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DEGREE FORMULAS FOR A TOPOLOGICAL INVARIANT OF

BIFURCATIONS OF FUNCTION-GERMS

NICOLAS DUTERTRE

1. Introduction

Let F = t / i , . . . Jk) : (JT,0) -> (**,0), with 1 < k < n and K = C or K =
R, be an analytic map-germ with an isolated singularity at the origin. Let g :
(Kn,0) —> (1ST, 0) be an analytic function-germ. We are interested in computing
topological invariants associated to the mappings F and (F,g).

Let Bε c Kn be a small ball centered at the origin and let δ e Kk be a small
regular value of F. The Milnor fiber of F is F " 1 (δ) ΠBε. If ifc = 1, Milnor [Mi2]
proved that F~ι(δ) ΠBε has the homotopy type of a bouquet of// (« — 1)-spheres
where

These results were extended to the case 1 < k < n by Hamm [Ha], who proved
that the Milnor fiber has the homotopy type of a bouquet of μ (n — k) -spheres,
and by Le [Le] and Greuel [Gr] who obtained the formula

μ(F')+μ(F)=dimcΘc»,o/I,

where F' = (/j,... ,/^_i) and / is the ideal generated by / j , . . . ,Λ_i and all the
kxk minors d(fu..., fk)/d{xlχ,..., xlk).

For the real case, it is difficult to give such precise informations about the
topology of the Milnor fiber. Nevertheless it is possible to compute some Euler
characteristics. For instance, if k = 1, the Khimshiasvili's formula ([Ar], [Fu],
[Kh], [Wa]) states that

X(F~l (δ) ΠBe) = l- s i g n e r deg0 VF,

where χ(-) denotes the Euler-Poincare characteristic and deg 0VF is the topo-
logical degree of the gradient of F at the origin.

It is also possible to compute the following difference

Ds,a =χ(F-ι(δ)Π{g > a}ΠB£) - ι

for (δ, α) a suitable regular value of (F, g).
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(k+l)x(k+ 1) minors
2

In [Dut2], we proved that

Dδ(χ = dim/j ΘR»i0/Ig mod2,

where Ig is the ideal generated by / j , . . . , fk and all

d(9,fi, - >fk)/d(xm - iχιk+ι)> w h i c h generalized the case g = x\ + + x2

n al-
ready shown by Duzinski et al. [DLNS]. This is a general and effective formula,
but it is only a mod 2 relation and one may ask when it is possible to get a more
precise relation.

When k = n - 1 and # = x\ -\ hx^, according to Aoki et al. ([AFN1],
[AFS]), As,o = χ(F~ι (δ) Π Bε) = dego7/ and 2 d e g o # is the number of half-
branches of F~ι(0), where

They generalized this result to the case g — xn in [AFN2] and Szafraniec gene-
ralized it to any g is [Szl]. For other results concerning the numbers of half-
branches of a real curve, the reader may refer to [Dal], [Da2], [Da3], [MvS].

When k — 1 and g = x\, Fukui [Ful] stated that Z^o = —sign(—δ)ndQg0H
where H = (i7, dF/dx2,..., dF/dxn). We gave independently a similar result for
any g such that V#(0) φ 0 in [Dutl].

Fukui [Fu2] generalizes this formula when F is a 2-parameter bifurcation of
an ^-dimensional function-germ, g depends only on the two parameters and (<S, 0)
is a regular value of (F,g). In this paper, following Fukui's method, we will
give a degree formula for D$,o in a more general setting.

First we introduce the situation and some notations. For an analytic map
F : X -» Rp on an analytic space X, we denote by Σ(F) the singular locus of F
and by Z{F) its zero locus.

Let x= (x\,...,Xp) be a system of coordinates of Rp at the origin, y —
(JΊJ ">yq)

 a system of coordinates of Rq at the origin, and z = (zi, . . . ,zw) a
system of coordinates of Rn at the origin. Let / : (Rp+g+n,0) -» (R,0) be a
(i7 + ^)-parameter bifurcation of an ^-dimensional function-germ, g : (Rp+q+n,ϋ)
- ^ ( Λ , 0 ) an analytic function and h = (hx,... ,hp) : (Rp+q+n,0) ^ (Rp,0) an

analytic map. We write #2 = (dg/dz\,..., dg/dzn) and

5Ai\

δz«

\dzχ &„/
We also use the similar notation, that is, fx, gx, hx, fy, gy, hy, / z , . . . which mean

the corresponding submatrices of the Jacobian matrices.
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We will use the following notations:

Fδ=f-ι(δ)Πh-ι(0)nBej

Fδ(g>0)=FδΠ{g>0},

Fδ(g<0)=Fδn{g<0}.

where Bε is a small ball centered at the origin and δ is close to 0.
Now we consider the map

H = H(gJ,h) : ( t f ^ O ) - (#**+", 0)

(x,y,z) ι-> (/,A,w,/J,

where m is a map (Rp+q+n,0) -> (**-*,()) defined by

(1) m = mu q = 2,

m = (mn 4 m 3 4 , wi 3 - ra24, wi4 + w 2 3 ) q = 4,

m = (ran -h m34 + m56 + m 7 8 , mi 3 - m24 - ^57 + ̂ 68,

/W14 4- m23 + ̂ 58 4- mβη,m\s - m2β + ^37

^38 - w 4 7 , m π - m2g - m 3 5 4-

4- )

where m,7 = d(g,h,f)/d(x, yh y;).
We assume that q = 2,4,8 and that # and A do not depend on z. The latter

condition implies that gz and Az are identically zero. We also assume that
(A): H is a finite map germ at 0,
(B): (δ, 0,0) is a regular value of (f,g,h) when 0 < |<$| « 1, and
(C): Z(m,fz,h)Γ)Σx c {0} near 0,

where Σx = {s e Bε \ \hx\ = 0 at s}. When /? = 0, we understand Σx = 0.
We prove (see Theorem 4.3):

degi/ - ( - I ) ' " 1 sign(-J)w{Z(^(^ > 0)) -/(^(flf < 0))}.

Then we describe the case p = n = 0. We obtain the following formula (see
Theorem 5.2):

where Sε is the sphere centered at the origin with radius ε,/- 1(0) Γ\Sε is the link
of / : (J?*,0) -> (Λ,0) and ̂  : (R9,0) -+ (Rq,0), x ̂  (f,m) with m defined by
(1) a n d m ^ % , / ) / ^ , j ; ; ) .

It is proper to mention that recently Szafraniec [Sz3] has found a new
effective method for computing topological invariants of real analytic singular-
ities. He expresses

χ(F-ι{y)ΠBε) and Dyt0

as the signature of a matrix whose entries are analytic functions in y.
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The paper is organized as follows: in Section 2, we recall some facts about
Morse theory for manifolds with boundary; in Section 3 and Section 4 are
devoted to the proof of our main result; in Section 5, we study the case p = n = 0
and in Section 6, we give some examples.

The author thanks Karim Bekka and Zbigniew Szafraniec for their advices
and for their interest in this paper. He is also very grateful to the referee for his
helpful remarks and suggestions of improvement.

2. Morse theory for manifolds with boundary

We recall the results of Morse theory for manifolds with boundary. Our
reference is [HL] where the results are given for a C 0 0 manifold M with boundary
dM. For simplicity we will present the results for manifolds with boundary of
type M (Ί {g * 0}, * e { > , < } , where M is a C 0 0 manifold and g : M -> R a C 0 0

function such that MΠg~ι(0) is smooth. In fact this is the case we need in the
following sections.

Let M be a C 0 0 manifold of dimension n. Let g : M -> R be a C 0 0

function such that Vg(x) Φ 0 for all xe g~ι(0). This implies that MΠg~ι(0) is
a smooth manifold of dimension n - 1 and that MΠ{g >0} and MΓi{g <0}
are smooth manifolds with boundary. Let / : M —> R be a smooth function. A
critical point of f]Mn{g>0} (resp. fm{g<0}) is a critical point of f]Mf]{g>o} (resp.
f\MΠ{g<o}) or a critical point of flMΠg-i{0).

DEFINITION 2.1. Let q e MΓ)g~ι(0). We say that q is a correct critical
point of flMn{g>o} (resp. f\MΠ{g<o}) if ^ is a critical point of f]MΠg-i{0) and q is not
a critical point of / j M .

We say that q is a correct non-degenerate critical point of f\Mt\{g>o} (resp.
JWn{0<o}) if ^ is a correct critical point of /jMn{^>o} (resp. /jMr%<0}) a n d 0 i s a
non-degenerate critical point of f\MV\g-ι{ϋ)-

If # is a correct critical point of /jMn{^>o} ( r esp. /jMn{^<o}) t h e n /(tf) >
) and V#(#) are colinear and there is τ(#) e/?* with V/(#) = τ(#) -Vg{q).

DEFINITION 2.2. If # is a correct critical point of f\Mn{g>o} t n e n

• V/(#) points inwards if and only if τ(q) > 0,
• V/(#) points outwards if and only if τ(q) < 0.

If q is a correct critical point of f\MΠ{g<o} t n e n

( ) points inwards if and only if τ(q) < 0,
points outwards if and only if τ(q) > 0.

DEFINITION 2.3. A C 0 0 function / : M Π {g > 0} -> R (resp. M (Ί {̂  < 0}
—>> i?) is a correct function if all critical points of f\MΠg-ι(0) a r e correct. A
C 0 0 function / : M Π {̂  > 0} -> R (resp. MΠ{g <0} -> R) is a Morse correct
function if f\Mn{g>o} ( r e s P /|MΠ{^<0}) admits only non-degenerate critical points
and if / admits only non-degenerate correct critical points.
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PROPOSITION 2.4. For all C 0 0 manifold M and for all function g : M —> R
such that Vg(x) Φ 0 for all xe g~ι(0), the set of C 0 0 functions f : M —> R such
that f\MΠ{g>o} and f\MΠ{g<o} a r e Morse correct functions is dense in CCO(M,R).

We will denote χ(M Π {g * 0} Π {/?0}), where *,? e { < , = , > } , by /,? and
we will use the following result:

THEOREM 2.5. Let M be a C 0 0 compact manifold of dimension n and let g :
M -> Rbe a C 0 0 function such that Vg(x) φ 0 for all x e g~ι (0). Let f : M -> /?
fe α C 0 0 function such that f\MΠ{g>o} and f\MΠ{g<0} a r e Morse correct. Let {pt}
be the set of critical points of f\M and {λt} be the set of their respective indices.
Let {qj} be the set of critical points of f\Mng-

l{0) and {μy } be the set of their
respective indices. Then we have

v -v - V̂  f-nλ'+ V (-λψj

g(pi)>0 τ(^)>0

y — / = (—1) \ z' 1) ' -{- ( 1) N ( — I ) 7 '

g{p,)>0 τ(^y)<0

and

v -v - V^ r_n λ + V^ r~n^/<,> /<,= - z ^ ι ^ "̂  Z^ v χ; »

g(Pi)<0 τ(^y)<0

y — y = (—1) \ / 1 j ' -|- Γ 1) \ (—1)^ ΓΊ
1 ) / ^ / J

3. Preliminaries

Before starting our work, we recall a lemma in linear algebra (for a proof,
see [Mu]).

LEMMA (LAW OF EXTENSIBLE MINORS). Let A = (aij)iJ=x^n be a square

matrix of order n. We denote by Au the corresponding minors \cnj\iej.JEj of A
for I,J a {1,...,«} with ))/ = j}/. We fix an integer k,\ <k <n, and consider
the submatrix B = (ay)i k n of order n — k+\ of A. Assume that we have
an identity between minors of B which is a homogeneous polynomial in a^ for
i,j = k,..., n. Then the homogeneous formula obtained by replacing all the
minors AJJ of B in the identity by Ajj is also true, where I — {1, . . . , fc — 1} U /,
and / = {1,. ..,&— 1} U /. We remark that the Oth minor 1 of B in the identity
is replaced by AKiK, K = {\,... ,k — 1}, so that the new formula becomes
homogeneous. •
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First we characterize Σ{g\Fδ\Z^). For subsets X, Y and Z of Bε, we say
X = Y except Z if X\Z = Y\Z. We set

' Gx Qy

Σ = ^ 5 G £ ε I r a n k ( A * /^ | < p + 2 a t s

LEMMA 3.1. Σ(g]Fδ\Z{g)) = FδnΣΠZ(fz) except Z(g), when 0 < |<$| « ε « 1.

Proof. Let X denote the set Z(h) Π Σ(g, h)\(Σ(h) U Z(gf)). Let s G
This means that s e Fs\Z(g) and

rank Ax hy 0 </? + 2 at J.

If there exits ke{l,...,n} such that fZk{s)φQ, then rank(^ ^) </? + 1 at

51 and seX, since (5,0) is a regular value of (/, h) by condition (B). So it is
enough to show that I c { 0 } for sufficiently small Bε. If X contains points
nearby 0, there exists an analytic curve γ : [0, v[—> X, γ(0) — 0. Since γ(ή is in
Z(h) for ί # 0 , we have that <VA/(y(0),/(0> = ° f o r 7 = 1 , . . . , P Because
γ(ή eΣ(gJh)\Σ(h) for ί # 0, Vgf, Vh\,...,Vhp are linearly dependent along y(f).
Thus there exists αy5 y = 1,...,/?, so that V̂  = Σj=\ tyVty a l ° n g H 0 Then we
obtain

7=1

and thus y(t) e Z(g), which is a contradiction. This implies that Σ(g\Fδ\Z{g)) is
included in / ^ Π Σ Π Z ^ ) . The inverse inclusion is obvious. •

LEMMA 3.2. Σ = Z(fh) except Σx where m — {mίj)\<hJ<q>

Proof. It is clear that ΣaZ(m). N o w let s e Z(rh)\Σx. Then rank(A^)

= p at s. If there exists / e { 1 , . . . , q} such that rank \hx hfι = p + 1 at s,

IQx 9y\

then since for all j φ i, mz, = 0 at s, rank \ hx hy = p 4- 1 at s and
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/ 9χ 9y, \

seΣ. If for all / e {1, ...,</}, r a n k l e hyι ] = p at s, then it is clear that
\Λ Jyt/

rank! hx hy I = p at s and s eΣ. Hence Z(m) — Σ except Σx.
U fyj

D

LEMMA 3.3. Fδ Π Z(m, / J = /$ Π Z(m, / z) Σx.

Proof. The case # = 2 is trivial. It is clear that Z(m) c Z(m). Now let
se (FδΓiZ(m,fz))\Σx. Condition (B) implies that (J,0) is a regular value of

(/,A), that is rankfΛ; A; °) = /? + 1 at s and so, rankfΛ; hΛ = p + 1
V Λ Jy J-J \Jχ Jy/

at s for / z vanish at s. Since ^ ^ Σ x , rankί A χ j = p at s and there exists

/ e {1,. . . , q} with rankf Λf Λ^ ) = j9 4-1 at Λ . We can assume that / = 1. If
V Λ Jyi J

we write f = h) hlι , we obtain that:

Jx Jyt

(2) Wy = (fj-mii — fiTn\j)/f\ at Λ , 1 < / < j < q.

When p — 0, this comes from the expansion along the first row of

Qyχ gy\ gyj . Applying the Law of Extensible Minors, we obtain the formula
Jy\ hi Jyj

(2) for general p.
We first consider the case q = 4. Because of (2), we have

A -U h
where A = — / 4 /; - / 2

!

.-/3 Λ /.

Since |Λ| = (/? + /f + /f + /^//f > 0 at s, mn = mn = ml4 = 0 at s and, by
(2), niij = 0 at 51 for 1 < / < j < q, which means that s e Z(m).

When q — 8, similar computations shows

/i - Λ h -U fs ~fs fi \
Λ A -h fi -fi ~fs h
~h fi f\ ~fs ~fi fβ fs
h -fi h A -fi h -h
-fs k fi fi A - Λ -h
f% fs —fs ~fi Λ A —fi

\-fi -fs -fs Λ fi h A )
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and we have to show that \A\ > 0 at s. Actually, we will prove that \A\ =

f 2 3 f
2 ) 3(Σf=i/i2)3//f Let us consider the following matrices

/l

Λ "
-Λ «
Λ «
-Λ «
Λ "

\-fτu

-Λ «
Λ

Λ "
-Λ κ
Λ "
Λ «

Λ «
-Λ «

Λ
Λ "
Λ K

-Λ "
-Λ « -Λ

-Λ "
Λ "
-Λ «

/l

Λ "
-Λ κ
Λ "

Λ -Λ "
- / 5 «

Λ "
Λ κ
-Λ "

Λ
Λ "

and let P : /? -> /? be defined by P{u) = |Λ(κ)|
a polynomial function in u and that P(\) =
compute P(w) for any u. Setting

-Λ «
-Λ «

Λ
Λ «
Λ «

for we/?. It is clear that /* is
/ί| and P(0) = 1. Now let us

Λ i

Λ =
-Λ
-Λ
-Λ

Λ

\

/

B(u) =

we obtain

0 A(u)

1 frWfi
φ(u)IΊ

where φ(u) = 1 + (Σ*=2(fι uΫ)/f\ a n d 7̂ is t n e u n i t niatrix of order 7. This
equality comes from the fact that *2?(W)2?(M) = (<LZ (M),L/(M)» where L,(w)
denotes the /ίΛ column of B(u) and <, > is the usual scalar product in Rs. Then
we have

P(u)2 = \A(u)\2 =

and, expanding this determinant along the first row and the first column, we
obtain P(u)2 = φ(u)6, which implies that P has no real root and so keeps a con-
stant sign. Since P(0) = 1, we can conclude that \A\ = ^(l) 3 = (Σ,8=i f}f If\.

D

LEMMA 3.4. Σ(glFλZ(g)) = (Fδf) Z(m, fz))\Z{g).

Proof. By the three previous lemmas, we have

Z(g\Fί\zJ=FδnZ(m,fz) except Σx\JZ(g).

But condition (C) implies that Z(m,fz,h) ΠΣxΠf~1(δ) = 0 when 0 < |<5| « 1 .

D

Keeping the notations introduced in the proof of Lemma 3.3, we write
hx h. for 1 < j <
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LEMMA 3.5. Let s eΣ(g\Fδ\Z{g)) Then fx(s) φO implies that g\(s) ̂  0.

Proof By condition (B), s e Z(h)\Σ(h) and then sφZ(g,h) otherwise g
would vanish at s, as proved in Lemma 3.1. This implies that there exists ie
{!,...,#} with gi(s) ΦO. Now we see the following

01 Gi

Ά L
at s.

This is obvious when p = 0. The case p > 0 is obtain by applying the Law
of Extensible Minors to the case p — 0. Since s eΣ(g\Fδ\Z{}), we have that
mu{s) = 0. If 0i (s) = 0 then fx (s) x gt{s) = 0 and fx (s) = 0.' Π

From now on, we assume that seΣ(g\Fδ\Z{g)) and fx(s) φ 0. We set y1 —
(y2i- >yq) % t n e Implicit Function Theorem, there exists a map

cp : Λ^"- 1 ^RPxR, (/,z) ̂  (^( j ' ,z) , p,(/,z)),

defined by some domain so that the image of the map (y\z) \-^ (φx(y',z),
φ{(yf,z),y',z) covers a neighborhood of s in Fs. We denote by / the Jacobian
of H, and set

LEMMA 3.6. The function g\Fδ has a Morse critical point at s if and only if
H(s) = (0,(5,0) and J(s) φ 0. In that case

-i ί-Q\\n

sign Hess(G) = (—l)p sign(/) x sign —— I at s.

\ h J
Proof Let m = (mn,... ,m\q), H = (h,fyfh,fz) and J be its Jacobian.

. Let μ= (μu...,μn) andFor k e {1,...,«}, let μk =
9χ

hx

fx

Qy\

hyχ

fn

0

0

4

hy hz \

fx Λ

As Szafraniec does in [Sz2], we obtain

Hess(G) =

hence

rp+q+n-
J \

-\B\ at s,

Hess(G) =
J

\B\ at s.
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For k e {1,...,/!}, μk= fZ = {-\)pfZk gλ. By differentiating this

equality and using the fact that fZk (s) = 0, we obtain that

\B\ = (-\yxnxgn

ιxJ at s,

which gives

Since q is even, it remains to prove that sign(/) = sign(7) at s. When q = 2,
this is trivial. For the other cases, we consider the matrix A so that ιm = A^.
Then we have

/ I 0 OX

H=lθ A 0\H.

\0 0 1/

Differentiating this equality and using the fact m(s) = 0, we obtain J =\A\J. As
we mentionned in the proof of Lemma 3.3, \A\ is strictly positive at s which
concludes the proof.

LEMMA 3.7. If fxφ0 at s then sign(gf//) = sign(#i//i) at s.

Proof We assume that there exists an analytic curve γ: [0,1] -^ Z(h,fz)
ΠΣ, t ̂  γ(t) with y(0) = 0 and y(l) = j . Since fx(s) Φ 0 and gλ(s) Φ 0, we can
assume that fx and gfi do not vanish along γ(ή, t φ 0. Since hj(γ(ή) =0, j =
1,..., /? we obtain that

1 = 1 OTz Ar=l ^ ^

where ' denotes the derivative by ί, ξt = (xt o γ)\ ί— 1,...,/?, ^ = ( ^ o y)7,

A: = 1 , . . . , q. We also have

<«>

Then, solving (3) and (4) by Cramer's rule, we obtain

J2
k=2

A
where xt = (x\,..., x,_i, xι+\ ,...,xp). Then we obtain that
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SO

0' = ̂ / ' along γ(t).

This implies the lemma. Π

LEMMA 3.8. Assume that s is a non-degenerate critical point of g\Fδ such that
g(s) φ 0. Then

1. if g(s) > 0 then the function g\Fδ has even (resp. odd) index at s if and only
if H has local degree (-\)p~l sign(-<S)w (resp. (-\)p ύgn(-δ)n) at s,

2. if g(s) < 0 then the function g\Fδ has even (resp. odd) index at s if and only

if H has local degree (—l)p~ι signδ" (resp. (— \)p signδn) at s.

Proof. The proof is just a combination of the two previous lemmas. •

4. Main result

We will use Morse theory for manifolds with boundary. We need the two
following lemmas.

LEMMA 4.1. Assume that (δ,0) is a regular value of (f,h) for 0 < \δ\ «
ε«l. Then

• All correct critical points of g\Fδ with g > 0 point outwards.
• All correct critical points of g\Fδ with g < 0 point inwards.
• There are no correct critical points of g\Fδ with g = 0.

Proof. We prove the first point, the second will follow considering the
function — g. Recall that Fo = Z(f,h)f)Bε. Let ω be the Euclidian distance
function and let

X = <XE F0\{0} Π {g(x) > 0} I there exist λ, λ\,..., λp and μ

p \

with Wg = λVf + y ^ λiVhi + μVω and μ < 0 }.

It is a subanalytic set. If 0 e X, we apply the curve selection lemma (cf [Mi2]).
There exists γ : [O,£o[-* X analytic such that y(0) = 0. Then we have (g o y)r =
<yg(y),γ'y and

z = l
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We have <V/(y), / > = 0 for / o γ = 0. Similarly for / e {1,...,/?}, <VA/(y), / >
= 0. Since <Vω(y),/> > 0 for t e [O,βo[, we will have

goγ' < 0 for r e [O,βo[.

The function g o γ is decreasing and so, for all t e [O,εo[, 0 ° KO < 0 ° y(0) = 0.
But # > 0 along y(ί) so 0 <£ X. We can choose ε sufficiently small such that
correct critical points of g\F0\{0} point outwards. Choosing δ sufficiently close to
0, correct critical points of g\Fδ will also point outwards.

We prove the third point with the same ideas considering the sets

Y> = <x e Fo\{O} Π Z(g) | there exist λ,λ\,... ,λp and μ

p Λ

with Vg = λVf + Σ λιVhi + ̂ V ω and // > 0 L
ι=\ J

and

7 < = ixE F0\{0} Π Z(gf) I t h e r e exis t λ , λ u . . . , λ p and μ

P Λ

with Wg = λVf + ^ A, VA/ 4- //Vω and μ < 0 L
ι=l J

and proving that 0 ^ 5 ^ and that 0 ^ F^. D

LEMMA 4.2. 7/" /A r̂e exists δ such that (<5,0) ẑ  a regular value of (/, A)
we can choose δ small enough and we can perturbe f into f in such a way that g^
has only Morse critical points in Fs\g~l(0), where F$ denotes f~ι(δ)ΠZ(h)Γ\Bε.

Proof We give the proof for p = 0 and q = 2. The proof of the general
case is just an adaptation. Let

(yx, y2\ z\,..., zn\ u\, w2; h, , Q = (j>; z; w; ί)

be a coordinate system of R2+n x i? 2 +" and let

F(y,z,u,ή =f(y,z) +u\yι Jru1y1

Jrt\Z\ Λ Ytnzn,

We have for i e {1, . . . , Λ), .FZ, = /Zί + ^. We also have

Write Mu = d(G,F)/d(yt,y2) and X = Z(Mu,FZl,...,FZ,). Let
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/ Mχ2y MX2z \

Fz

Γ =

It is the Jacobian matrix of (Mn,FZlJ... ,FZn) : R2+n x R2+n -> Rn+ι. It is a
(n + 2) x 2(« + 2) matrix which has the following form

/ * ••• * Gyι Gy2 0 ••• 0\

* . . * 0 0 1 . . . 0

\ * . . . * 0 0 0 1/

Now let

π : R2+n x

and let us call π its restriction to X.
If X is included in G~ι(0) then for all (δ,u,t)eRn+\ vrι{δ,u,t) a G~\θ)

and this means that for all (δ,u,ή eRn+3, 9\f-\($y where fUjt(y,z) = F(y,z,u,t),
has no critical point in {g Φ 0} so 9\f-\s) ι% a Morse function in {g φ 0}.

If X is not included in G - 1 (0) then Z\G~1(0) is a manifold of dimension
2(2 + Λ) - (Λ + 1) = n + 3 because for all (j;, z, w, ί) e ^ G " 1 (0), Gyι (y, z, u,t) ΦO
or Gy2(y,z,u,ή φθ and then rank Γ(j>,z,κ,ί) = « + 1, so Jf\G - 1(0) is included
in the set of regular points of X. By Bertini-Sard theorem we can choose (5, w, i)
near 0 in Rn+3 such that π is regular at each point in π~ι(δ,u,t)Π(X\G~ι(0)).
This means that 9\f-\s) ι s a Morse function in {g φ 0}. •

THEOREM 4.3. Suppose that f,h,g satisfy conditions (A), (B) and (C).

deg/7 = (— l)p~ι sign(— δ)n{χ(Fs(g > 0)) — χ(Fs(g < 0))}.

Thanks to condition (A), 0|FO\{O} has no critical point and then
choosing δ sufficiently small, we can suppose that g\f-us)nz(h)n{ω<ε} admits its
critical points in Fs Π Bε/4 because transversality is an open property. Thus the
critical points of 9\f-\s)nz(h)n{ω=ε} a r e c o r r e c t critical points. By the two
previous lemmas, we can assume that g\Fδ is a correct Morse function, that its
critical points are lying within Bεβ, that the correct critical points of g\Fδ where
g > 0 (resp. g < 0) point outwards (resp. inwards) and that there are no correct
critical points of g\Fδ where g = 0. We apply Theorem 2.5 to the manifold with
boundary F$(g > 0) and we get

χ{Fδ(g > 0),Fδ(g = 0)) = n+
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where n+(g+) (resp. n-{g+j) is the number of non-degenerate critical points with
even (resp. odd) index of g\Fδ(g>o) I*1 the same way, we have

χ{Fδ{g < 0),Fδ(g = 0)) = {-\)n+c -\n+{g^) - n-{g.)),

where n+(gJ) (resp. «_(#_)) is the number of non-degenerate critical points with
even (resp. odd) index of g\Fό(g<o)

We have

degi/= ] P sign/(j)
seH~ι{ε)

where ε is a regular value of H.
By Lemma 3.6, s is a critical point of g\Fδ if and only if H(s) = (0,5,0).

Hence H~ι{(0,δ,0)} is the set of critical points of g\Fδ. Since g\Fδ is a Morse
function, its critical points are non-degenerate and by Lemma 3.6, J(s) φ 0 for
seH-ι{(0,δ,0)}. We conclude that (0,5,0) is a regular value of H and

degH= ] P signJ(s).
seH~ι (0,̂ ,0)

Conbining this with the above equalities and Lemma 3.7, we obtain the formula.
D

Now, if we replace condition (B) by the weaker following condition:
(B'): (5,0) = (5,0) is a regular value of (/,/*) when 0 < \δ\ « 1, we obtain

THEOREM 4.4. Suppose that f,h,g satisfy conditions (A), (B') and (C).
Then

degT/ = ( - I ) ' " 1 sign(-5)rt{/(^(^ > 0)) -χ(Fδ(g < 0))} + ^ > 0 ) ,

with μ^o) = J2ι deg^//"(^,/,A) wΛere f̂ w α suitable perturbation of g such that
g\Fδ is a Morse function and where the qt are the non-degenerate critical points of
glFδ lying near Fδ(g = 0).

Proof Choose α > 0 close to 0 such that 0 is the only critical value of g\Fδ

in [—α, α]. Then

χ(Fδ(g > aί),Fδ(g = α)) = χ(Fδ(g > 0),Fδ(g = 0)),

and

χ(Fδ(g < -a),Fδ(g = -α)) = χ(Fδ(g < 0),Fδ(g = 0)).

Replacing / by a suitable perturbation if necessary we obtain

χ(Fδ(g > 0),Fδ(g = 0)) = n+(ga) - /i_(^α),

where n+(gOί) (resp. n-(g0L)) is the number of non-degenerate critical points with
even (resp. odd) index of g\Fδ(g><x)- Similarly, we have

χ(Fδ(g < 0),Fδ(g = 0)) = ( - l ) ^ " 1 ^ ^ ) - M0- α )) ,
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where n+(g-a) (resp. w_(#_α)) is the number of non-degenerate critical points with
even (resp. odd) index of g\Fδ(g<_ay Now we perturbe g into g in a neigh-
borhood of Fs(g = 0) ΓiBε/2%in such a way that ^ is a Morse function near
Fs(g = 0). Then we will have

deg H = Σ J^ + Σ deSqβ(d, f, h),
seH-ι(O,δ,O)/\g(s)\>oc ι

where the points qt are the critical points of g\Fδ lying near {g = 0}. We conclude
as in the previous theorem. •

Remark 4.5. When p = 0, condition (C) is trivially satisfied.
• When q = 2, Σ = Z(m) and condition (C) is clearly useless.

5. A formula for the link in dimension 2, 4 and 8

In this section, we study the case p = n — 0. We consider a coordinate
system ( j i , . . , ^ ) , # = 2,4,8, of Rq. and we define

where m is defined by formula (1), with my- = d(g^f)/d{yi,yJ), \ <i,j <q.

Keeping the previous notations, we get

THEOREM 5.1. Let δ be a small regular value of f and let a such that |α| « \δ\
and (δ, α) is a regular value of (f,g). If 0 is isolated in H~ι(0) then

-degH = χ(Fs(g > α)) - χ(Fδ{g < α))

Proof In Lemma 3.6 the relation between Hess(G) and 7 at a Morse
critical point s of g\Fδ becomes

Hence sign Hess(G!) = — sign(/) at s. It is enough to use this relation and the
proof of Theorem 4.4. •

As a consequence, we get

THEOREM 5.2. If 0 is isolated in H~ι(0) then

where Sε is the sphere of radius ε.

Proof Consider the manifold with corners M = f~x (δ) f){g >oc}Γ)Bε

where δ and α are chosen as in the previous theorem. Let
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Smoothing the corners, there exists a compact manifold with boundary M such
that dimM = dimM and (AT, dM) is diffeomorphic to (M, dhf). Hence χ(M) =
χ(M) and χ(dM) = χ(dM). But M is odd-dimensional so χ{dM) — 2χ(M) and
then χ(dλl) = 2χ{M).

Now, by Mayer-Vietoris Sequence,

χ(dM) = χ(f~ι (δ) Π {g > a} Π St) + χ(Γι (δ) Π g~ι (α) Π ft)

The latter Euler characteristic vanishes since Z" 1 ^) Γ\g~ι(a) ΠSε is compact, odd-
dimensional and smooth for sufficiently small δ and α. So we get that

2χ(Γl(S) Π {g > a} ΠBε) = χ{Γ\δ) ΓΊ {g > a} ΠSε) +χ{Γ\δ) ί\g-\aι) ΠBe).

Similarly, we see that

2χ(Γ' (δ) Π {g <a) Π Bt) =χ(Γ1 (δ) n {g < α} Π St) + x{f~l(δ) Π g~ι (α) Π ft),

so, by Theorem 5.1,

Now Lemma 4.1 tells us that /^(O), g~ι(0) and *Sε intersect transversally so,
since δ and α are sufficiently close to 0, we obtain that

x(Γι (0) n {g > 0} n se) -χ{Γι (O) n {g < 0} nsε) = -2 degjϊ. D

6. Examples

Here are some examples.

6.1. Example 1.

Let f,h,g:Rβ—>R be defined in the following way

g(x,yι,y2,zuz2,z3) = yλ + y2.

Let δ > 0 be such that -5 is a regular value of/ We show that (-5,0) is a
regular value of (/,A). The Jacobian matrix of (/,A) is

2x z2 z3 2zi 2z2 + yλ 2z3 +

0 y2 yλ 0 0 0

Let /? be a point in f~ι(—δ)Γ\h~ι(0). If ^^2 — y2z3 = 0 at p then, since
j j jμ2 = 0 at p, f(p) — z\ + z\ + z\ + x2 > 0, which is impossible. Thus if p
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belongs to f~ι(—δ) Πh~ι(0) then yxz2 — y2zi Φ 0 and (—δ,0) is a regular value of

Now / (— δ)f)h ι(0)Γ\g 1(0) is empty because if p belongs to this in-
tersection then y{ = — y2 = 0 and f(p) > 0, which is impossible.

Let H = (f,h,d(g,f,h)/d(x,yι,y2);fZιJZ2JZ3). We have

H{x, yλ, j>2, z\, z 2 , z 3 ) = (z 2 + z\ + z | H- x2 + ^ z 2 -f

It is easy to see that 0 is isolated in H~ι(0) and we can apply Theorem 4.3 and
get

degtf = -{χ(F.δ(yι + y2> 0)) - / ( i 7 - ^ + y2 < 0))}.

Let us compute deg/f. We have

J(H) =

An easy computation gives

J(H) = 32x2(y2 + yλ) + 8(j 2 - yλ){-y\ + ^2

2).

Let e = (0,0,//, 0,0,0) with // > 0. Then peH~ι(ε) if and only if

z\+z\ + z\ H- X2 + JlZ2 + J2^3 = 0,

2x
0

0

0

0

yi

ι -2x

0

1

0

JΊ
2x

0

0

1

2zi

0

0

2

0

0

2z 2 + j>:

0

0

0

2

0

i 2 z 3 4

0

0

0

0

2

2zi - 0,

2z2 + yx = 0,

2z3
= 0.

If jμj = 0 then z2 = 0 and 2xj>2 = η. Moreover z3 = -y2/2 and z 2 + J^2z3 =
—j>2/4. Hence x2 — y\/A = 0 which implies that x = ± ^ 2 / 2 . Since η > 0,
we have x = y2/2 and j f = η. Finally we have found that

Similarly we find
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It is easy to see that ε is a regular value of H and that deg H = 0. Hence

χ(F_δ(yx + y2 > 0)) - χ{F-δ{yx + y2< 0)) = 0.

6.2. Example 2.

Keep / and h as in the first example. Let g = x2. It is clear that when
g — 0, V# = 0 and (— δ, 0,0) is not a regular value of (f,h,g).

Let H=(f,h,d(g,f,h)/d(x,yuy2y,f2ιJZ2JZ3). We have

# 0 , ^!, y2,Zχ, Z2, Z3) = (zf + z | + Z3

2 + X2 + 7^2

It is easy to see that 0 is isolated in H 1(<S) and we can apply Theorem 4.4 and
get

deg// = -{χ(F_δ(x2 > 0)) - χ(F_δ{x2 < 0))} + / / M ι 0 ) .

Let us compute deg//. We have

2x z2 z3 2zi 2z2 + yx 2z3 + y2

0 y2 yx 0 0 0

2 θ i z 2 - y2z3) 2xz2 -2xz3 0

0 0 0 2

0 1 0 0

0 0 1 0

An easy computation gives

= \6x2(y% - 2y2z3 + y\ - 2yxz2) -

/(//) = 2xyx

0

2

0

-2xy2

0

0

2

- y2z3)(-y2

Let e = (α,^, 0,0,0,0) with ocJ>O. Then peH-{(ε) if and only if

Z2

- ^2Z3) = 0,

2z! = 0,

2z2 + yx = 0,

2z3
= 0.

If x = 0 then, since z2 = -yx/2 and z3 = -y2/2, we get - ^ - y\ = 4α, which is
impossible because α > 0. So if peH~λ{ε) then x ^ 0 and yxz2 — y2z3 = 0.
Since z2 = - J i / 2 and z3 = -y2/2, we obtain y\ = y\. But yff > 0 and yx and j 2

have the same sign. Finally we find that yx = y2 = ±y/β, x2 = α + /?/2, which
we write x 2 = y, and
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Now it is easy to see that ε is a regular value of H and that deg 7/ = 4. Thus we
find

-χ(F-s) +χ(F-s(x = 0)) +μ M ,o) = 4.

6.3. Example 3.

Let f(yuy2, J^ y*) = y\ + y\ + y\-y\ and
Let /f be defined as in Section 5. We have

3, -4y2y4).

Clearly i/" 1 (0) = 0. Furthermore deg H = 0 because //-1 (0, β 0,0) = 0 if β > 0
and Theorem 5.2 gives

ήΓx (0) n {g > o} n 5ε

3) - *(/-'(<>) n {^ < 0} n 5ε

3) = o

where 5ε

3 is the 3-dimensional sphere with radius ε.
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