By Mitsuru OZAWA.

(Communicated by Y. Komatu)

1. Distribution of zero points of the kernel function.

Abstract

Prof. S. Bergman [1] introduced the concepts of the or thonormal system and the kernel function belonging to a given domain. Recently he and his cooperators, namely Schiffer, Nehari. Garabedian and others, attempted to express the several domain functions in terms of the kernel function and derived the interesting results in the theory of conformal mapping of multiply connected domains. But we have yet only few knowledges of the distribution of zero points of the kernel function. In this direction we have only an interesting result proved by Gara~ bedian-Schiffer [1] and expressed in the following manner:

(A) Let D be an $n-p l y$ connected finite domain whose boundary consists of n Jordan arcs Γ_{v}. Then the kernel $K\left(Z, 5^{*}\right)$ has $2 n-2$ zero points in D.

For later discussion we may remember the relation.

$$
\begin{equation*}
K\left(z, \zeta^{*}\right)=-\frac{2}{\pi} \frac{\partial^{2} g(z, \zeta)}{\partial z \partial \zeta^{*}} \tag{B}
\end{equation*}
$$

where $g(Z, \zeta)$ is the Green's func-
tion of D.
Theorem 1. Let a level curve $g(z, \zeta)=\lambda$ have p ramification points being counted by their order. Then $K\left(2,3^{*}\right)$ has $2 p$ zero points on this level curve.

Proof. Considering the Green's function $g_{\lambda}(2,5)$ of the subdomain D_{λ} defined by the inequality $g(z, 5) \geqq \lambda$, we obtain the identity $g_{\lambda}(z, \zeta)=g(z, \zeta)-\lambda$ for $Z \in D_{\lambda}$. Thus the relation $K\left(Z, \zeta^{*}\right)=K_{\lambda}\left(Z, \zeta^{*}\right)$ holds good. Let the subdomains $D_{\lambda-\varepsilon}$ and $D_{\lambda+\varepsilon}$ be m_{1} and $m_{2}-p l y$ connected, respectively, where ε is a sufficientiy small positive number. Then, since the level curve $g=\lambda$ have p ramification points, the equality $m_{1}-m_{2}=p$ remains true. By (A), $K_{\lambda-\varepsilon}$ and $K_{\lambda+\varepsilon}$ have $2 m_{1}-2$ and ${ }^{-\varepsilon} 2 m_{2}-2$ zero points, respectively. Thus the saltus of the number of zero points on $y=\lambda$ are $2 m_{1}-2 m_{2}=2 p$. This is the desired result.

Remark. Now a question arises:

 "whether the kernel $K\left(2,5^{*}\right)$ has the double zero points or not ?" If $n=$ 1,2, this problem is evidently solved from the other considerations. Z. Nehari [1] succeeded to express explicitly the function which maps D onto a domain bounded by n circumferences, that is, a so-called Koebe'sn-circular holes domain. He treated his problem, assuming implicitly that even if we have chosen the point $Z=\zeta$
in D arbitrarily, there are no double zero points in D, Cf. especially the expression (26) of his papar. If $h\left(2,5^{*}\right)$ has the double zero points, slight modifications are required, but these modifications can be done easily.
(This remark was pointed out by Prof.
Y. Komatu:)
2. Position of the boundaries of the canonical conformal mapping.

Berore going into details, we mention here the definitions of the several domain functions:
(a) $\varphi_{\alpha}\left(z, Z_{\infty}\right)=1 /\left(Z-Z_{\infty}\right)+a_{1}\left(Z-Z_{\infty}\right)+$
is the analytic function which possesses a simple pole with residue 1 at
$Z=Z_{\infty}$ and maps D onto the full plane furnished with parallel rectilinear silts forming a given angle α with the positive real axis.
(b) $\Phi_{\alpha}\left(Z_{\infty}, Z_{0}\right)$ is the analytic function which maps D conformally onto the full plane cut along the logarithmic spiral slits with the inclination α and satisfies the
conditions: $\Phi_{\alpha}\left(z_{\infty}, z_{\infty}, z_{0}\right)=\infty, \Phi_{\alpha}\left(z_{0}, z_{\infty}, z_{0}\right)=0$,
$\operatorname{Res}\left[z_{\infty}, \Phi_{\alpha}\right]=1$. Especially in case
$\alpha=0$ or ∞, this function coin-
cides with the well-known radial or circular slits mapping function, respectively.
(c) $\Psi\left(z, Z_{0}\right)$ is the analytic function which maps D conformaliy onto the circular disc with circular arc silits about the origin and satisfies the conditions: $\Psi^{(}\left(z_{0}, z_{0}\right)=0, \Psi^{-1}\left(z_{0}, i_{6}\right)=1$ and $\frac{1}{2 \pi i} \int_{T_{1}} d \Psi\left(\begin{array}{ll}z & z_{0}\end{array}\right)=1$.
(d) $\quad w_{\nu}(Z)$ is the analytic function whose real part is the harmonic measure $\omega_{\nu}(Z)$ of D with respect to the ν-th boundary component Γ_{ν}. and we put $w_{\nu}(z)=\omega_{\nu}(z)+1 \widetilde{\omega}_{\nu}(z)$. Let the periodicity moduli of $w_{v}(z)$ with respect to Γ_{μ} be $\mathbb{P}_{\mu \nu}$. Among
them there exist the relations $\sum_{\mu=1}^{n} P_{\mu,}=0$
and $\quad P_{\mu \nu}=P_{\nu \mu} \quad$.
These domain functions satisfy the useful functional identities, listed below for $Z \in \Gamma_{\mu}$:
(1) $\varphi_{0}\left(z, z_{\infty}\right)-\left(\varphi_{0}\left(z ; z_{\infty}\right)\right)^{*}=2 i k_{\mu_{0}}\left(z_{\omega}\right)$,
(2) $\varphi_{\pi / 2}\left(Z ; z_{\infty}\right)+\left(\varphi_{\pi / 2}\left(z ; z_{\infty}\right)\right)^{*}=2 \mathfrak{f}_{\mu} \pi / 2\left(z_{\infty}\right)$,
（3） $\lg \Phi_{0}\left(z, z_{\infty}, z_{0}\right)-\left(\lg \Phi_{0}\left(z, z_{\infty}, z_{0}\right)\right)^{\#}=2 i x_{\mu c}\left(z_{\alpha} ; z_{0}\right)$ ，
（4） $\lg \Phi_{\infty}\left(Z ; Z_{\infty}, Z_{d}\right)+\left(\lg \Phi_{\infty}\left(Z ; Z_{\infty}, Z_{0}\right)\right)^{*}=2 x_{\mu \infty}\left(Z_{\infty}, Z_{0}\right)$ ．
（5） $\lg \Psi\left(z, z_{0}\right)+\left(\lg \Psi\left(z, z_{0}\right)\right)^{*}=2 x_{\mu}\left(z_{0}\right)$ ，

> where the real quantities k and x denote the position of the image boundaries of $\Gamma_{\mu}(\mu=1,2, \ldots, n)$ and are ino dependent of z. Moreover, $\left(w_{v}^{\prime}(z) d z\right)^{*}$ $=-w_{v}^{\prime}(z) d z$ holds good for any $z \in \Gamma$. Under these preparations, we can discuss the desired problem by the contour integral methods and obtaln the following important identities.
> (r $^{\prime}$) $I_{m} w_{\nu}^{\prime}\left(Z_{\infty}\right)=\sum_{\mu=1}^{n} R_{\mu \rho}\left(Z_{\infty}\right) p_{\mu \nu}, \quad 1 \leqq \nu \leqq n-1$,
> (2') $\operatorname{Re} w_{\nu}^{\prime}\left(Z_{\infty}\right)=\sum_{\mu=1}^{n} k_{\mu \pi / 2}\left(Z_{\infty}\right) P_{\mu \nu}, 1 \leqq \nu \leqq n-1$,
> (3') $\widetilde{\omega}_{\nu}\left(z_{\infty}\right)-\widetilde{\omega}_{\nu}\left(z_{0}\right)=\sum_{\mu=1}^{n} x_{\mu 0} p_{u \nu}, \quad 1 \leqq \nu \leqq n-1$,
> (4) $\quad \omega_{\nu}\left(z_{\infty}\right)-\omega_{v}\left(z_{0}\right)=\sum_{\mu=1}^{n} x_{\mu \infty} \mathfrak{p}_{\mu \nu}, \quad 1 \Leftrightarrow \nu \leqq n-1$, $1-\omega_{1}\left(z_{0}\right)=\sum_{\mu=1}^{n} x_{\mu}\left(z_{0}\right) p_{\mu 1}$, $-\omega_{\nu}\left(z_{0}\right)=\sum_{\mu=1}^{n} \chi_{\mu}\left(z_{0}\right) p_{\mu \nu}$.

Here we attempt to apply these identi－ ties in the case of the concentric cir－ cular ring domain $q<|z|<1\left(\Gamma_{1}|z|=1, \Gamma_{2}:|z|=q\right)$ ． Remembering the fact that $w_{2}(z)$ $=\lg Z / l_{g} q_{v}+$ const．and hence $p_{22}=-1 / \lg q$ ， we obtain the following theorems which were already obtained by Prof．Y．Komatu
［1］［2］using so－called monodromy condition（＂Monodromiebedingung＂）．The proofs of identities（1＇）－（5＇）will be published elsewhere．

Theorem 2．$I_{m} 1 / Z_{\infty}=k_{2}-k_{1}$ ，where $k_{v}=k_{v 0}\left(Z_{\infty}\right)$ ．
3． $\operatorname{Re} 1 / z_{\infty}=k_{2}-k_{1}$ ，where $k_{v}=k_{v \pi / 2}\left(z_{\infty}\right)$ ．
4．$\chi_{2}-\chi_{1}=\arg Z_{\infty} / z_{0}$ ，where $\chi_{\nu 0}=\chi_{v}=\arg \Phi_{0}$ ，
5．$m l_{2} / m_{1}=\left|z_{\infty}\right| /\left|z_{0}\right|$ ，where $x_{v \infty}=\lg m_{v}=\lg \left|\Phi_{\infty}\right|$ ；
6．$m_{2} / m_{1}=1 /\left|z_{0}\right|$ ，where $x_{\nu}\left(z_{0}\right)=\lg m_{v}=\lg |\Psi|$ ；

2 being a point of Γ_{r} for 45,6

From the identities（ I^{\prime} ）－（ 5^{\prime} ）we can decide $n-1$ invariant moduli for each mapping，but slight modifications of the above discussions make us，moreover， possible to determine n invariant moduli．
＊）Received Feb．20，1950。
SoBergmen：［1］Ueber die Entwicklung der harmonischen Funktionen der Ebene und des Raumes nach Or tho gonalfunktionen．Math．Ann． 86 （1922）．238－271．
［2］Complex orthogonal
functions and conformal mapping， （in press）．
M．Schiffer：［1］The kernel function of an or thonormal system，Duke Math．Journ． 12 （1945），529－540。
（2）An application of or． thonormal functions in the theory of conformal mapping．Amer．Journ． Math 70 （1948），147－156。
P．Garabedian－M．Schiffer：［1］Identi－ ties in the theory of conformal mapping．Trans．Amer．Math．Soc． 65 （1949），187－238．
Z．Nehari：［1］the kernel function and canonical conformal maps．Duke Math．Journ． 16 （1949）．165－178．

YoKomatu：［1］Ueber Verzerrungen bed der konformen Parallelschlitzab－ bildung von zweifach zusammenhäng． enden Gebieten．Proc．Imp．Acad． Tokyo．21（1945），1－5．
［2］Zur konformen Abbild． ung zweifach zusammenhängender Gebiete．Proc．Imp．Acad．Tokyo． 21 （1945）：I，285－295；II，296－ 309：III， 337×339 ；IV， 372×377 ； V s 401－406．

Tokyo Gakuge College．

