We procede according to the next four steps. Let F denote the kernel of the mass with respect to \bar{m}.
i) $\bar{u}(p)=\int_{M} \Phi\left(r_{r g}\right) d \overline{(q)} \geqq \nabla \quad$ for
all points of M except the points of the set whose spatial measure is zero.

Now

$$
I(\bar{\mu})=\int_{z} \bar{u}(\rho) d \bar{\mu}(p)=\bar{\nabla},
$$

and it cannot always be $\bar{u}(p) \leqq Y-\varepsilon$, by the semi-continuity of $\bar{u}(p$, for any $\varepsilon>0$. Assume that $\bar{u}(p) \leqslant \nabla-2 \varepsilon$ on the set E whose spatial measure is positive. We transport the mass m of $O\left(P_{0}\right)$ on E, $O\left(P_{0}\right)$ being a neighbourhood of p_{0} where we have $\bar{u}(p)>$ $\boldsymbol{\sigma}-\boldsymbol{\varepsilon}$ -

In such a transportation of the mass, we can make the potential due to the mess-distribution to be bounded. For example, we may take a new distribution σ such as:

$$
\begin{aligned}
\sigma & =-\mu \quad \text { in } O\left(p_{0}\right) ; \\
\sigma & >0 \quad \text { on } E \text { and } \sigma(E ;=\mu[o(p)]=m ; \\
\sigma & =0 \quad \text { outside } O\left(p_{0}\right)+E, \\
I(\sigma) & =\iint_{M} \Phi\left(r_{p q}\right) d \sigma(p) d \sigma(q)<+\infty .
\end{aligned}
$$

For all positive number $h<1$, the distribution $\vec{\mu}+k \sigma$ is non-negative and represent the positive unit massdistribution on M. By the hypothesis

$$
\delta I=I(\bar{\mu}+h \sigma)-I(\bar{\mu})>0
$$

But on the other hand, we have

$$
\begin{aligned}
\delta I & =2 h \int_{M} u(p) d \sigma(p)+h^{2} I(\sigma) \\
& <-h[2 m \varepsilon-k I(\sigma)] .
\end{aligned}
$$

If we take h so small that $\delta I \leq 0$, this is absurd. Therefore letting $\varepsilon \rightarrow 0$ and we obtained the results mentioned above:
1i) $\bar{u}(p) \geqq \nabla$ for all the points of M without exception.

Let P be the point of M (inner or boundary point). By the hypothesis we can take the cone c with vertex p and lies within M. Let the volume ratio between sphere about p and the cone c be $0<p<1$ Let S, s denote the sphere about P with radius R, respectively. Now we can proceed under $1^{\circ}, 2^{\circ}$.
$1^{\circ} u^{\prime}$ is the potential due to the mass \bar{F} within S, and take the radius R so small that $\bar{u}(p)<\frac{\rho E}{2 A}$ holds.
$2^{\circ} \bar{u}^{\prime \prime}$ denotes the potential due to the mass $\bar{\mu}^{\prime \prime}$ outside S, and take s such that $q \in s, \overrightarrow{u^{\prime \prime}}(q)<\vec{u}^{\prime \prime}(p)$ $+\frac{E}{2}$. In fact, this is true, for by the continuity of $\bar{u}^{\prime \prime}$ in A, R being fixed and we have must only to take r small enough. let mcs denote the mean of \bar{u} on c.s. Then as, except the point set of measure zero in $c \cdot s$, we have $\bar{u} \geq V$,
(1) $\nabla \leqslant m_{c_{s}}=m_{c_{d}^{\prime}}^{\prime}+m_{c_{s}^{\prime \prime}}^{\prime \prime}<m_{c_{s}^{\prime}}^{\prime}+\bar{u}^{\prime \prime}(p)+\frac{\varepsilon}{2}$.

Clearly, it holds
(2)

$$
m_{c s}^{\prime} \leqslant \frac{1}{\rho} m_{0}^{\prime}
$$

By Lemma 2 and the hypothesis 2°.
(3) $m_{c \Delta}^{\prime} \leqq \bar{u}^{\prime}(p)<\frac{\varepsilon}{2}$,
therefore

$$
\nabla \leqq \bar{u}^{\prime \prime}\left(p_{1}+\varepsilon \text {, ..e. } \bar{u}(p) \geq \vec{u}^{\prime \prime}\left(p_{1}>\nabla-\varepsilon .\right.\right.
$$

As ε is arbitrary, letting $\varepsilon \rightarrow 0$ we have without exception
(4)

$$
\bar{u}(p) \geqq \nabla, \quad p \in M
$$

1i1) $\bar{u}(p)>\nabla$ is never hold at every point of \bar{F}.

$$
\text { In fact, } 11 \quad \bar{u}\left(p_{i}\right)>\nabla
$$

holds then there extsts a mei hood $O(p)$ of p such that $p \in O$ (p) and $\vec{u}(p)>\bar{V} \quad$ and hence $I(\bar{\mu}), \mathcal{J}$. But this is absurd. Therefore we must have $\bar{u}(p)=\nabla, p \in F \quad$.
iv) $\bar{u}(p)=V \quad$ for all points of M without oxception.

Since $\Phi(r)$ is convex, the maximum principle of subhermonic functions holds good. As $\bar{e}(p)$ is continuous on F, by the corollary to the Lemma 1 , it is continuous throughout the space Ω. by the maximum principle. the maximum of $\bar{u}(p)$ is attained on F - Therefore we have $\bar{u}(\beta) \leq \nabla$, $p \in \Omega$ - Remembering the results of (11) we have $\bar{u}(p)=\bar{\nabla}$ for all points of M without exception.

Remark. I cannot yet determine Whether the equilibrium-distribution is always unique or not under our assumptions.
8. Relations between $R^{(5)}$ and the potential.

Let the function s(r) satisfy the conditions $(\alpha),(\beta)$, and (γ), and let the set M satisfy the condition of Poincare. It is clear that in,
is measurable in the sense of Lebesgue for $0<r<+\infty$. Under x we mean an arbitrary positive massodistribution of unit mass on the set M. Then we have

By taking the minimum of the flrest member, we get

$$
\Phi\left(R_{n}^{\left(\phi_{n}\right)} \leq \ell_{q \in f} u \cdot b \int_{r i} \Phi\left(r_{p g}\right) d k(p)\right.
$$

Letting $n \rightarrow+\infty$, we have
(1) $\Phi\left(R^{(\phi)}\right) \leqq \ell_{q \in \Omega} \int_{M} \Phi\left(\sigma_{p q}\right) d \mu(p)$.

Under the condition (α), we care apply the maximum principle to the last mem.. ber, and hance we get

9. Relations between $D^{(4)}$ and energy-integral.

Suppose that $\Phi(r)$ and μ are.
as in No. 8 .
At first, it is clear that for any $\%$
(1) $\Phi\left(D^{(\Phi)}\right)=\operatorname{Min}_{M_{\mu} \in M} \frac{\sum_{M<v}^{n} \Phi\left(r_{p_{\mu}}{ }^{3}\right.}{\binom{n}{2}}$

$$
\begin{aligned}
& =\iint_{\Gamma!} \Phi\left(r_{p q}\right) d \mu(p) d \mu(q)
\end{aligned}
$$

Considering the lower limit of the Inst member, we have

$$
\Phi\left(D_{n}^{(\Phi)}\right) \leqq g \cdot \ell \cdot b \cdot[I(\mu)]
$$

where

$$
I(\mu)=\iint_{M} \Phi\left(r_{p q}\right) d \mu(p) d \mu(q)
$$

Letting $n \rightarrow+\infty$, it followa
(2) $\Phi\left(D^{\left(\Phi^{\prime}\right)}\right) \leqq g \cdot \ell_{\mu} b \cdot[I(\mu)]$,
on

$$
D^{(\Phi)} \geqq \Phi^{-1}[g \cdot l \cdot b I(\mu)]
$$

Now by O. Frostman's method we procead as follows: take the points P_{1}, \cdots, P_{r} in such a manner that

$$
\Phi\left(D_{n}^{(\Phi)}\right)=M_{p_{n} \in M} \frac{\sum_{\mu<v}^{1, \ldots, n} \Phi\left(r_{p_{\mu} p_{\nu}}\right)}{\binom{n}{2}}
$$

And put the mass $\frac{1}{n}$ on asch point P_{μ}. Such a distribution on M is clearly a positive unit mass distribution, which we denote by μ_{n}. Then we have;
(3) $\frac{1}{n^{2}} \sum_{\mu \neq v}^{1, n} \Phi\left(r_{\mu} p_{2}\right)=\sum_{\mu=1}^{n}\left\{\sum_{\mu \neq \gamma}^{n} \Phi\left(r_{\mu} p_{k} \frac{1}{n}\right\} \frac{1}{n}\right.$

$$
\begin{aligned}
& =\sum_{k=1}^{n} \sum_{\substack{x+=1 \\
v=1}}^{n} \Phi\left(p_{p} p_{\nu}\right) d \mu_{n}\left(P_{\mu} d \mu_{n}\left(p_{\nu}\right)\right. \\
& =\sum_{\mu \neq v}^{1 \cdots \cdots}{ }_{p}\left(r_{\rho_{\mu} \rho_{\nu}}\right) d \mu_{n}\left(P_{\mu}\right) d \mu_{n}\left(p_{\nu}\right) \\
& \left.\geq \sum_{N \neq \nu}^{1, \cdots, n} \Phi_{N}\left(r_{\mu} P_{\nu}\right) d A_{n}^{\mu}\left(Y_{N}\right) d \mu_{n} \varphi_{\nu}\right) \\
& \left.=\sum_{\mu_{1}, L} \Phi\left(r_{\mu_{\mu} p_{\nu}}\right) d \mu_{N} p_{\mu}\right) d \mu_{n}\left(p_{N}\right)-\frac{N}{n}
\end{aligned}
$$

Since the sequence $\left\{\mu_{n}\right\}$ is bounded, wo can select, if necessary, $\&$ convergent subsequence, which we denote also by $\left\{\mu_{n}\right\}$ and we denote its limiting aistribution by μ^{*}. Pirsti by $n \rightarrow+\infty$. we get from (1)

$$
\Phi\left(D^{(\$)}\right) \geqq \iint_{M} \Phi_{N}\left(r_{p}\right) d \mu^{*}(p) d \mu^{*}(q)
$$

Then by $N \rightarrow+\infty$, we get the relation
(4)

$$
\Phi\left(D^{(\Phi)}\right) \geq \int_{M} \Phi\left(r_{p q}\right) d \mu^{*}(p) d \mu^{*}(q)
$$

On
(4) $\quad D^{(\Phi)} \leqq \Phi^{-1}\left[I\left(\mu^{*}\right)\right]$

From (2) and (3), we see that μ^{*} is the one thet minimizes the energyointegral, so that by Lemma 3 of No. 7 , μ^{*} becomes one of the equilibrium-distribution $\vec{\mu}$ of the unit mass. Therefore we can write
(5) $\quad \Phi\left(D^{(\Phi)}\right) \geqq I\left(\mu^{*}\right)=I(\mu)$

In (1) by substituting μ by $\bar{\mu}$, we get

$$
\Phi\left(\mathcal{D}^{(\bar{W})}\right) \leqq I(\bar{\mu})
$$

and hence

$$
\text { (6) } \Phi\left(D^{(\Phi)}\right)=I(\bar{\mu})=\bar{V} \quad \text { on (7) } \quad D^{(\Phi)}=\Phi^{-1}[\nabla]
$$

Therefore, we obtain
Theorem 1. If the set M satisefies the conditions of Poincar ${ }^{\text {, }}$ and if $\Phi(r)$ satisfies the conditions (α), (β), and (r), then

$$
\Phi\left(D^{(\Phi)}\right)=I(\bar{\mu})=V .
$$

10. Theorem 2. If the set M and $\bar{M}(r)$ satiafy the conditions of the itheorem 1. then it holds

$$
D^{(\Phi)}=R^{i \phi}
$$

Proof. By the definition

$$
\operatorname{Mim}_{p \in M} \frac{\Phi\left(r_{p p_{1}}\right)+\cdots+\Phi\left(r_{p P_{A}}\right)}{n} \leqq \frac{1}{n} \sum_{v=1}^{n} \int_{M} \Phi\left(r_{p p_{p}}\right) d \mu(p,
$$ for any unit mass-distribution μ. Considering the maximum of the first member we get

$$
\Phi\left(R_{n}^{\left({ }^{(W)}\right)} \leqq \ell_{q \in \Omega \cdot} u_{M} b \int_{M} \Phi\left(r_{p q}\right) d \mu(p),\right.
$$

and, by $n \rightarrow+\infty$,
(1) $\quad \Phi\left(R^{(3)}\right) \leqq \ell_{q \in \Omega} u \cdot b_{i} \int_{M} \Phi\left(r_{p q}\right) d \mu(p)$

By the condition (α), we can apply the maximum principle to the second member, and (1) becomes

$$
\text { (2) } \begin{aligned}
\Phi\left(R^{(\overline{(W)})}\right. & \leqq l_{q \in M \in M} \int_{M} \Phi\left(r_{p q}\right) d \mu(p) \\
& =\ell_{q \in M} u \cdot u(q)
\end{aligned}
$$

By (2) of No, 5 and (5) of No.9, we. have, for any μ,
(3) $\quad \ell_{q \in M}^{u . b .[u(q)]} \geqq \Phi\left(\mathbb{R}^{(6)}\right)$

$$
\geqq \bar{\Phi}\left(D^{(\$)}\right) \geqq I(\bar{\mu})
$$

Using here $\bar{\mu}$ in the place of μ and remembering the relation

$$
\underset{q \in M}{\substack{ \\i \cdot b}} \int_{M} \Phi\left(r_{p q}\right) d \bar{\mu}(p)=V=I(\bar{\mu}),
$$

we get
(4) $\quad \Phi\left(R^{(\Phi)}\right)=\Phi\left(D^{(\Phi)}\right)=I(\vec{\mu})$,
1.0.,
(5) $\quad R^{(\phi)}=D^{(\Phi i)}=\Phi^{-1}[\nabla]$.

11 . Now we consider a closed and bounded set M, and denote by T ' the component of the complementary domain of M which contains the points at infinity. We approximate T by such regular regions T_{n} that $\Omega-T_{n}=F_{n}$ satisfy the condition of yoincart. As in the case of No.9, there exists a unit mass-distribution . μ_{n} on F_{n} such that $\Phi\left[R^{(\Phi)}\left(F_{n}\right)\right]=\Phi\left[D^{(\Phi)}\left(F_{n}\right)\right]=\nabla_{F_{\mu}}=W_{F_{n}}$.

Then it is evident that $\mu_{n}\left(F_{n}\right)=1, \mu_{n}\left(\Omega-F_{n}\right)=0$. The sequence $\left\{\mu_{n}\right\}$ converges to μ (1f. necessary we apply the selection theorem). and μ becomes the unit massdistribution on M. In the following sense, 1.e., for n large enough, the points outside F_{n} also ile outside H. Therefore we have $\mu(M)=1$ and
$M(\Omega-M)=0$. We denote $l_{(p, b},[u(\rho)]$
and $1(\mu)$ by V_{M} and W_{M} respectively。 As

$$
F_{1} \supset F_{2} \supset \cdots \supset F_{n} \supset \cdots \supset M
$$

we have by the property of the equili~ brium-potential

$$
\begin{aligned}
& \text { (1) } V_{F_{i}} \leqq V_{F_{2}} \leqq \cdots \leqq V_{F_{n}} \leqq \cdots \leqq V_{M}, \\
& \text { (2) } \bar{W}_{F_{i}} \leqq W_{F_{2}} \leqq \cdots \leqq W_{F_{k}} \leqq \cdots \leqq W_{M}, \\
& \text { with } V_{F_{n}}=W_{F_{n}} .
\end{aligned}
$$

Then according to the relations

$$
\begin{aligned}
& \text { (3) } \cdot V_{M} \leqq l \cdot u \cdot b[u(p)] \leqq \lim _{n \rightarrow+\infty} u_{n}(p) \\
& a n d \\
& \left(3^{\prime \prime}, W_{M} \leqq I(\mu) \leqq \lim _{n \rightarrow+\infty} I\left(\mu_{n}\right)\right.
\end{aligned}
$$

e get

$$
\text { (4) } \quad \lim _{n \rightarrow+\infty} V_{F_{n}}=\bar{V}_{M} \text { and } \lim _{n \rightarrow+\infty} W_{F_{n}}=W_{M}
$$

Therefore we have

151

$$
w_{m}=\nabla_{M}
$$

On one hand, by the propertios of $D^{(\Phi)}$ and $R^{\left(\Phi_{i}\right.}$, we have
(6) $\Phi\left[R^{(\Phi)}(M)\right] \leqq V_{M} \quad \Phi\left[D^{(\Phi)}(M)\right] \leqq W_{M}$.

In the other, considering the rela. tion (3), we obtain
(7) $V_{m}=\lim _{n \rightarrow+\infty} \nabla_{F_{n}}=\lim _{n \rightarrow+\infty} \Phi\left[R^{(\bar{T})}\left(F_{n}\right)\right] \cong \Phi\left[R^{(T)}(r)\right]$,
and

$$
\text { (7) } W_{M}^{\prime}=\lim _{n \rightarrow+\infty} W_{F_{n}}=\lim _{n \rightarrow+\infty} \Phi\left[D^{(\Phi)}\left(F_{n}\right)\right] \leqq \Phi\left[D_{1}^{\left(\Phi_{n}\right)}\right]
$$

By (6), (7) and (7^{\prime}), we have

$$
\text { (8) } \quad \Phi\left[K^{(\Phi)}(M)\right]=V_{n} \quad, \Phi\left[D^{(\Phi)}(M)\right]=W_{M}
$$

By (5) and (8),

$$
\Phi\left[R^{(M)}(m)\right]=\Phi\left[D^{(\Phi)}(m)\right]^{\}} \text {i.e } \quad R^{(\$)}(m)=D^{(M)}(\mathrm{m}) .
$$

Therefore, we obtain the
Theorem 3. If $\Phi(r)$ setfsifes the conditions $(\alpha),(\beta)$, and (γ), and M is a bounded and closed set, then we have

$$
R^{(\Phi)}(M)=D^{(\Phi)}(M)
$$

Remark. V_{M} and W_{M} are independent on the manner of approximation of the closed domain by F_{n}. and the distribution μ in Theorem 3 is the one which minimizes the energyintegral among ail the positive distributions of the unft mess.
and G.Szegö ${ }^{(3)}$ proved that $D^{\left({ }^{(3)}\right)}=R^{(\Phi)}=c^{(\text {(})}$
in the case where $\boldsymbol{\sigma}(r)=\log \frac{1}{r}$;
(ii) G.P6lya and G.Szegön showed the same relations in the case where
$\Phi(r)=\frac{1}{r}$; (111) 0. trostanan $^{(4)}$ proved the relation $D^{(\$)}=R^{(\$)}$ in the case where $\Phi(r)=\frac{i}{r^{2}}, 1 \leq x<3$
0. Frostman defined the capacity of M,
when $\bar{\Phi}(r)$ is more general one, as follows: let $\bar{\mu}$ and $\bar{\mu}(p)$ be the equilibrium-distribution of unit mass on M and its potential respectively, and put $V_{\mu}=\left\langle\cdot \mu, b, \vec{u}(p), W_{\mu}=g(t, b, i(\mu)=I(\vec{\mu})\right.$ then the capacity of M is defined by

$$
\text { (1) } \quad c^{(\Phi)}=\Phi^{-1}\left(\nabla_{m}\right)
$$

In the case (111) we have also $D^{(\alpha)}=R^{(\alpha)}$ $=C^{(\alpha)}$. Now we have demonstrated that $D^{(\alpha)}=\mathbb{R}^{(4)}$ in the case where $\Phi(r)$ sam tisfies the conditions $(\alpha),(\beta)$, and (γ). Therefore, O. Frostman's defini. tion of the capacity in the case (ivi) is natural in the sense mentioned above. But in this case, it is in. convenient that the distribution whion gives equilibriumepotential does not uniquely determined. From thiss point of view, the vallée poussin' aesimi. tion of capacity has also the same irm convenience.

Now, we consider the Theorem 3 again. First, wo have clearly u<p) $\leqq V_{M}$ 。 Secondiy, we have $I(\mu)=\int u(p) d u(p)=V_{\mu}$ If there exists a mass-point P_{0} of M such that $u\left(p_{0}\right)<V_{M}$, then by the lower semi-continulty of $u(p)$, we can take some nelghbourhood $O\left(P_{0}\right)$ of
po where u(p) is less than ∇_{m} Then we have $I(\mu)<V_{M}$, this is absurd. Hence, except a subset E of M where $\mu=0$, it must be u(p) $=\nabla_{M}$. If the capacity of E is positive, we can distribute the positive mass on E whose energy intogral is finite. And by the same method used in (i), Lemma 3, No.7, we can con. struct a unit mass-distribution ν such as If \quad ($I(\mu)$. This con* tradicts clearly with the definition of $I(\mu)$. Therefore, the capacity of
E must be zero. Thus we have:
Theorem 4. If the capacity of a bounded and closed set M is positiye and if $\Phi(r)$ satisfles the conditions $(\alpha),(\beta)$ and (T), then we have

$$
u(p)=\nabla_{M}, \quad p \in M
$$

except the point-set E whose capacity is 0 .

Remark. The potential $u(p)$ of the Theorem 4 is the equilibrium-potential on M. In all cases we have the fundamental relations;

$$
D^{(\Phi)}=R^{(\Phi)}=C^{(\Phi)}
$$

12. Relations between $D^{(\Phi)}, R^{(\Phi)}$ and the capacity.
(4) Ooncerning the relation between $D^{(i)}$, $R^{(\$)}$ and the capacity (${ }^{(\$)}$ bounde $C_{\text {, }}$ closed set M, (1) M. Fekete ${ }^{(2)}$
*) Received Feb. 11, 1950.
**) G.Pólya anc C.Szegö: nufgaben und Iehrsaetze aus der Analysis I, Berlin, 1925, p.17.
(2) G.Pólya and A.Szegö: Ueber den transifiniten Druchmesser von ebenen und raeumlichen Punktmengen; Crelies Journ. 165 (1931).
(E) M.Fekte: Veber die Verteilung der Wurzeln bel gewissen algebraischen Gleichungen mit ganzzahligen Koefrizienten. Math.Zoits", 17 (1.923)。
(3) G.Szegö: Bemerkungen zu einer arbét von Herrn M.Fekete. Math.Zeits. 21 (1924).
(4) O.Frostman: Potentiel d'équilibre et capacité des ensembles. Lund, 1935.
(5) S. Kametani and T.Ugaeri: On the Theorem of G.C.ivans in the generalized potentials, Sugaku, Vol.1, 1948.
(6) K.Kunugui: On the generalized potentlal, Sugaku, Vol.I, 1948. Gakushuin College, Tokyo.
