TANGENT SCROLLS IN PRIME FANO THREEFOLDS

Atanas Iliev and Carmen Schuhmann

Abstract

In this paper we prove that any smooth prime Fano threefold, different from the Muka1-Umemura threefold X_{22}^{\prime}, contans a 1-dimensional family of intersecting lines. Combined with a result in $[\mathrm{Sch}]$ this implies that any morphism from a smooth Fano threefold of index 2 to a smooth Fano threefold of index 1 must be constant, which gives an answer in dimension 3 to a question stated by Peternell.

§1. Introduction

1.1. A smooth projective variety X is called a Fano variety if the anticanonical bundle $-K_{X}$ is ample. Then the index of X is the largest positive integer $r=r(X)$ such that $-K_{X}=r H$ for some line bundle H on X.

The smooth Fano threefold $X=X_{d} \subset \boldsymbol{P}^{g+1}(d=\operatorname{deg} X)$ is called prime if $\rho(X)=\operatorname{rank} \operatorname{Pic}(X)=1, r(X)=1$, and $-K_{X}$ is the hyperplane bundle on X. By the classification of Fano threefolds smooth prime Fano threefolds exist iff $3 \leq$ $g \leq 12(g \neq 11)$, and then $d=2 g-2$ (see [I1]).
1.2. (see $\S 4.2$, $\S 4.4$ in [IP], or $\S 1$ in [I2]). Let l be a line on the smooth prime Fano threefold X, and let $N_{l / X}$ be the normal bundle of $l \subset X$. Then
(1). either (a). $\quad N_{l / X}=\mathcal{O} \oplus \mathcal{O}(-1)$; or (b). $\quad N_{l / X}=\mathcal{O}(1) \oplus \mathcal{O}(-2)$.
(2). The Hilbert scheme \mathscr{H}_{X} of lines on X is non-empty, any irreducible component \mathscr{H}_{o} of \mathscr{H}_{X} is one-dimensional, and either \mathscr{H}_{o} is non-exotic, i.e. $N_{l / X}$ is of type (1)(a) for the general $l \in \mathscr{H}_{o}$; or \mathscr{H}_{o} is exotic, i.e. $N_{l / X}$ is of type (1)(b) for any $l \in \mathscr{H}_{o}$.
(3). The component \mathscr{H}_{0} is exotic if either the elements $l \in \mathscr{H}_{o}$ sweep out the tangent scroll $R_{o} \subset X$ to an irreducible curve $C \subset X$; or $g=3$ (i.e. $X=X_{4}$ is a quartic threefold), and then the lines $l \in \mathscr{H}_{o}$ sweep out a hyperplane section $R_{o} \subset$ X_{4} which is a cone over a plane quartic curve, centered at some point $x \in X_{4}$.
1.3. For example, the scheme \mathscr{H}_{X} of the Fermat quartic $X=X_{4}=$ $\left(x_{0}^{4}+\cdots+x_{4}^{4}=0\right)$, which is a prime Fano threefold of $g=3$, is a union of 40 double components each of which is of type (1.2)(1)(b) (see Remark 3.5(ii) in [I1]).

Received September 7, 1999; revised March 21, 2000.

The only known example of a prime Fano threefold X of $g \geq 4$ such that \mathscr{H}_{X} has an exotic component \mathscr{H}_{o}, is the Mukai-Umemura threefold X_{22}^{\prime}. The scheme $\mathscr{H}_{X_{22}^{\prime}}=2 \mathscr{H}_{o}$ and the surface R_{o} is the hyperplane section of X_{22}^{\prime} swept out by the tangent lines to a rational normal curve $C_{12} \subset X_{22}^{\prime}$ of degree 12 (see [MU]).
1.4. By a theorem of Kobayashi and Ochiai the index $r=r(Y)$ of a smooth Fano n-fold Y can't be greater than $n+1$; and the only smooth Fano n-folds of $r \geq n$ are \boldsymbol{P}^{n} for which $r=n+1$ and the n-dimensional quadric Q_{2}^{n} for which $r=$ n (see e.g. [Pe], p. 106). In particular, except P^{3} and Q_{2}^{3}, any smooth Fano 3fold must have index $r \leq 2$.

It is shown by Remmert and Van de Ven (for $n=2$) and later by Lazarsfeld (for any n) that the projective space \boldsymbol{P}^{n} does not admit surjective morphisms to a smooth projective n-fold $X \neq \boldsymbol{P}^{n}$ (see [RV], [L]). The same is true for morphisms $f: Q_{2}^{n} \rightarrow X \neq \boldsymbol{P}^{n}, Q_{2}^{n}$ (see [PS]). In particular, \boldsymbol{P}^{3} and Q_{2}^{3} do not admit surjective moprphisms to smooth Fano threefolds X of smaller index $r(X)$.

Let $f: Y \rightarrow X$ be a non-constant morphism between smooth Fano 3-folds of $\rho=1$. By Kor. 1.5 in [RV], $\rho(Y)=1$ implies that f must be surjective, and by the preceding $r(Y)$ can't be ≥ 3. Therefore $r(Y)=2, r(X)=1$. This gives rise to the following question stated originally by Peternell (see (2.12)(2) in [Pe]).

Question (Pe). Are there non-constant (hence surjective) morphisms f : $Y \rightarrow X$ from a smooth Fano 3-fold Y of $\rho(Y)=1$ and $r(Y)=2$ to a smooth Fano 3-fold X of $\rho(X)=1$ and $r(X)=1$?

In this paper we give the expected negative answer to (Pe).
Let $f: Y \rightarrow X$ be as above, and assume that f is non-constant. Then f must be surjective and finite since $\rho(Y)=1$ (see Kor. 1.5 in [RV]). Therefore $f^{*}: H^{3}(X, C) \rightarrow H^{3}(Y, \boldsymbol{C})$ will be an embedding, in particular $h^{3}(X) \leq h^{3}(Y)$ (see also [Sch]). For any Fano threefold $h^{3,0}=0$ and $h^{3}=2 h^{2,1}$ since the anticanonical class is ample. Therefore $h^{2,1}(X) \leq h^{2,1}(Y)$. Since $h^{2,1}(Y) \leq 21$ for any Fano 3 -fold Y of $r=2$ (see [I1]), then the existence of a non-constant morphism $f: X \rightarrow Y$ as in (Pe) implies that $h^{2,1}(X) \leq 21$. This gives a negative answer to (Pe) whenever $h^{2,1}(X)>21$.

The only smooth non-prime Fano threefolds of $\rho=1$ and $r=1$ are the sextic double solid X_{2}^{\prime} and the double quadric X_{4}^{\prime} for which the answer to (Pe) is negative since $h^{2,1}\left(X_{2}^{\prime}\right)=52>21$ and $h^{2,1}\left(X_{4}^{\prime}\right)=30>21$. By the same argument the answer to (Pe) is negative also for the quartic threefold X_{4} since $h^{2,1}\left(X_{4}\right)=30>21$. Any other smooth prime Fano threefold $X=X_{2 g-2} \subset \boldsymbol{P}^{g+1}$, $4 \leq g \leq 12, g \neq 11$ has $h^{2,1}(X) \leq 20$ (see [I1]).

In $[\mathrm{Sch}]$ is given a negative answer to (Pe) provided X contains a conic of rank 2 (a pair of intersecting lines). The only known Fano threefold X of $\rho(X)=1$ and $r(X)=1$ without intersecting lines is the Mukai-Umemura threefold $X=X_{22}^{\prime}$, and a negative answer to (Pe) in case $X=X_{22}^{\prime}$ is given by E. Amerik (see [Sch]).

Therefore, in order to give a negative answer to (Pe), it is enough to prove the following

Proposition (B). Any smooth prime Fano threefold $X_{2 g-2} \subset \boldsymbol{P}^{g+1}, 4 \leq$ $g \leq 12, g \neq 11$, different from the Mukai-Umemura threefold X_{22}^{\prime}, contains a 1dimensional family of conics of rank 2.

In Section 2 we prove Proposition (B) for $4 \leq g \leq 9$ on the base of the following technical

Lemma (A). A smooth prime Fano threefold $X=X_{2 g-2} \subset \boldsymbol{P}^{g+1}, 3 \leq g \leq 9$ can't contain the tangent scroll $S_{2 g-2}$ to a rational normal curve C_{g} of degree g.

By a result of Yu. Prokhorov, the only smooth prime $X=X_{2 g-2}, g=10,12$ such that the scheme of lines \mathscr{H}_{X} has an exotic component is the MukaiUmemura threefold X_{22}^{\prime} (see [Pr]). This implies Proposition (B) for $g=10,12$. Indeed, let $X=X_{2 g-2}$ be a smooth prime Fano threefold such that the scheme of lines \mathscr{H}_{X} on X has a non-exotic component \mathscr{H}_{o}. Then, by Lemma 3.7 in [I1], the general element of \mathscr{H}_{o} will represent a line $l \subset X$ which intersects at least one other line on X.

This completes the proof of Proposition (B), which yields a negative answer to (Pe).

In Section 3 we prove Lemma (A) for any particular value of $g, 3 \leq g \leq 9$.
For the prime Fano threefolds $X_{2 g-2} \subset \boldsymbol{P}^{g+1}(g=3,4,5,6,8)$ we prove Lemma (A) by using the Mukai's representation (see (3.1)) of the smooth $X_{2 g-2}$, $3 \leq g \leq 10$ as a complete intersection in a homogeneous or almost-homogeneous variety $\Sigma(g)$. More concretely we see that if the threefold $X \subset \Sigma(g)(g=3,4$, $5,6,8)$ is a complete intersection in $\Sigma(g)$ of the same type as the smooth prime $X_{2 g-2}$, and if X contains the tangent scroll $S_{2 g-2}$ to the rational normal curve C_{g} of degree g, then X must be singular-see (3.4), (3.5), (3.6), (3.13), (3.15), (3.19).

For $g=7$ we use the properties of the projection from a special line $l \subset$ $X_{2 g-2}, g \geq 7$ to reduce the proof of Lemma (A) for $g=7$ to the already proved Lemma (A) for $g=5$-see (3.20)-(3.24). To prove Lemma (A) in case $g=9$ we can use the same approach as for $g=7$. But a more elegant proof, based on the description of the double projection from a line, had been suggested by the Referee-see (3.25).
§2. Lemma (A) \Rightarrow Proposition (B) for $4 \leq g \leq 9$.
2.0. Assume that the smooth prime Fano threefold $X=X_{2 g-2}(4 \leq g \leq 9)$ does not contain a 1 -dimensional family of conics of rank 2 .

Lemma 2.1. Under the assumption (2.0):
(i). The Hilbert scheme \mathscr{H}_{X} of lines on X has a unique irreducible component \mathscr{H}_{o};
(ii). $\mathscr{H}_{o}=\mathscr{H}_{X}$ is exotic, and the lines $l \in \mathscr{H}_{o}$ sweep out a tangent scroll $R_{o} \in$ $\left|\hat{O}_{X}(d)\right|, d \geq 2$.

Proof of Lemma 2.1.
(i). Let \mathscr{H}_{o} and \mathscr{H}_{∞} be two different irreducible components of \mathscr{H}_{X}, and let R_{o} and R_{∞} be the surfaces swept out by the lines $l \in \mathscr{H}_{o}$ and $l \in \mathscr{H}_{\infty}$. Since $\operatorname{Pic}(X)=\boldsymbol{Z} . H$, where H is the hyperplane section, any effective divisor on X must be ample. In particular the general line $l \in \mathscr{H}_{o}$ intersects the surface $R_{\infty} \subset X$. If moreover $l \subset R_{\infty}$ for the general $l \in \mathscr{H}_{o}$, then $R_{o}=R_{\infty}$ and this surface contains two 1-dimensional families of lines. Therefore $R_{o}=R_{\infty}$ is a quadric surface on X, which contradicts $\operatorname{Pic}(X)=Z . H$. Therefore the general $l \in \mathscr{H}_{o}$ intersects R_{∞} and does not lie in R_{∞}; and since R_{∞} is swept out by lines then there exists a line $l^{\prime} \subset R_{\infty}$ which intersects l. Since $l \in \mathscr{H}_{o}$ is general this produces a 1 -dimensional family of intersecting lines $l+l^{\prime}(=$ conics of rank 2 on X)-contradiction.
(ii). If $\mathscr{H}_{X}=\mathscr{H}_{o}$ is non-exotic then, by Lemma 3.7 of [I1], the general element of \mathscr{H}_{o} will represent a line $l \subset X$ which will intersect at least one other line $m \subset X$, i.e. X will contain a 1 -dimensional family of intersecting lines (= conics of rank 2). Therefore \mathscr{H}_{0} is exotic.

Since \mathscr{H}_{o} is exotic and $g \geq 4$ then R_{o} is the tangent scroll to a curve $C \subset X$ (see (1.2)(3)), and since $\operatorname{Pic}(X)=\boldsymbol{Z} . H$ then $R_{o} \in\left|\mathcal{O}_{X}(d)\right|$ for some ineteger $d \geq 1$. If R_{o} is a hyperplane section of X (i.e. $d=1$) then, by Lemma 6 in $[\operatorname{Pr}], C=C_{g}$ must be a rational normal curve of degree g. However the last is impossible since then Lemma (A) will imply that X is singular. Therefore $d \geq 2$. q.e.d.

We shall show that nevertheless X contains a 1-dimensional family of conics $l+m$ of rank 2 where $l, m \in \mathscr{H}_{o}$.

Remark. Let C_{s} be the (possibly empty) set of singular points of C. For any $x \in C-C_{s}$ denote by l_{x} the tangent line to C at x. For a point $x=x(0) \in$ C_{s} define a tangent line to C at x to be any limit $\lim _{x(t) \rightarrow x(0)} l_{x(t)}$ of tangent lines $l_{x(t)}$ to points $x(t) \in C-C_{s}$ (see Chapter $2 \S 4$ in $\left.[\mathrm{GH}]\right)$. Clearly, C can have only a finite number of tangent lines to $x(0) \in C_{s}$ (see also Chapter $2 \S 1.5$ in [Sh$]$).
2.2. By the initial assumption (2.0), X does not contain a 1 -dimensional family of conics of rank 2 . In particular, X does not contain a 1 -dimensional family of pairs of intersecting tangent lines to C.

Since the surface $R_{o} \in\left|\mathcal{O}_{X}(d)\right|, d \geq 2$, and $\operatorname{Span} X=\boldsymbol{P}^{g+1}$ then $\operatorname{Span} R_{o}=$ $\boldsymbol{P}^{g+1}, g \geq 4$ (see also Lemma 6 in $\left.[\operatorname{Pr}]\right)$. Since R_{o} is swept out by the tangent lines to C then $\operatorname{Span} C=\operatorname{Span} R_{o}=\boldsymbol{P}^{g+1}$. In particular C does not lie on a plane. Since R_{o} is the tangent scroll to the non-plane curve C then S_{C} is singular along the curve C.

Let $L \neq C$ be (if exists) an irreducible curve on R_{o} such that R_{o} is singular along L. If L is not a tangent line to C, then the general point of L will be an intersection point of two or more tangent lines to C (see $\S 4$ in [P2]). The last is
impossible since, by assumption, on X can lie at most a finite number of pairs of intersecting lines.

Therefore any irreducible curve $L \neq C$ such that $L \subset \operatorname{Sing} R_{o}$ must be a tangent line to C. In addition, the tangent scroll R_{o} to C still can be singular along a tangent line L to C-for example if L is a common tangent line to two or more branches of C at x, or if C has a branch with a cusp at x, or if $x \in$ $C-C_{s}$ but x is an inflexion point of C and then R_{o} has a cusp along l_{x}, etc. (see §2, §4 in [P2]).

Let $\Delta \subset R_{o}$ be the union of all the irreducible curves L on R_{o} such that $L \neq C$ and R_{o} is singular along L. By the above argument, either $\Delta=\emptyset$ or Δ is a union of a finite number of tangent lines to C.

Let $v: R_{n} \rightarrow R_{o}$ be the normalization of R_{o}. Fix a desingularization τ : $\tilde{R}_{n} \rightarrow R_{n}$, and let $\sigma=\tau \circ v: \tilde{R}_{n} \rightarrow R_{o}$. Let $E_{1}, \ldots, E_{k}(k \geq 0)$ be all the irreducible contractable curves on \tilde{R}_{n}, i.e. all the irreducible curves $E_{l} \subset \tilde{R}_{n}$ such that $\sigma\left(E_{l}\right) \in R_{o}$ is a point.

Denote by \sim the linear equivalence of divisors on the smooth surface \tilde{R}_{n}, and let E be a divisor on \tilde{R}_{n}. Call E a zero divisor on \tilde{R}_{n} if $E \sim 0$; call the nonzero divisor E contractable if $E \sim a_{1} E_{1}+\cdots+a_{k} E_{k}$ for some $a_{1}, \ldots, a_{k} \in \boldsymbol{Z}$. Let $C^{\prime} \subset \tilde{R}_{n}$ be the proper σ-preimage of C on \tilde{R}_{n}. Since R_{o} is the tangent scroll to the irreducible curve C then the curve C^{\prime} is irreducible and $\left.\sigma\right|_{C^{\prime}}: C^{\prime} \rightarrow C$ is an isomorphism over a dense open subset of C (see also Lemma 2.3 below).

Let $C_{1}^{\prime}, \ldots, C_{r}^{\prime}$ be all the irreducible curves on \tilde{R}_{n} such that $\sigma\left(C_{i}^{\prime}\right)$ is an irreducible component of Δ. Therefore

$$
K_{\tilde{R}_{n}} \sim \sigma^{*} K_{R_{o}}-m C^{\prime}-\Sigma_{\imath=1, \ldots, r} p_{i} C_{i}^{\prime}+E
$$

for some positive integers m, p_{1}, \ldots, p_{r}, and a contractable (or zero) divisor E on \tilde{R}_{n}.

Lemma 2.3. Let X fulfills (2.0). Then the tangent scroll $R_{o} \subset X$ to C has a cusp of type $v^{2}=u^{3}+\cdots$ along C, at a neighbourhood of the general point $x \in C \subset R_{o}$; in particular $m=$ mult $_{C} R_{o}=2$ (see also $\S 5$ in [P2] and $\S 4$ in [P 1$]$).

Proof of Lemma 2.3.

(1). We shall see first that R_{o} is irreducible at any neighbourhood of the general point $x \in C$, i.e. R_{o} has one local branch at x.

Assume the contrary, and let $x \in C$ be general. Let $U \subset X$ be a complexanalytical neighbourhood of x such that $R_{U}=R_{o} \cap U$ is reducible. Since R_{o} is swept out by the tangent lines to C, the last imlies that for the general point $y \in C_{U}=C \cap U$ (hence for the general $y \in C$) there exists (possibly non-unique) $z \in C, z \neq y$ such that y lies on a tangent line to C at z. Since the set $C_{s}=$ $\left\{x_{1}, \ldots, x_{s}\right\}$ of singular points of C is finite (or empty), and any such x_{l} has at most a finite number of tangent lines, then the general $y \in C$ doesn't lie on a tangent line to $z \in C_{s}$. Therefore the general $y \in C$ lies on the tangent line l_{z} to C at some (possibly non-unique) $z \in C-C_{s}$.

If moreover $l_{y} \neq l_{z}$ (where l_{y} is the tangent line to C at y) then all such $l_{y}+l_{z}$
will produce a 1-dimensional family of conics of rank 2 on X, which contradicts the initial assumption (2.0) about X.

If $l_{y}=l_{z}$ then this will imply that the tangent line l_{y} to C at the general $y \in C$ is tangent to C at two or more points. But then the projection \bar{C} of $C \subset \boldsymbol{P}^{g+1}$ from the general subspace $\boldsymbol{P}^{g-2} \subset \boldsymbol{P}^{g+1}=\operatorname{Span} X$ will be a plane curve with a 1dimensional family of lines tangent to C at two or more points, which is impossible.
(2). It rests to see that the unique local branch of R_{o} at the general $x \in C$ has a cusp of type $v^{2}=u^{3}+\cdots$ along C at a neighbourhood of x.

Since $R_{o} \in\left|\mathcal{O}_{X}(d)\right|$ and $d \geq 2$, then Span $C=\operatorname{Span} R_{o}=\boldsymbol{P}^{g+1}, g \geq 4$ (see above).

Let x be a general point of C. In order to prove that the tangent scroll $R_{o} \subset X$ to C has a cusp of type $v^{2}=u^{3}+\cdots$ at a neighbourhood of x it is enough to see that the projection of R_{o} from a general $\boldsymbol{P}^{g-3} \subset \boldsymbol{P}^{g+1}$ has a cusp at x. This reduces the check to the case when R_{o} is the tangent scroll to a curve $C \subset \boldsymbol{P}^{3}$.

Since x is a general point of $C \subset \boldsymbol{P}^{3}$ then, after a possible linear change of coordinates in \boldsymbol{P}^{3}, the curve C has (at $x=(1: 0: 0: 0)$) a local parameterization, or a normal form (see $\S 2$ in [P2], or Chapter $2 \S 4$ in [GH]):

$$
C_{U}:\left(x_{o}(z): \cdots: x_{n}(z)\right)=\left(1: z+o\left(z^{2}\right): z^{2}+o\left(z^{3}\right): z^{3}+o\left(z^{4}\right)\right), \quad|z|<1
$$

where $o\left(z^{k}\right)=\Sigma_{j \geq k} a_{j} z^{j}$. Since the coefficient at z^{k} in $x_{k}(z)=z^{k}+o\left(z^{k+1}\right)$ is $1 \neq 0 \quad(k=2,3)$ then, after a possible linear change of $\left(x_{1}, x_{2}, x_{3}\right)$, the local parameterization of C at $x=(1: 0: 0: 0)$ can be written as

$$
\begin{aligned}
C_{U}: & \left(x_{o}(z): x_{1}(z): x_{2}(z): x_{3}(z)\right) \\
& =\left(1: z+o\left(z^{4}\right): z^{2}+o\left(z^{4}\right): z^{3}+o\left(z^{4}\right)\right), \quad|z|<1
\end{aligned}
$$

i.e. C_{U} approximates, upto $o\left(z^{4}\right)$, the twisted cubic $C_{3}=\left\{\left(1: z: z^{2}: z^{3}\right)\right\}$. Therefore, at a neighbourhood of $x=(1: 0: 0: 0)$, the unique local branch (see (1)) of the tangent scroll R_{o} to C is parameterized by

$$
\begin{aligned}
R_{U}: & \left(x_{o}(z, t): x_{1}(z, t): x_{2}(z, t): x_{3}(z, t)\right) \\
= & \left(1: z+t+o\left(z^{4}\right)+o\left(z^{3}\right) t: z^{2}+2 z t+o\left(z^{4}\right)\right. \\
& \left.+o\left(z^{3}\right) t: z^{3}+3 z^{2} t+o\left(z^{4}\right)+o\left(z^{3}\right) t\right)
\end{aligned}
$$

In affine coordinates $\left(x_{1}, x_{2}, x_{3}\right)$ the tangent line to C at $x=(0,0,0)$ is spanned by the vector $n_{x}=(1,0,0)$, and the normal space $\boldsymbol{C}_{o}^{2} \subset \boldsymbol{C}^{3}\left(x_{1}, x_{2}, x_{3}\right)$ to n_{x} at x is defined by $x_{1}=0$. In order to prove that R_{U} has a cusp along C at a neighbourhood of x we shall see that the curve $D_{U}=R_{U} \cap\left(x_{1}=0\right) \subset C_{o}^{2}$ has a cusp at x.

On $D_{U}=R_{U} \cap\left(x_{1}=0\right)$, one has: $0=x_{1}=z+t+o\left(z^{4}\right)+o\left(z^{3}\right) t$, i.e. $t=$ $-z+o\left(z^{4}\right)$. Let $u=-x_{2}, v=-x_{3} / 2$. Therefore, on $D_{U} \subset \boldsymbol{C}_{o}^{2}$

$$
\begin{gathered}
u=-\left(z^{2}+2 z t+o\left(z^{4}\right)+o\left(z^{3}\right) t\right)=z^{2}+o\left(z^{4}\right) \\
v=-1 / 2\left(z^{3}+3 z^{2} t+o\left(z^{4}\right)+o\left(z^{3}\right) t\right)=z^{3}+o\left(z^{4}\right)
\end{gathered}
$$

i.e. $u^{2}=z^{4}+o\left(z^{6}\right), u v=z^{5}+o\left(z^{6}\right), v^{2}=z^{6}+o\left(z^{7}\right), u^{3}=z^{6}+o\left(z^{8}\right), u^{2} v=z^{7}+$ $o\left(z^{8}\right), \ldots$

Let $\left.C\right|_{U}=\left(f_{U}(u, v)=0\right)$ be the local equation of $D_{U} \subset C_{o}^{2}(u, v)$ at $x=$ $(0,0)$. Therefore, upto a constant non-zero factor, $f_{U}(u, v)=v^{2}-u^{3}+c_{2,1} u^{2} v+$ $c_{1,2} u v^{2}+\cdots$, i.e. $\left.C\right|_{U}$ has a double cusp-singularity of type $v^{2}=u^{3}+\cdots$ at $x=$ $(0,0)$ (see $\S 5$ in [P1], $\S 4$ in [P2], Chapter 5 Examples 3.9.5, 3.9.1 and Chapter 1 Exercise 5.14 in $[\mathrm{H}])$.

Therefore $R=R_{o}$ has a pinch of type $v^{2}=u^{3}+\cdots$ along C at a neighbourhood of the general point $x \in C$, which proves Lemma 2.3.
2.4. By the definition of $C_{1}^{\prime}, \ldots, C_{r}^{\prime}$ any irreducible component of Δ can be represented (possibly non-uniquely) as the image $\sigma\left(C_{i}^{\prime}\right)$ of some $C_{i}^{\prime}, i=1, \ldots, r$. Since $\left.\sigma\right|_{C^{\prime}}: C^{\prime} \rightarrow C$ is an isomorphism over an open dense subset of C then the general point $x \in C$ has a unique σ-preimage x^{\prime} on C^{\prime}, and the proper preimage $l_{x}^{\prime} \subset \tilde{R}_{n}$ of the tangent line l_{x} to C at x intersects C^{\prime} transversally at x^{\prime}. Since, by assumption, on X doesn't lie a 1-dimensional family of pairs of intersecting lines then the tangent line l_{x} to C at the general point $x \in C$ does not intersect any other tangent line to C.

Therefore the non-singular surface \tilde{R}_{n} has a structure of a possibly nonminimal ruled surface with a general fiber $L^{\prime}:=$ the proper σ-preimage of the general tangent line l_{x} to C. In particular $K_{\tilde{R}_{n}} \cdot L^{\prime}=-2$, and since the curve C^{\prime} is a section of \tilde{R}_{n} then $C^{\prime} . L^{\prime}=1$.

By the definition of C_{i}^{\prime} the curves $\sigma\left(C_{i}^{\prime}\right) \subset R_{o}$ are irreducible components of Δ; and since by (2.2) the components of Δ can be only tangent lines to C then $\sigma\left(C_{i}^{\prime}\right)$ is a tangent line to C. Therefore any component of $\sigma^{-1}\left(\sigma\left(C_{i}^{\prime}\right)\right)$, in particular C_{i}^{\prime}, will not intersect the general fiber L^{\prime} of \tilde{R}_{n}, i.e. $C_{i}^{\prime} \cdot L^{\prime}=0$.

Moreover a contractable curve E_{J} can't intersect the general fiber of \tilde{R}_{n} since otherwise the point $\sigma\left(E_{J}\right) \in R_{o}$ will be a common point of a 1-dimensional family of tangent lines to C. The last is impossible since $g \geq 4$ and the smooth $X=$ $X_{2 g-2}$ can't contain cones-see (1.2). Therefore $E_{j} . L^{\prime}=0$ for any $j=1, \ldots, k$; and since E is a sum of such E_{J} then $E . L^{\prime}=0$.

Since $K_{X} \sim-H$ and $R_{o} \sim d H$ on X then, by adjunction, $\left.K_{R_{o}} \sim(d-1) H\right|_{R_{o}}$. Since the hyperplane section H intersects the general tangent line l to C at one point then $\sigma^{*}\left(\left.H\right|_{R_{o}}\right)$ is also a section of \tilde{R}_{n}, i.e. $\sigma^{*}\left(\left.H\right|_{R_{o}}\right) . L^{\prime}=1$. Therefore

$$
\begin{aligned}
-2 & =K_{\tilde{R}_{o}} \cdot L^{\prime}=\left(\sigma^{*} K_{R_{o}}-m C^{\prime}-\Sigma_{l=1, \ldots, r} p_{i} C_{i}^{\prime}+E\right) \cdot L^{\prime} \\
& =(d-1) \sigma^{*}\left(\left.H\right|_{R_{o}}\right) \cdot L^{\prime}-m C^{\prime} \cdot L^{\prime}-\Sigma_{l=1, \ldots, r} p_{i} C_{i}^{\prime} \cdot L^{\prime}+E \cdot L^{\prime} \\
& =(d-1)-m, \text { i.e. } d=m-1
\end{aligned}
$$

Since $X=X_{2 g-2}$ is smooth and $g \geq 4$ then, by Lemma (A), $d>1$. Therefore $m=d+1>2$, which is impossible since $m=2$ by Lemma 2.3.

This contradicts the initial assumption (2.0) that the smooth $X=X_{2 g-2}, 4 \leq$ $g \leq 9$ does not contain a 1 -dimensional family of conics of rank 2 . q.e.d.

§3. Proof of Lemma (A)

3.1. By [M1], [M2] any smooth prime Fano threefold $X_{2 g-2} \subset \boldsymbol{P}^{g+1}, 3 \leq$ $g \leq 10$ is a complete intersection of hypersurfaces $F_{1}, F_{2}, \ldots, F_{N}$ of degrees d_{1}, d_{2}, \ldots, d_{N} in a homogeneous (for $g=6$-an almost homogeneous) space $\Sigma(g)$, and:
if $g=3$ then $\Sigma(3)=\boldsymbol{P}^{4}, N=1, d_{1}=4 ;$
if $g=4$ then $\Sigma(4)=\boldsymbol{P}^{5}, N=2, d_{1}=2, d_{2}=3$;
if $g=5$ then $\Sigma(5)=\boldsymbol{P}^{6}, N=3, d_{1}=d_{2}=d_{3}=2$;
if $g=6$ then $\Sigma(6)=K \cdot G(2,5) \subset \boldsymbol{P}^{10}$ is a cone over the grassmannian $G(2,5)$ $\subset \boldsymbol{P}^{9}, N=4, d_{1}=d_{2}=d_{3}=1, d_{4}=2 ;$
if $7 \leq g \leq 10$ then $X_{2 g-2}=\Sigma(g) \cap \boldsymbol{P}^{g+1}$, where $\Sigma(7) \subset \boldsymbol{P}^{15}$ is the spinor 10fold, $\Sigma(8)=G(2,6) \subset \boldsymbol{P}^{14}, \Sigma(9) \subset \boldsymbol{P}^{13}$ is the sympletic grassmann 6 -fold, and $\Sigma(10) \subset \boldsymbol{P}^{13}$ is the G_{2}-fivefold.
3.2. To prove Lemma (A), it is enough to see that if $X=X_{2 g-2} \subset \Sigma(g)$ is a 3-fold complete intersection as in (3.1) (assuming implicitly that such X may have singularities) then $X_{2 g-2}$ can't be smooth. We shall prove this separately for any value of $g, 3 \leq g \leq 9$.

For $g=3,4,5,6,8$ we use that $\Sigma(g)$ is either a projective space or a (cone over) grassmannian, which makes it possible to compute directly that the general such $X_{2 g-2} \supset S_{2 g-2}$ must have $12-g$ singular points on the curve C_{g}.

For $g=7,9$ we assume that $X=X_{2 g-2} \subset S_{2 g-2}$ is smooth, and then project X from a tangent line to C_{g} to derive a contradiction on the base of the already known Lemma (A) for $g=5$.
3.3. Notation. Let $n \geq 1, m \geq 0$ be integers, let $\boldsymbol{P}^{n+m}(z: w)=$ $\boldsymbol{P}^{n+m}\left(z_{0}: \cdots: z_{n}: w_{n+1}: \cdots: w_{n+m}\right)$ be the complex projective $(n+m)$-space, and let $F(z: w)=F\left(z_{0}: \cdots: z_{n}: w_{n+1}: \cdots: w_{n+m}\right)$ be a homogeneous form. Denote by $\nabla_{z} F=\left(\partial F / \partial z_{0}, \ldots, \partial F / \partial z_{n}\right)$ the gradient vector of F with respect to $(z)=$ $\left(z_{0}: \cdots: z_{n}\right)$.

Let $F_{1}(z: w), \ldots, F_{k}(z: w)(k \geq 1)$ be homogeneous forms. Denote by:
$\left(F_{1}, \ldots, F_{k}\right) \subset \boldsymbol{C}[z: w]=\boldsymbol{C}\left[z_{0}: \cdots: z_{n}: w_{n+1}: \cdots: w_{n+m}\right]$-the homogeneous ideal generated by F_{1}, \ldots, F_{k};
$V\left(F_{1}, \ldots, F_{k}\right)$-the projective variety defined by F_{1}, \ldots, F_{k};
$\left.J_{z}\right|_{(a: b)}=\left.J_{z}\left(F_{1}, \ldots, F_{k}\right)\right|_{(a: b)}=\left.\left[\nabla_{z} F_{1} ; \ldots ; \nabla_{z} F_{k}\right]\right|_{(a: b)}$-the Jacobian matrix J_{z} of partial derivatives of F_{1}, \ldots, F_{k} with respect to $(z)=\left(z_{0}, \ldots, z_{n}\right)$, computed at the point $(a: b) \in \boldsymbol{P}^{n+m}(z: w)$, (where $\nabla_{z} F_{i}$ are regarded as rows of J_{z}).

Let e.g. $m=0$, let $X=V\left(F_{1}, \ldots, F_{k}\right) \subset \boldsymbol{P}^{n}\left(z_{0}: \cdots: z_{n}\right)$, and let $\operatorname{dim} X=d$. Then $\operatorname{dim} T_{x} X \geq d$ for any $x \in X$, where $T_{x} X$ is the tangent space to X at x; and the point $x \in X$ is singular if $\operatorname{dim} T_{x} X>d$ (see e.g. Chapter 2 , $\S 1.4$ in [Sh$]$).

Equivalently $x \in X$ is singular if rank $\left.J_{z}\right|_{x}<n-d$. The subset $\operatorname{Sing} X=\{x \in X$: rank $\left.\left.J_{z}\right|_{x}<n-d\right\} \subset X$ of all the singular points of X is a proper closed subset of the projective algebraic variety X, defined on X by vanishing of all the $(n-d) \times$ $(n-d)$ minors of J_{z}.
3.4. Proof of Lemma (A) for $g=3$. The tangent scroll to the twisted cubic $C_{3}:\left(x_{0}: x_{1}: x_{2}: x_{3}\right)=\vec{s}:=\left(s_{0}^{3}: s_{0}^{2} s_{1}: s_{0} s_{1}^{2}: s_{1}^{3}\right)$ is the quartic surface $S_{4}=V(f)$ $\subset \boldsymbol{P}^{3}(x)$ where $f(x)=3 x_{1}^{2} x_{2}^{2}+6 x_{0} x_{1} x_{2} x_{3}-4 x_{1}^{3} x_{3}-x_{0}^{2} x_{3}^{2}-4 x_{0}^{2} x_{2}^{3}$. The surface S_{4} is singular along C_{3} since the gradient vector $\left.\nabla_{x} f\right|_{\vec{s}}=0$ for any $\vec{s} \in C_{3}$.

Let the quartic threefold $X_{4} \subset \boldsymbol{P}^{4}(x: u)$ be such that $S_{4}=X_{4} \cap \boldsymbol{P}^{3}(x)$, and let $X_{4}=V(F) \subset \boldsymbol{P}^{4}(x: u)$ where $F(x: u)=\Sigma_{0 \leq k \leq 4} f_{i}(x) u^{4-t}$. Therefore $f_{4} \in(f)$, i.e. $f_{4}=c f$ for some constant $c \in \boldsymbol{C}$.

Let $x \in X_{4}$. Then $x \in \operatorname{Sing} X_{4}$ iff $\nabla_{x, u} F_{x}=0$. Let $s=\left(s_{0}: s_{1}\right) \in \boldsymbol{P}^{1}$. Then $(\vec{s}: 0) \in \operatorname{Sing} X_{4}$ iff $0=\left.\nabla_{x, u} F\right|_{(\vec{s}: 0)}=\left.\left(\nabla_{x} F, \partial F / \partial u\right)\right|_{(\vec{s}: 0)}=\left(\left.\nabla_{x} f\right|_{\vec{s}}, f_{3}(\vec{s})\right)=\left(0, f_{3}(\vec{s})\right)$.

Therefore either $f_{3}(\vec{s}) \equiv 0$ (i.e. $f_{3}(\vec{s})=0$ for any $s=\left(s_{0}: s_{1}\right)$), and then X_{4} is singular along C_{4}, or $f_{s}(\vec{s}) \not \equiv 0$, and then $(\vec{s}: 0) \in \operatorname{Sing} X_{4}$ iff $s=\left(s_{0}: s_{1}\right)$ is a zero of the (non-vanishing) homogeneous form $F_{9}(s)=f_{3}(\vec{s})=f_{3}\left(s_{0}^{3}: s_{0}^{2} s_{1}: s_{0} s_{1}^{2}: s_{1}^{3}\right)$ of degree 9 .

In addition, for the general $f_{3}(x)$ all the zeros of $F_{9}(s)=f_{3}(\vec{s})$ are simple, i.e. different from each other. Therefore the general $X_{4} \supset S_{4}$ has $9=12-g\left(X_{4}\right)$ singular points on C_{3}. In coordinates as above, these singular points of X_{4} are the images of the 9 zeros of $F_{9}(s)$ under the Veronese map $v_{3}: \boldsymbol{P}^{1} \rightarrow C_{3} \subset X_{4}$, $v_{3}: s=\left(s_{0}: s_{1}\right) \mapsto(\vec{s}: 0)$.
3.5. Proof of Lemma (A) for $g=4$. The tangent scroll to the rational normal quartic $C_{4}:\left(x_{0}: x_{1}: \cdots: x_{4}\right)=\vec{s}:=\left(s_{0}^{4}: s_{0}^{3} s_{1}: \cdots: s_{1}^{4}\right)$ is a complete intersection $S_{6}=V(q, f) \subset \boldsymbol{P}^{4}(x)$ where $q(x)=3 x_{2}^{2}-4 x_{1} x_{3}+x_{0} x_{4}$ and $f(x)=$ $x_{2}^{3}-2 x_{0} x_{3}^{2}-2 x_{1}^{2} x_{4}+3 x_{0} x_{2} x_{4}$. The surface S_{6} is singular along C_{4} since the gradients of q and f are linearly dependent along C_{4}; more precisely $\left.\nabla_{x} f\right|_{\vec{s}}=$ $\left.s_{0}^{2} s_{1}^{2} \nabla_{x} q\right|_{\vec{s}}$ for any $\vec{s} \in C_{4}$.

Let $X_{6}=V(Q, F) \subset \boldsymbol{P}^{5}(x: u)$ be a complete intersection of the quadric $Q(x: z)=\Sigma_{0 \leq k \leq 2} q_{k}(x) u^{2-k}=0$ and the cubic $F(x: z)=\Sigma_{0 \leq l \leq 3} q_{l}(x) u^{3-l}=0$, and let $S_{6}=X_{6} \cap \boldsymbol{P}^{4}(x)$. In particular, $\left(q_{2}, f_{3}\right) \subset(q, f)$ as homogeneous ideals in $\boldsymbol{C}[x]=\boldsymbol{C}\left[x_{0}: \cdots: x_{4}\right]$.

For the fixed $X_{6}=V(Q, F)$ the generators Q, F of the homogeneous ideal (Q, F) can be replaced by $c^{\prime} Q$ and $c^{\prime \prime} F+L(x: u) Q$, for any pair of nonzero constants c^{\prime} and $c^{\prime \prime}$, and for any linear form $L(x: u)$. Now, $\left(q_{2}, f_{3}\right) \subset(q, f)$ yields that one can choose Q and F such that $q_{2}=\varepsilon^{\prime} q$ and $f_{3}=\varepsilon^{\prime \prime} f$, where $\varepsilon^{\prime}, \varepsilon^{\prime \prime}$ are either 0 or 1 .

Consider the general case $\varepsilon^{\prime}=\varepsilon^{\prime \prime}=1$; the study in the degenerate case $\varepsilon^{\prime} . \varepsilon^{\prime \prime}$ $=0$ is similar. The subscheme $\operatorname{Sing} X_{6}=\operatorname{Sing} V(Q, F)$ is defined by $\operatorname{rank}\left[\nabla_{x, u} Q\right.$; $\left.\nabla_{x, u} F\right] \leq 1$. By the choice of Q and $F,\left.\nabla_{x, u} Q\right|_{(\vec{s}: 0)}=\left(\left.\nabla_{x} q_{2}\right|_{\vec{s}}, q_{1}(\vec{s})\right)$ and $\left.\nabla_{x, u} F\right|_{(\vec{s}: 0)}$ $=\left(\left.\nabla_{x} f_{3}\right|_{\vec{s}}, f_{2}(\vec{s})\right)$, where $1 . q_{2}=q$ and 1. $f_{3}=f$. Just as in case $g=3$, the last
together with the identity $\left.\nabla_{x} f\right|_{\vec{s}}-\left.s_{0}^{2} s_{1}^{2} \nabla_{x} q\right|_{\vec{s}} \equiv 0$ imply that $(\vec{s}: 0) \in \operatorname{Sing} X_{6}$ iff $F_{8}(s):=f_{2}(\vec{s})-s_{0}^{2} s_{1}^{2} \cdot q_{1}(\vec{s})=0$, where $\vec{s}=\left(s_{0}^{4}: s_{0}^{3} s_{1}: \cdots: s_{1}^{4}\right)$.

The Veronese map $v_{4}: \boldsymbol{P}^{1} \rightarrow C_{4} \subset X_{6}, v_{4}: s=\left(s_{0}: s_{1}\right) \mapsto(\vec{s}: 0)$ states an isomorphism between \boldsymbol{P}^{1} and C_{4}. Therefore either $F_{8}(s) \equiv 0$, and then X_{6} is singular along C_{4}, or $F_{8}(s) \not \equiv 0$, and then the singular points of X_{6} on C_{4} are the v_{4}-images of the zeros of the homogeneous form $F_{8}(s)$ of degree 8. As in case $g=3$, for the general $f_{2}(x), q_{1}(x)$ the form $F_{8}(s)$ has only simple zeros. Therefore the general $X_{6} \supset S_{6}$ has $8=12-g\left(X_{6}\right)$ singular points on C_{4}.
3.6. Proof of Lemma (A) for $g=5$. The tangent scroll to the rational normal quintic $C_{5}: x_{l}=s_{0}^{5-l} s_{1}^{l}, 0 \leq i \leq 5$ is a complete intersection $S_{8}=$ $V\left(q^{\prime}, q^{\prime \prime}, q^{\prime \prime \prime}\right) \subset \boldsymbol{P}^{5}(x)$ where $q^{\prime}(x)=4 x_{1} x_{3}-3 x_{2}^{2}-x_{0} x_{4}, q^{\prime \prime}(x)=3 x_{1} x_{4}-2 x_{2} x_{3}-$ $x_{0} x_{5}$ and $q^{\prime \prime \prime}(x)=x_{1} x_{5}-4 x_{2} x_{4}+3 x_{3}^{2}$. The surface S_{8} is singular along C_{4} since the gradients of $q^{\prime}, q^{\prime \prime}$ and $q^{\prime \prime \prime}$ are linearly dependent along C_{5}. More precisely

$$
\begin{equation*}
\left.s_{1}^{2} \nabla_{x} q^{\prime}\right|_{\vec{s}}-\left.s_{0} s_{1} \nabla_{x} q^{\prime \prime}\right|_{\vec{s}}-\left.s_{0}^{2} \nabla_{x} q^{\prime \prime \prime}\right|_{\vec{s}}=0 \quad \text { for any } \vec{s} \in C_{5} \tag{*}
\end{equation*}
$$

Let $X_{8}=V\left(Q^{\prime}, Q^{\prime \prime}, Q^{\prime \prime \prime}\right) \subset \boldsymbol{P}^{6}(x: u)$ be a complete intersection of the quadrics $Q^{\prime}(x: z)=\Sigma_{0 \leq k \leq 2} q_{k}^{l}(x) u^{2-k}\left(i=^{\prime},{ }^{\prime \prime}, \prime \prime \prime\right)$, and such that $S_{8}=X_{8} \cap \boldsymbol{P}^{5}(x)$. In particular $\left(q_{1}^{\prime}, q_{1}^{\prime \prime}, q_{1}^{\prime \prime \prime}\right) \subset\left(q^{\prime}, q^{\prime \prime}, q^{\prime \prime \prime}\right)$ as homogeneous ideals in $\boldsymbol{C}[x]=\boldsymbol{C}\left[x_{0}: \cdots: x_{4}\right]$. Therefore $q_{1}^{\prime}, q_{1}^{\prime \prime}$ and $q_{1}^{\prime \prime \prime}$ are linear combinations of $q^{\prime}, q^{\prime \prime}$ and $q^{\prime \prime \prime}$. Since the ideal $\left(Q^{\prime}, Q^{\prime \prime}, Q^{\prime \prime}\right)$ of X_{8} is generated also by any $G L(3)$-transform of the triple ($\left.Q^{\prime}, Q^{\prime \prime}, Q^{\prime \prime \prime}\right)$, we may assume that $q_{2}^{\prime}=\varepsilon^{\prime} q^{\prime}, q_{2}^{\prime \prime}=\varepsilon^{\prime \prime} q^{\prime \prime}$ and $q_{2}^{\prime \prime \prime}=\varepsilon^{\prime \prime \prime} q^{\prime \prime \prime}$, where $\varepsilon^{\prime}, \varepsilon^{\prime \prime}$ and $\varepsilon^{\prime \prime \prime}$ are 0 or 1 . The subscheme $\left.\left(\operatorname{Sing} X_{8}\right)\right|_{C_{5}} \subset \boldsymbol{P}^{1}$ is defined by

$$
\begin{align*}
2 & \geq\left.\operatorname{rank}\left[\nabla_{x, u} Q^{\prime} ; \nabla_{x, u} Q^{\prime \prime} ; \nabla_{x, u} Q^{\prime \prime \prime}\right]\right|_{(\vec{s}: 0)} \tag{**}\\
& =\operatorname{rank}\left[\left(\left.\nabla_{x} \varepsilon^{\prime} q^{\prime}\right|_{\vec{s}}, q_{1}^{\prime}(\vec{s})\right) ;\left(\left.\nabla_{x} \varepsilon^{\prime \prime} q^{\prime \prime}\right|_{\vec{s}}, q_{1}^{\prime \prime}(\vec{s})\right) ;\left(\left.\nabla_{x} \varepsilon^{\prime \prime \prime} q^{\prime \prime \prime}\right|_{\vec{s}}, q_{1}^{\prime \prime \prime}(\vec{s})\right)\right]
\end{align*}
$$

Let $F_{7}(s)=\varepsilon^{\prime} s_{1}^{2} q_{1}^{\prime}(\vec{s})-\varepsilon^{\prime \prime} s_{0} s_{1} q_{1}^{\prime \prime}(\vec{s})-\varepsilon^{\prime \prime \prime} s_{0}^{2} q_{1}^{\prime \prime \prime}(\vec{s})$.
The Veronese map $v_{5}: \boldsymbol{P}^{1} \rightarrow C_{5} \subset X_{8}, v_{5}: s=\left(s_{0}: s_{1}\right) \mapsto(\vec{s}: 0)$ states an isomorphism between \boldsymbol{P}^{1} and C_{5}. Just as in (3.5), (*) and (**) imply that either $F_{7}(s) \equiv 0$, and then X_{8} is singular along C_{5}, or $F_{7}(s) \not \equiv 0$, and then the singular points of X_{6} on C_{5} are the v_{5}-images of the zeros of the homogeneous form $F_{7}(s)$ of degree 7. Moreover, for the general linear forms $q_{1}^{\prime}(x), q_{1}^{\prime \prime}(x), q_{1}^{\prime \prime \prime}(x)$ the form $F_{7}(s)$ has only simple zeros. Therefore the general $X_{8} \supset S_{8}$ has $7=12-g\left(X_{8}\right)$ singular points on C_{5}.

Lemma (A) for $g=6,8$.
Lemma 3.7. Let $n \geq 3$, and let $G=G(1: n)=G(2, n+1) \subset \boldsymbol{P}^{n(n+1) / 2-1}$ be the grassmannian of lines in $\boldsymbol{P}^{n}=\boldsymbol{P}\left(\boldsymbol{C}^{n+1}\right)$. Let $C \subset G \subset \boldsymbol{P}^{n(n+1) / 2-1}$ be a smooth irreducible curve such that $\operatorname{dim} \operatorname{Span}(C) \geq 3$. Let the surface $\operatorname{Gr}(C) \subset \boldsymbol{P}^{n}$ be the union of lines $l \subset \boldsymbol{P}^{n}$ such that $l \in C \subset G=G(1: n)$, and let $S_{C} \subset \operatorname{Span}(C) \subset$ $\boldsymbol{P}^{n(n+1) / 2-1}$ be the surface swept out by the tangent lines to C (or the tangent scroll to $C-$ see above).

Then the tangent scroll S_{C} to C lies on $G=G(1: n)$ iff either all the lines $l \in C$ have a common point, i.e. $\operatorname{Gr}(C)$ is a cone,
or there exists an trreducible curve $Z \subset \boldsymbol{P}^{n}$ such that all the lines $l \in C$ are tangent lines to Z, i.e. $\operatorname{Gr}(C)$ is the tangent scroll to Z.

Proof. For $n=3$ this result can be found in [AS]. For $n>3$ one can apply induction, using the fact that projection from a point in \boldsymbol{P}^{n} induces a projection from $G(2, n+1)$ onto $G(2, n)$. q.e.d.

Lemma 3.8. Let $C_{g} \subset G(2, g / 2+2)=G\left(1: \boldsymbol{P}^{g / 2+1}\right)(g=6,8)$ be a rational normal curve such that the tangent scroll $S_{2 g-2}$ to C_{g} is contained in $G(2, g / 2+2)$. Then:
(i). If $g=6$ then the lines $l \subset \boldsymbol{P}^{4}, l \in C_{6}$ sweep out the tangent scroll to a rational normal curve $C_{4} \subset \boldsymbol{P}^{4}$.
(ii). If $g=8$, and if there exists a 3-fold linear section $X_{14}=G(2,6) \cap \boldsymbol{P}^{9}$ such that $X_{14} \supset S_{14}$, then the lines $\left\{l \subset \boldsymbol{P}^{5}: l \in C_{8}\right\}$ sweep out the tangent scroll to a rational normal curve $C_{5} \subset \boldsymbol{P}^{5}$.

Proof. Let $g=6,8$, let the lines $l \in C_{g}$ sweep out a cone $\operatorname{Gr}\left(C_{g}\right) \subset \boldsymbol{P}^{g / 2+1}-$ see Lemma 3.7, and let x be the vertex of $\operatorname{Gr}\left(C_{g}\right)$. Then C_{g} is contained in the Schubert $g / 2$-space $\boldsymbol{P}_{x}^{g / 2}=\sigma_{g / 2,0}(x)=\left\{l \subset \boldsymbol{P}^{g / 2+1}: x \in l\right\}$. Since C_{g} is projectively normal it must span a g-space. Therefore $g \leq g / 2+1$ which contradicts $g=6,8$. Therefore, by Lemma 3.7, the lines $l \in C_{g}$ must sweep out the tangent scroll to a rational curve $C_{d} \subset \boldsymbol{P}^{g / 2+1}$.

Let $g=6$, and let $C_{d} \subset \boldsymbol{P}^{3} \subset \boldsymbol{P}^{4}$. Then $C_{6} \subset G\left(1: \boldsymbol{P}^{3}\right)=\sigma_{11}\left(\boldsymbol{P}^{3}\right) \subset G\left(1: \boldsymbol{P}^{4}\right)$. Therefore $\quad 6=\operatorname{dim}\left(\operatorname{Span} C_{6}\right) \leq \operatorname{dim}\left(\operatorname{Span} G\left(1: \boldsymbol{P}^{3}\right)\right)=5$-contradiction. Therefore $d \geq 4$ since C_{d} must span \boldsymbol{P}^{4}, and now it is easy to see that the rational normal curve C_{6} is the curve of tangent lines to C_{d} iff $d=4$.

Let $g=8$, and let $C_{d} \subset \boldsymbol{P}^{4} \subset \boldsymbol{P}^{5}$. Then $C_{8} \subset G\left(1: \boldsymbol{P}^{4}\right)=\sigma_{11}\left(\boldsymbol{P}^{4}\right) \subset$ $G\left(1: \boldsymbol{P}^{5}\right)$. Let $\boldsymbol{P}_{o}^{9}=\operatorname{Span} G\left(1: \boldsymbol{P}^{4}\right)$. Then $\boldsymbol{P}^{8}=\operatorname{Span} C_{8} \subset \boldsymbol{P}_{o}^{9} . \quad$ By condition $C_{8} \subset X_{14}=G\left(1: \boldsymbol{P}^{5}\right) \cap \boldsymbol{P}^{9}$. Therefore $\boldsymbol{P}^{8} \subset \boldsymbol{P}^{9} \cap \boldsymbol{P}_{o}^{9}$ and $X_{14} \supset Z_{o}:=G\left(1: \boldsymbol{P}^{4}\right)$ $\cap \boldsymbol{P}^{8}$. Since $\boldsymbol{P}^{8} \subset \boldsymbol{P}_{o}^{9}=\operatorname{Span} G\left(1: \boldsymbol{P}^{4}\right), Z_{o}$ is at least a hyperplane section of the 6-dimensional grassmannian $G\left(1: \boldsymbol{P}^{4}\right)$. This contradicts $X_{14} \supset Z_{o}$ and $\operatorname{dim} X_{14}$ $=3$. Therefore $d \geq 5$ since $\operatorname{Span} C_{d}=\boldsymbol{P}^{5}$, and now it is easy to see that the rational normal curve C_{8} is the curve of tangent lines to C_{d} iff $d=5$. q.e.d.

Proof of Lemma (A) for $g=6$.
3.9. By (3.1) any smooth prime X_{10} is a complete intersection of three hyperplanes and a quadric in the cone $K . G(2,5) \subset \boldsymbol{P}^{10}$. Let o be the vertex of the cone $K . G(2,5) \subset \boldsymbol{P}^{10}$, and let $X \subset K . G(2,5)$, be as in (3.1). There are two kinds of such threefolds X_{10} (see [I1], [Gu]):
(i). $g=6$-first kind: $o \notin \operatorname{Span}(X)$, and then the projection p_{o} from o sends X isomorphically to $X_{10}=G(2,5) \cap \boldsymbol{P}^{7} \cap Q$, where $G(2,5) \subset \boldsymbol{P}^{9}$ by the Plücker embedding, $\boldsymbol{P}^{7} \subset \boldsymbol{P}^{9}$ and Q is a quadric.
(ii). $g=6$-second kind: $o \in \operatorname{Span}(X)$, and then $\pi=\left.p_{o}\right|_{X}: X=X_{10}^{\prime} \rightarrow Y_{5}$ is a double covering of a threefold $Y_{5}=G(2,5) \cap \boldsymbol{P}^{6}$. In particular, if X_{10}^{\prime} is smooth then the intersection $Y_{5}=G(2,5) \cap \boldsymbol{P}^{6}$ is smooth.

$$
g=6 \text { (first kind) }
$$

3.10. Let $X_{10}=G(2,5) \cap \boldsymbol{P}^{7} \cap Q$ be a (possibly singular) complete intersection as in (3.9)(i), and assume that X_{10} contains the tangent scroll S_{10} to a rational normal curve C_{6} of degree 6. By Lemma 3.8(i) the points of C_{6} are the Plücker coordinates $x_{i j}(s)$ of the tangent lines to a rational normal quartic $C_{4}=x_{l}=s^{l}, 0 \leq i \leq 4$, i.e.

$$
\left(x_{i j}(s)\right)=\left(\begin{array}{ccccc}
0 & 1 & 2 s & 3 s^{2} & 4 s^{3} \\
\cdots & 0 & s^{2} & 2 s^{3} & 3 s^{4} \\
\cdots & \cdots & 0 & s^{4} & 2 s^{5} \\
\cdots & \cdots & \cdots & 0 & s^{6} \\
\cdots & \cdots & \cdots & \cdots & 0
\end{array}\right)
$$

Therefore the subspace $\boldsymbol{P}^{6}=\operatorname{Span}\left(C_{6}\right) \subset \boldsymbol{P}^{9}$ is defined by $H_{0}=H_{1}=H_{2}=0$ where $H_{0}=x_{03}-3 x_{12}, H_{1}=x_{04}-2 x_{13}$ and $H_{2}=x_{14}-3 x_{23}$.
3.11. Introduce in \boldsymbol{P}^{6} the coordinates $(v)=\left(v_{0}: \cdots: v_{6}\right)=\left(x_{01}: x_{02}: x_{12}\right.$: $\left.x_{13}: x_{23}: x_{24}: x_{34}\right)$, and let $I_{S_{10}} \subset \boldsymbol{C}[v]:=\boldsymbol{C}\left[v_{0}, \ldots, v_{6}\right]$ be the homogeneous ideal of the tangent scroll $S_{10} \subset \boldsymbol{P}^{6}$ to C_{6}. Let $P f_{k}=x_{a b} x_{c d}-x_{a c} x_{b d}+x_{a d} x_{b c}, 0 \leq$ $a<b<c<d \leq 4: a, b, c, d \neq k(k \in\{0,1,2,3,4\})$ be the 5 Plücker quadrics in the coordinates $x_{j k}$. In coordinates (v) of $\boldsymbol{P}^{6}=\boldsymbol{P}^{6}(v)$ the restrictions q_{k} of $P f_{k}$ to \boldsymbol{P}^{6} are

$$
\begin{gathered}
q_{0}(v)=v_{2} v_{6}-v_{3} v_{5}+3 v_{4}^{2}, \quad q_{1}(v)=v_{1} v_{6}-3 v_{2} v_{5}+2 v_{3} v_{4} \\
q_{2}(v)=v_{0} v_{6}-9 v_{2} v_{4}+2 v_{3}^{2}, \quad q_{3}(v)=v_{0} v_{5}-3 v_{1} v_{4}+2 v_{2} v_{3} \\
q_{4}(v)=v_{0} v_{4}-v_{1} v_{3}+3 v_{2}^{2}
\end{gathered}
$$

In the open subset $U_{0}=\left\{v_{0}=1\right\} \subset \boldsymbol{P}^{6}(v)$ the curve C_{6} is parameterized by $C_{6}=\left\{(v)=\vec{s}:=\left(1,2 s, s^{2}, 2 s^{3}, s^{4}, 2 s^{5}, s^{6}\right)\right\}$.

Now, it is easy to see that the quadric $q(v)=5 v_{2} v_{4}-2 v_{1} v_{5}+3 v_{0} v_{6}$ vanishes at the points of the tangent scroll S_{10} to C_{6}, and the homogeneous ideal $I_{S_{10}}=$ $\left(q_{0}, \ldots, q_{4}, q\right) \subset \boldsymbol{C}[v]$.

Let $J_{v}=J_{v}\left(q_{0}, \ldots, q_{4}, q\right)$ be the Jacobian matrix of $\left(q_{0}, \ldots, q_{4}, q\right)$ with respect to $v=\left(v_{1}, \ldots, v_{6}\right)$. The surface $S_{10} \subset V_{5}$ is singular along C_{6} since $\left.\operatorname{rank} J_{v}\right|_{\vec{s}}<$ $4=\operatorname{codim}_{P^{6}} S_{10}$ for any $\vec{s} \in C_{6}$. For the special choice (v) of the coordinates this can be verified directly:

$$
\begin{aligned}
\left.s^{-2} \nabla_{v} q_{0}\right|_{s}=\left(0, s^{4},-2 s^{3}, 6 s^{2},-2 s, 1\right), & \left.s^{-1} \nabla_{v} q_{1}\right|_{\vec{s}}=\left(s^{5},-6 s^{4}, 2 s^{3}, 4 s^{2},-3 s, 2\right) \\
\left.\nabla_{v} q_{2}\right|_{\vec{s}}=\left(0,-9 s^{4}, 8 s^{3},-9 s^{2}, 0,1\right), & \left.s \nabla_{v} q_{3}\right|_{\vec{s}}=\left(-3 s^{5}, 4 s^{4}, 2 s^{3},-6 s^{2}, s, 0\right) \\
\left.s^{2} \nabla_{v} q_{4}\right|_{\vec{s}}=\left(-2 s^{3}, 6 s^{4},-2 s^{3}, s^{2}, 0,0\right), & \text { and }\left.\quad \nabla_{v} q\right|_{\vec{s}}=\left(-4 s^{5}, 5 s^{4}, 0,5 s^{2},-4 s, 3\right) .
\end{aligned}
$$

(*). Therefore $\left.\operatorname{rank} J_{v}\right|_{\vec{s}}=4$ for any $\vec{s} \in C_{6}$, and the linear 4-space of linear equations between the gradients $\left.\nabla_{v} q_{0}\right|_{\vec{s}}, \ldots,\left.\nabla_{v} q_{4}\right|_{s}$ and $\left.\nabla_{v} q\right|_{\vec{s}}$ is spanned on the Pfaff-equation $\left.s^{-2} \nabla_{v} q_{0}\right|_{\vec{s}}+\left.s^{-1} \nabla_{v} q_{1}\right|_{\vec{s}}+\left.\nabla_{v} q_{2}\right|_{\vec{s}}+\left.s \nabla_{v} q_{3}\right|_{\vec{s}}+\left.s^{2} \nabla_{v} q_{4}\right|_{\vec{s}}=0$ and the 3space of equations $\left.\nabla_{v} q\right|_{\vec{s}}=\left.a_{0} \cdot s^{-2} \nabla_{v} q_{0}\right|_{\vec{s}}+\left.a_{1} \cdot s^{-1} \nabla_{v} q_{1}\right|_{\vec{s}}+\left.a_{2} \cdot \nabla_{v} q_{2}\right|_{\vec{s}}+\left.a_{3} \cdot s \nabla_{v} q_{3}\right|_{\vec{s}}+$ $\left.a_{4} \cdot s^{2} \nabla_{v} q_{4}\right|_{\vec{s}}=0$ where:

$$
(* *) . \quad a_{0}+4 a_{3}+3 a_{4}=8, a_{1}-3 a_{3}-2 a_{4}=-4, a_{2}+2 a_{3}+a_{4}=3 .
$$

3.12. In the dual space $\check{\boldsymbol{P}}^{9}$, let $\check{G}=\check{G}(2,5) \subset \check{\boldsymbol{P}}^{9}$ be the grassmannian of hyperplane equations represented by the skew-symmetric 5×5 matrices of rank 2 . It is easy to see that the plane $\Pi=\left\langle H_{0}, H_{1}, H_{2}\right\rangle \subset \check{\boldsymbol{P}}^{9}$ of hyperplane equations of $\boldsymbol{P}^{6}=\operatorname{Span} C_{6}$ does not intersect \check{G}.

Let $\Lambda \subset \Pi$ be any line in Π. In \boldsymbol{P}^{9}, the line Λ defines, by duality, the subspace $\boldsymbol{P}^{7}(\Lambda) \supset \boldsymbol{P}^{6}=\operatorname{Span} C_{6}$. It is easy to see that the fourfold $W(\Lambda)=$ $G \cap \boldsymbol{P}^{7}(\Lambda)$, where $G=G(2,5)$, is smooth. In fact, $W(\Lambda)$ will be smooth iff the line Λ does not intersect \check{G}. The last is true since $\Lambda \subset \Pi$ and $\Pi \cap \mathscr{G}=\emptyset$. Therefore any $X_{10} \supset S_{10}$ is a quadratic section of the smooth 4-fold $W=W(\Lambda)$.
3.13. Let $X_{10}=G(2,5) \cap \boldsymbol{P}^{7} \cap Q \supset S_{10}$, where Q is a quadric. We shall show that the singularities of X_{10} on C_{6} are the zeros of a homogeneous form of degree 6 on $C_{6} \cong \boldsymbol{P}^{1}$. To simplify the notation, we shall show this for one special choice of the line $\Lambda \subset \Pi$ (see (3.12)); the check for any other $\Lambda \subset \Pi$ is similar.

Let $\Lambda=\left\{H_{2}=0\right\} \subset \Pi$. Then, in coordinates (v) and $u=x_{14}-3 x_{23}$ in $\boldsymbol{P}^{7}(\Lambda)$, the subspace $\boldsymbol{P}^{6}(x)=(u=0)$. Therefore any quadric $Q \subset \boldsymbol{P}^{7}(\Lambda)$, such that $Q \cap X_{10}=S_{10}$, can be written in the form $Q=Q(v, u)=c u^{2}+L(v) u+q(v)$ where $c \in C$ and L is a linear form of (v).

Let $Q_{k}(v, u)(k=0,1, \ldots, 4)$ be the restriction of the Pfaff quadric $P f_{k}$ on $\boldsymbol{P}^{7}(v, u)$, and let $J_{v, u}=\left[\nabla_{v, u} Q_{0} ; \ldots ; \nabla_{v, u} Q_{4} ; \nabla_{v, u} Q\right]$ be the Jacobian matrix of $\left(Q_{0}, \ldots, Q_{4}, Q\right)$.

The singularities of X_{10} on C_{6} are the points $(\vec{s}: 0) \in \boldsymbol{P}^{7}$ for which $\left.\operatorname{rank} J_{v, u}\right|_{(\vec{s}: 0)}<4=\operatorname{codim}_{P^{7}} X_{10}$.

Let $l_{i}(\vec{s})=\partial Q_{i} /\left.\partial u\right|_{\vec{s}}, i=0, \ldots, 4$. The rows of $\left.J_{v, u}\right|_{(\vec{s}, 0)}$ are $\left.\nabla_{u, v} Q_{i}\right|_{(\vec{s}: 0)}=$ $\left(\nabla_{u} q_{i \mid \vec{s}}, l_{i}(\vec{s})\right), i=0, \ldots, 4$ and $\left.\nabla_{u, v} Q\right|_{(\vec{s}: 0)}=\left(\left.\nabla_{u} q\right|_{\vec{s}}, L(\vec{s})\right)$. For the special choice of the line $\Lambda \subset \Pi$, the linear forms $l_{i}=l_{i}(\vec{s})$ are $\left(l_{0}, l_{1}, l_{2}, l_{3}, l_{4}\right)=\left(s^{4}, 0,-3 s^{2}\right.$, $-2 s, 0)$.

Therefore, in view of $(*), X_{10}$ will have a singularity at $(\vec{s}, 0) \in C_{6}$ if there exist constants a_{0}, \ldots, a_{4} satisfying $(* *)$ and such that $L(\vec{s})=\left(a_{0}-3 a_{2}-2 a_{3}\right) s^{2}$ (here $\vec{s}=\left(1,2 s, s^{2}, 2 s^{3}, s^{4}, 2 s^{5}, s^{6}\right)$-see above).

By $(* *) \quad a_{0}-3 a_{2}-2 a_{3}=-1$. Therefore, in homogeneous coordinates $\left(s_{0}: s_{1}\right), s=s_{1} / s_{0}$, the variety X_{10} will be singular at the point $((\vec{s}): 0) \in C_{6}$ iff $F_{6}\left(s_{0}: s_{1}\right):=L\left(s_{0}^{6}: 2 s_{0}^{5} s_{1}: s_{0}^{4} s_{1}^{2}: 2 s_{0}^{3} s_{1}^{3}: s_{0}^{2} s_{1}^{4}: 2 s_{0} s_{1}^{5}: s_{1}^{6}\right)+s_{0}^{4} s_{1}^{2}=0$.

The Veronese map $v_{6}: \boldsymbol{P}^{1} \xrightarrow{\rightarrow} C_{6} \subset X_{10}, v_{6}:\left(s_{0}: s_{1}\right) \mapsto(\vec{s}: 0)=\left(s_{0}^{6}: 2 s_{0}^{5} s_{1}:\right.$ $\left.s_{0}^{4} s_{1}^{2}: 2 s_{0}^{3} s_{1}^{3}: s_{0}^{2} s_{1}^{4}: 2 s_{0} s_{1}^{5}: s_{1}^{6}: 0\right)$, states an isomorphism between \boldsymbol{P}^{1} and C_{6}.

Therefore either $F_{6}\left(s_{0}: s_{1}\right) \equiv 0$, and then X_{10} is singular along C_{6}, or $F_{6}\left(s_{0}: s_{1}\right) \not \equiv$ 0 , and then the singular points of X_{10} on C_{6} are the v_{6}-images of the zeros of the homogeneous form $F_{6}\left(s_{0}: s_{1}\right)$ of degree 6.

The choice of an arbitrary line $\Lambda \subset \Pi$ will only change the homogeneous sextic forms defined by $l_{i}(\vec{s}), i=0, \ldots, 4$. q.e.d.

$$
g=6(\text { second kind })
$$

3.14. Let $\pi: X=X_{10}^{\prime} \rightarrow Y_{5}, X \subset \boldsymbol{P}^{7}$, be a double covering of the Del Pezzo threefold $Y_{5}=G(2,5) \cap \boldsymbol{P}^{6}$ branched along the quadratic section $B \subset Y_{5}$. Below we shall identify the branch locus $B \subset Y_{5}$ and the ramification divisor $R \subset X_{10}^{\prime}$, $R \cong B$.
3.15. Assume that X contains the tangent scroll $S=S_{10}$ to the rational normal sextic $C=C_{6}$, and let $l \subset S$ be a general tangent line to C. Then $N_{l / X} \cong \mathcal{O}(1) \oplus \mathcal{O}(-2)$ (see (1.2)), and $\pi(l) \subset Y_{5}$ also is a line. If $N_{\pi(l) / Y_{5}} \cong$ $\mathcal{O} \oplus \mathcal{O}$ then $d \pi: N_{l / X} \rightarrow N_{\pi(l) / Y_{5}}$ has one-dimensional kernel along l. In this case l is contained in the ramification divisor R of π. The last is possible only for a finite number of $l^{\prime} s$. Therefore, at least for the general tangent line $l \subset S$ to C, the line $\pi(l) \subset \pi(S)$ is a $(-1,1)$-line on Y_{5}, i.e. $N_{\pi(l) / Y_{5}} \cong \mathcal{O}(-1) \oplus \mathcal{O}(1)$. Therefore $\pi(S) \subset Y_{5}$ coincides with the surface $S_{-1,1} \subset Y_{5}$ swept-out by the $(-1,1)$ lines on Y_{5}, which in turn is a tangent scroll to a rational normal sextic (see [FN]). Clearly $\pi: S \rightarrow S_{-1,1}$ is an isomorphism and $S_{-1,1}$ is the tangent scroll to $\pi\left(C_{6}\right)$.

Assume first that $S=R$. Then $S_{-1,1}=\pi(S)=B \cong R$. Therefore X is singular along C_{6} since the branch locus $B=S_{-1,1}$ of π is singular along C_{6}. In order to prove Lemma (A) for $g=6$ (second kind) it rests to see the general $X_{10}^{\prime} \supset S_{10}$ such that $S \neq R$ is singular. This will imply that any $X_{10}^{\prime} \subset S_{10}$ must be singular-since the property $X_{10}^{\prime} \subset S_{10}$ to have a singularity is a closed condition.

Since $\pi: X_{10}^{\prime} \rightarrow Y_{5}$ is a 2-sheeted covering with a ramification divisor R, then $H^{0}\left(X_{10}^{\prime}, O(1)\right)=\pi^{*} H^{0}\left(Y_{5}, O(1)\right)+C . R$ where R is the hyperplane equation of $R \subset X_{10}^{\prime}$. Therefore, since $S \cong \pi(S)$ and $S \neq R$, then $\pi(S)$ is tangent to the branch locus B of π along a (possibly singular) canonical curve $C_{10}^{6}=B \cap H=$ $\pi(S) \cap H$ for some hyperplane $H \subset \boldsymbol{P}^{6}$. Since $\pi(S)=S_{-1,1}$ then the general X_{10}^{\prime} $\supset S=S_{10}, S \neq R$ comes from a branch locus B totally tangent to $S_{-1,1}$ along a general hyperplane section $H \cap S_{-1,1}$. Since H is general then H intersects the rational normal sextic $\pi\left(C_{6}\right)$ at 6 points p_{1}, \ldots, p_{6} such that $p_{i} \neq p_{j}$ for $i \neq j$. By $p_{i} \in B$ and the identification $B=R$, we may cosider p_{i} as points on $R \subset X_{10}^{\prime}$. We shall see that
(*) Lemma. $p_{i} \in \operatorname{Sing} X_{10}^{\prime}, i=1, \ldots, 6$.
Proof of $(*)$. Let $U_{i} \subset Y_{5}$ be a sufficiently small neighborhood of the point p_{i}. Since Y_{5} is smooth, we can identify U_{i} with a disk in \boldsymbol{C}^{3}, and let (u, v, w) be
local coordinates in U_{i} s.t. $p_{i}=(0,0,0)$. Let $f(u, v, w)=0$ be the local equation of S_{10} in U_{i}. Since S_{10} is the tangent scroll to the smooth rational curve C_{6}, and $p_{i} \in C_{6}$, one can choose the coordinates u, v, w such that $f=u^{3}-v^{2}$ (since the scroll S_{10} has a double cusp-singularity along C_{6}-see Lemma 2.3). Let $q=0$ and $h=0$ be the local equations of B and H in U_{i}. Since B and S_{10} are singular along $C_{10}^{6}=B \cap H=S_{10} \cap H, h^{2}, f$ and q are linearly dependent, i.e. $\alpha h^{2}+\beta f+$ $\gamma q=0$ for some constants α, β, γ. Moreover $\alpha \neq 0$ and $\gamma \neq 0$ since $\pi(S) \cong S$ and $\pi(S) \neq B$, and one may assume that $\beta \neq 0$ (otherwise $B=2 H$ and X_{10}^{\prime} will be singular along the surface $\left.R_{\mathrm{red}} \cong B_{\mathrm{red}}=H\right)$. Since $p_{i} \in H, h(0,0,0)=0$ and $h=$ $a u+b v+c w+o(2)$, where $o(k)$ denotes a sum of terms of degree $\geq k$. Therefore the surface B is singular at p_{i} since $B \cap U_{i}=(q=0)$, and the series expansion

$$
q(u, v, w)=-\beta / \gamma f-\alpha / \gamma h^{2}=\beta / \gamma\left(v^{2}-u^{3}\right)-\alpha / \gamma(a u+b v+c w+o(2))^{2}
$$

has no linear term. Since B is the branch locus of $\pi: X_{10}^{\prime} \rightarrow Y_{5}$, the threefold X_{10}^{\prime} will be also singular at $p_{i} \in R \cong B, i=1, \ldots, 6$. In addition, the $6=12-g\left(X_{10}^{\prime}\right)$ singular points p_{1}, \ldots, p_{6} of X_{10}^{\prime} lie on the rational normal curve $C_{6} \subset X_{10}^{\prime}$.
q.e.d.

Proof of Lemma (A) for $g=8$.
3.16. The Da Palatini construction (see [Pu]). Let $\boldsymbol{P}^{5}=\boldsymbol{P}(V)$ where $V=$ C^{6}, and let $\hat{V}=\operatorname{Hom}_{C}(V, C)$ be the dual space of V. The points $H \in \Lambda^{2} \hat{V}=$ $\operatorname{Hom}_{C}\left(\wedge^{2} V, \boldsymbol{C}\right)$ can be regarded as skew-symmetric linear maps $H: V \rightarrow \hat{V}$, and the hyperplanes $(H=0) \subset \boldsymbol{P}^{14}=\boldsymbol{P}\left(\wedge^{2} V\right)$ can be regarded as points of $\hat{\boldsymbol{P}}^{14}=$ $\boldsymbol{P}\left(\wedge^{2} \hat{V}\right)$.

Let $\left.P f=\left\{H \in \wedge^{2} \hat{V}\right): \operatorname{rank}(H) \leq 4\right\} / C^{*}$. Then $P f$ is the Pfaff cubic hypersurface in $\hat{\boldsymbol{P}}^{14}$ defined, in coordinates, by vanishing of the cubic Pfaffian of the skew-symmetric (6×6)-matrix H. Let $U_{10} \subset \wedge^{2} V$ be a 10 -dimensional subspace, and let

$$
\hat{U}_{5}=U_{10}^{\perp}=\left\{H \in \wedge^{2} \hat{\boldsymbol{V}}=\operatorname{Hom}_{\boldsymbol{C}}\left(\wedge^{2} \boldsymbol{V}, \boldsymbol{C}\right):\left.H\right|_{U_{10}}=0\right\}
$$

Let moreover $U_{10} \subset \wedge^{2} V$ be such that $\operatorname{rank}(H) \geq 4$ for any $H \in U_{10}^{\perp}$, and let $X_{14}=G(2,6) \cap \boldsymbol{P}\left(U_{10}\right)$ and $B_{3}=P f \cap \boldsymbol{P}\left(\hat{U}_{5}\right)$.

The construction "Da Palatini" of G. Fano shows that any hyperplane $\boldsymbol{P}^{4} \subset$ $\boldsymbol{P}(V)$ defines a birational isomorphism $\xi: X_{14} \rightarrow B_{3}$ which can be described as follows (see [Pu]):

Identify the point $b \in B_{3}$ and (the projective equivalence class of) the skewsymmetric 6×6 matrix corresponding to b. Since rank $b=4$ for any $b \in B_{3}$ the projective kernel n_{b} of b will be a line in \boldsymbol{P}^{5}. Let $W:=\bigcup_{b \in B_{3}}\left\{n_{b}=\boldsymbol{P}(\operatorname{Ker} b)\right\}$ $\subset \boldsymbol{P}^{5}$.

The fourfold W can be described by an alternative way. Identify the point $l \in G(1: 5)$ and the line $l \subset \boldsymbol{P}^{5}$, and let $W^{\prime}:=\bigcup\left\{l \subset \boldsymbol{P}^{5} \mid l \in X_{14}\right\} \subset \boldsymbol{P}^{5}$. Then (see [Pu, p. 83]):
(a). for the general $v \in W^{\prime}$ there exists a unique $l \in X_{14}$ such that $v \in l$;
(b). for the general $w \in W$ there exists a unique $b \in B$ such that $w \in n_{b}$;
(c). $W^{\prime}=W$.

Let $H \subset \boldsymbol{P}^{5}$ be a general hyperplane. Then, by (a), (b) and (c), the maps $\phi: X_{14} \rightarrow H \cap V, \phi(l)=H \cap l$ and $\psi: B_{3} \rightarrow H \cap V, \psi(b)=H \cap n_{b}$ are birational isomorphisms. The composition $\xi=\xi_{H}=\psi^{-1} \circ \phi: X_{14} \rightarrow B_{3}$ is a birational isomorphism, depending on the choice of the hyperplane $H \subset \boldsymbol{P}^{5}$ (see [Pu, p. 85]).
3.17. The dual cubic fourfold of S_{14}. By Lemma 3.8 (ii) the curve C_{8} is the Plücker image of the tangent scroll to a rational normal quintic $C_{5}:\left(x_{0}: \cdots: x_{5}\right)$ $=\vec{s}=\left(1: s: s^{2}: \cdots: s^{5}\right)$ in $\boldsymbol{P}^{5}(x)$. The points of the curve C_{8} are the Plücker coordinates $x_{i j}(s)$ of the point $\vec{s} \in C_{5}$:

$$
\left(x_{i j}(s)\right)=\left(\begin{array}{cccccc}
0 & 1 & 2 s & 3 s^{2} & 4 s^{3} & 5 s^{4} \\
\cdots & 0 & s^{2} & 2 s^{3} & 3 s^{4} & 4 s^{5} \\
\cdots & \cdots & 0 & s^{4} & 2 s^{5} & 3 s^{6} \\
\cdots & \cdots & \cdots & 0 & s^{6} & 2 s^{7} \\
\cdots & \cdots & \cdots & \cdots & 0 & s^{8} \\
\cdots & \cdots & \cdots & \cdots & \cdots & 0
\end{array}\right)
$$

Therefore $S_{14}=G(2,6) \cap \boldsymbol{P}^{8}$ where $\boldsymbol{P}^{8}=\left(H_{0}=\cdots=H_{5}=0\right) \subset \boldsymbol{P}^{14}$ and:

$$
\begin{array}{ccc}
H_{0}=x_{03}-3 x_{12}, & H_{1}=x_{04}-2 x_{13}, & H_{2}=3 x_{05}-5 x_{14} \\
H_{3}=x_{14}-3 x_{23}, & H_{4}=x_{15}-2 x_{24}, & H_{5}=x_{25}-3 x_{34} .
\end{array}
$$

Let $\Pi^{5}:=\left\langle H_{0}, \ldots, H_{5}\right\rangle \subset \hat{\boldsymbol{P}}^{14}$ be the projective linear span of $\left\{H_{0}, \ldots, H_{5}\right\}$, and let $\boldsymbol{B}_{3}=P f \cap\left\langle H_{0}, \ldots, H_{5}\right\rangle$. Introduce projective coordinates $\left(t_{0}: \cdots: t_{5}\right)$ in Π^{5} such that the point $\left(t_{0}, \ldots, t_{5}\right)$ represents the vector $t_{0} H_{0}+\cdots+t_{5} H_{5}$. Then the cubic 4-fold $\boldsymbol{B}_{3}=P f \cap \boldsymbol{P}^{5}\left(t_{0}: \cdots: t_{5}\right)$ is defined by $\boldsymbol{B}_{3}: F=32 t_{0} t_{2} t_{5}-t_{0} t_{3} t_{5}-$ $2 t_{1}^{2} t_{5}-2 t_{0} t_{4}^{2}+3 t_{1} t_{3} t_{4}-12 t_{1} t_{2} t_{4}-45 t_{2}^{2} t_{3}-9 t_{2} t_{3}^{2}=0$.

The 6 -vector $(0, \ldots, 0)$ is the only value of $\left(t_{0}, \ldots, t_{5}\right)$ where the 15 Pfaffians $P f_{i j}\left(t_{0}, \ldots, t_{5}\right)$ of the matrix $H\left(t_{0}, \ldots, t_{5}\right)=t_{0} H_{0}+\cdots+t_{5} H_{5}$ vanish. Therefore rank $b=4$ for any $b \in \boldsymbol{B}_{3}$.

The fourfold $B_{3}=(F=0) \subset \Pi^{5}$ is singular, and it is not hard to check that $\operatorname{Sing} \boldsymbol{B}_{3}=\left(\nabla_{\left(t_{0}: \cdots: t_{5}\right)} F=(0, \ldots, 0)\right) \subset \overline{\Pi^{5} \text { is the rational normal quartic curve }}$ $C_{4}=\left\{[r]=\left(1: 2 r: r^{2} / 3: 8 r^{2} / 3: 2 r^{3}: r^{4}\right) \mid r \in \boldsymbol{C}\right\}$; for simplicity we let $t_{0}=1$.
3.18. Now we are ready to prove Lemma (A) for $g=8$.

Let $X_{14}=G(2,6) \cap \boldsymbol{P}^{9}=\boldsymbol{P}\left(U_{10}\right)$ be such that $X_{14} \supset S_{14}$, and let $B_{3}=$ $\operatorname{Pf} \cap \boldsymbol{P}\left(U_{10}^{\perp}\right)$. Then $S_{14} \subset X_{14}=G(2, V) \cap \boldsymbol{P}\left(U_{10}\right) \Leftrightarrow \boldsymbol{P}^{8}=\operatorname{Span} S_{14} \subset \boldsymbol{P}\left(U_{10}\right)=$ $\operatorname{Span} X_{14} \Leftrightarrow \boldsymbol{P}\left(U_{10}^{\perp}\right) \subset \Pi^{5} \Leftrightarrow B_{3} \subset \boldsymbol{B}_{3}$. Since $B_{3} \subset \boldsymbol{B}_{3}$ then $\operatorname{rank}(H)=4$ for any $H \in B_{3}$ (see (3.17)), hence the Da Palatini birationalities $\xi: X_{14} \rightarrow B_{3}$ (see (3.16)) are well-defined.

Assume that X_{14} is smooth. Then B_{3} must be smooth (see above or [Pu , p. 83]). But B_{3} must be singular at any of the intersection points of the hyper-
plane $\boldsymbol{P}\left(U_{10}^{\perp}\right) \subset \Pi^{5}$ and the rational quartic curve $C_{4}=\operatorname{Sing} \cdot \boldsymbol{B}_{3}$-contradiction (see the end of (3.17)). Therefore any $X_{14} \supset S_{14}$ must be singular. q.e.d.
3.19. Remark. If $\boldsymbol{P}\left(U_{10}^{\perp}\right)=\operatorname{Span}\left(C_{4}\right)$ then B_{3} is singular along C_{4}, and it can be seen that then X_{14} is singular along C_{8}. Let $\boldsymbol{P}\left(U_{10}^{\perp}\right) \neq \operatorname{Span}\left(C_{4}\right)$. Then the hyperplane $\boldsymbol{P}\left(U_{10}^{\perp}\right) \subset \Pi^{5}$ intersects the rational normal quartic $C_{4}=\operatorname{Sing} \boldsymbol{B}_{3}$ in 4 possibly coincident points $b_{1}, b_{2}, b_{3}, b_{4}$. Let, for simplicity b_{i} be different from each other. Then one can show that the general Da Palatini birationality $B_{3} \leftrightarrow X_{14}$ sends $\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ to $4=12-g\left(X_{14}\right)$ singular points of X_{14} which lie on C_{8}. Let $H \subset \boldsymbol{P}^{5}$ be a hyperplane, and let $\xi_{H}^{-1}: B_{3} \rightarrow X_{14}$ be the Da Palatini birationality defined by H. We shall see that for the general H the rational map $\xi_{H}^{-1}=\psi_{H}$ is regular at a neighborhood of any b_{i}, and $\xi_{H}^{-1}\left(b_{i}\right) \in C_{8}$. For this, by the definition of the maps ϕ and ψ, it is necessary to see that the kernel-map ker : $B_{3} \rightarrow G(1: 5), b \mapsto n_{b}$ sends the quartic C_{4} isomorphically to C_{8}.

Let $b=\left(b_{i j}\right) \in B_{3}$. Then the Plücker coordinates of the line $n_{b}=\operatorname{ker}(b)$ are $(-1)^{l+j} P f_{i j}(b)$, where $P f_{i j}(b)$ are the 15 quadratic Pfaffians of the skew-symmetric matrix \hat{b}; note that $\operatorname{rank}(b)=4$ for any $b \in B_{3} \subset \boldsymbol{B}_{3}$. Now, it rests only to replace b by the general point $b(t)=H_{0}+t H_{1}+t^{2} / 12 H_{2}+2 t^{2} / 3 H_{3}+t^{3} / 4 H_{4}+$ $t^{4} / 16 H_{5} \in C_{4}$, and to see that the Plücker coordinates of $b(t)$ parameterize the general point $x_{i j}(\vec{s})$ of C_{8} (where $\left.s=2 / t\right)$-see (3.17).

Proof of Lemma (A) for $g=7$
3.20. In the proof of Lemma (A) for $g=7$ we shall need the known by [I2] description of the projection from a line l on a smooth prime Fano threefold $X_{2 g-2}$ such that $N_{l / X}=\mathcal{O}(1) \oplus \mathcal{O}(-2)$.
3.21.

Lemma (see $\S 1$ Proposition 3 in [I2]). Let l be a line on the smooth prime Fano threefold $X=X_{2 g-2} \subset \boldsymbol{P}^{g+1}$ such that $N_{l / X}=\mathcal{O}_{l}(-2) \oplus \mathcal{O}_{l}(1)$, and let $\sigma: X^{\prime} \rightarrow X$ be the blow up of l. Let $Z^{\prime}=\sigma^{-1}(l)$, let $H^{\prime} \sim \sigma^{*} H-Z^{\prime}$ be the proper preimage of the hyperplane section H of X, and let $\pi: X \rightarrow X^{\prime \prime} \subset \boldsymbol{P}^{g-1}$ be the projection from l. Then:
(i). If $g \geq 5$ then the composition $\phi=\pi \circ \sigma: X^{\prime} \rightarrow \boldsymbol{P}^{g-1}$ is a birational morphism (given by the linear system $\left|H^{\prime}\right|$), to a threefold $X^{\prime \prime} \subset \boldsymbol{P}^{g-1}$.
(ii). The restriction to $Z^{\prime}=\boldsymbol{P}\left(N_{l / V}\right)=\boldsymbol{F}_{3}$ of the linear system $\left|H^{\prime}\right|$ is the complete linear system $\left|s^{\prime}+3 f^{\prime}\right|$, where s^{\prime} and f^{\prime} are the classes of the exceptional section and the fiber of the rational ruled surface Z^{\prime}.
(iii). The restriction $\left.\phi\right|_{Z^{\prime}}$ of ϕ to Z^{\prime} maps Z^{\prime} to a cone $Z^{\prime \prime}$ over a twisted cubic curve, contracting the exceptional section s^{\prime} of Z^{\prime} to the vertex of $Z^{\prime \prime}$.
(iv). If $g \geq 7$ then there are only a finite number of lines $l_{i} \subset X \quad(i=1, \ldots, N)$ which intersect l. Let $l_{\imath}^{\prime} \subset X^{\prime}$ of $l_{i}(i=1, \ldots, N)$ be the proper preimages $l_{i}^{\prime} \subset X^{\prime}$ of $l_{i}(i=1, \ldots, N)$. Then the morphism $\phi: X^{\prime} \rightarrow X^{\prime \prime}$ is an isomorphism outside $l_{1}^{\prime} \cup \cdots \cup l_{N}^{\prime} \cup s^{\prime}$, and ϕ contracts s^{\prime} and any of l_{l}^{\prime} to isolated double points of $X^{\prime \prime}$.
(v). Let $H^{\prime \prime}=\phi\left(H^{\prime}\right)$ be the hyperplane section of $X^{\prime \prime}$. Then if $g \geq 7$ then $-K_{X^{\prime \prime}} \sim H^{\prime \prime}$, i.e. the variety $X^{\prime \prime}=X_{2(g-2)-2}^{\prime \prime} \subset \boldsymbol{P}^{g-1}$ is an anticanonically embedded Fano threefold with isolated singularities as in (iv).
3.22. Suppose that there exists a smooth prime $X=X_{12} \subset \boldsymbol{P}^{8}$ which contains the tangent scroll S_{12} to the rational normal curve C_{7}. Therefore the general such X is smooth, and we may suppose that $X \supset S_{12}$ is general.

Let $l \subset S_{12}$ be any of the tangent lines to C_{7} and let $\pi: X \rightarrow X^{\prime \prime}$ be the projection from l. By [I2, §1] (see also (1.2)) $N_{l / X}=\mathcal{O}(1) \oplus \mathcal{O}(-2)$, therefore Lemma 3.21 (i)-(v) take place.

By Lemma $3.21(\mathrm{v})$ the threefold $X^{\prime \prime}=X_{8}^{\prime \prime} \subset \boldsymbol{P}^{6}$ is an anticanonically embedded Fano threefold of genus 5. Let $S^{\prime \prime} \subset X^{\prime \prime}$ be the proper image of S_{12}, and let $C^{\prime \prime} \subset S^{\prime \prime} \subset X^{\prime \prime}$ be the proper image of C_{7}. It is easy to see that $C^{\prime \prime}=C_{5}^{\prime \prime}$ is a rational normal quintic, and $S^{\prime \prime}=S_{8}^{\prime \prime} \subset X^{\prime \prime}$ is the tangent scroll to $C^{\prime \prime}$.

In order to use the proof of Lemma (A) for $g=5$ we have to see whether $X_{8}^{\prime \prime} \subset \boldsymbol{P}^{6}$ is, in fact, a complete intersection of three quadrics. If $X^{\prime \prime}$ were nonsingular then the classification of the smooth Fano threefolds will imply that $X^{\prime \prime}$ will be a complete intersection of three quadrics. But $X^{\prime \prime}$ is singularsee Lemma 3.21 (iv),(v).

However, especially in this case, $X^{\prime \prime}=X_{8}^{\prime \prime} \subset \boldsymbol{P}^{6}$ is still a complete intersection of three quadrics (see Theorem 6.1 (vii) in [I1]).

Denote by $\operatorname{Sing}(X) \cap C$ the set of singular points of $X=X_{12}$ on C, and let $\operatorname{Sing}\left(X^{\prime \prime}\right) \cap C^{\prime \prime}$ be the set of singular points of $X^{\prime \prime}$ on $C^{\prime \prime}$.
3.23. By the proof of Lemma (A) for $g=5$, the elements of $\operatorname{Sing}\left(X^{\prime \prime}\right) \cap C$ are in a ($1: 1$) correspondence with the different zeros of a homogeneous form $F_{7}\left(s_{o}: s_{1}\right)$ of degree 7. (see (3.6)). Clearly, the vertex of $Z^{\prime \prime}$ lies on $C^{\prime \prime}$. Moreover, by (3.21)(iv), o is a double singularity of $X^{\prime \prime}$. Since $l \cap \operatorname{Sing} X=\emptyset$, and since the tangent lines $l^{\prime} \neq l$ to $C=C_{7}$ do not intersect l, (3.21)(iv) yield that, set-theoretically: $\operatorname{Sing}(X) \cap C \cong \operatorname{Sing}\left(X^{\prime \prime}\right) \cap C^{\prime \prime}-\{o\}$.

Let $F_{7}\left(s_{0}: s_{1}\right)=0$ be as above. Since $\operatorname{dim} \operatorname{Sing} X^{\prime \prime}=0$, the form F_{7} does not vanish on C_{7}; and we can assume that $o=(1: 0)$ and $F_{7}(0: 1) \neq 0$. Therefore if $s=s_{1} / s_{0}$ and $f_{7}(s)=F(1: s)$ then $\operatorname{deg} f_{7}(s)=7$. By the previous the elements of $\operatorname{Sing}(X) \cap C$ correspond to the different zeros of the polynomial $s^{-m} \cdot f_{7}(s)=0$, where $m=$ mult $_{o} f_{7}(s)$.

By the local definition of m, the integer $m=m(o)=\operatorname{mult}_{o} f_{7}(s)$ does not depend on the genus $g \geq 7$ of $X_{2 g-2}$ as well on the choice of the general tangent line l to C_{g}. It can be seen that $m=2$, but for the proof it is enough to know that $m \leq 2$.
(*) Lemma. $m \leq 2$.
Proof of $(*)$. By construction $X^{\prime \prime} \supset S^{\prime \prime} \cup Z^{\prime \prime}$ where $S^{\prime \prime}=S_{8}^{\prime \prime}$ is the tangent scroll to the rational normal quintic $C^{\prime \prime}=C_{5}^{\prime}$ such that $o \in C^{\prime \prime}, Z^{\prime \prime}$ is a cone over a twisted cubic, and o is the vertex of Z. Moreover $Z^{\prime \prime}$ is triple tangent to $S^{\prime \prime}$ at the tangent line F to $C^{\prime \prime}$ at o. Indeed $S^{\prime \prime}$ is a hyperplane section of $Z^{\prime \prime}$ which passes through the vertex o of Z. Therefore $S^{\prime \prime} . Z=f_{1}+f_{2}+f_{3}$ is a sum of 3 rulings of $Z^{\prime \prime}$. Since f_{i} are rulings of $Z, o \in f_{i}$ for $i=1,2,3$. Therefore any f_{i} is a line on the tangent scroll $S^{\prime \prime}$ to $C^{\prime \prime}$ which passes through $o \in C^{\prime \prime}$. Therefore $f_{i}=F$ must be a tangent line to $C^{\prime \prime}$ at o, i.e. $S^{\prime \prime} . Z^{\prime \prime}=3 F$.

By Theorem 9.9 in [13], the general complete intersection $X_{8} \subset \boldsymbol{P}^{6}$ of three quadrics, containing a cone Z_{3} over a twisted cubic, is a projection of X_{12} from a line l such that $N_{l / X_{12}}=\mathcal{O}(1) \oplus \mathcal{O}(-2)$. The inverse of the projection π_{l} is defined by the linear system $\left|H+Z_{3}\right|$, where H is the hyperplane section of X_{8}.

Let $X_{8} \supset Z_{3} \cup S_{8}$ be as above. Then X_{12} will contain a tangent scroll S_{12} to a rational normal curve C_{7}, and l will be a tangent line to C_{7}. Therefore any $X_{8} \supset Z_{3} \cup S_{8}$ will be a deformation of a projection of $X_{12} \subset S_{12}$ from a tangent line to C_{7}.

It rests to see that $m\left(X_{8}\right)=$ mult $f_{7} \leq 2$ for f_{7} corresponding, as above, to some particular such X_{8}.

Example. Let $\boldsymbol{P}^{5}(x)=\boldsymbol{P}^{5}\left(x_{0}: \cdots: x_{5}\right)$, and let $q_{0}=-x_{0} x_{4}+4 x_{1} x_{3}-3 x_{2}^{2}$, $q_{1}=-x_{0} x_{5}+3 x_{1} x_{4}-2 x_{2} x_{3}, \quad q_{2}=-x_{1} x_{5}+4 x_{2} x_{4}-3 x_{3}^{2}$. Then $S_{8}=\left(q_{0}=q_{1}=\right.$ $\left.q_{2}=0\right) \subset \boldsymbol{P}^{5}(x)$ will be the tangent scroll to the rational normal quintic C_{5} : $x_{\imath}=s_{0}^{5-t} s_{1}^{l}(0 \leq i \leq 5)$.

Let $X_{8}=\left(Q_{0}=Q_{1}=Q_{2}=0\right) \subset \boldsymbol{P}^{6}(x: u)=\boldsymbol{P}^{6}\left(x_{0}: x_{1}: x_{2}: x_{3}: x_{4}: x_{5}: u\right)$, where

$$
\begin{aligned}
& Q_{0}=q_{0}+L_{o}\left(x_{4}: x_{5}\right) u, \\
& Q_{1}=q_{1}+\left(12 x_{1}+L_{1}\left(x_{4}: x+5\right)\right) u, \\
& Q_{2}=q_{2}+\left(27 / 2 x_{2}+L_{2}\left(x_{4}: x_{5}\right)\right) u,
\end{aligned}
$$

L_{0}, L_{1} and L_{2} being linear forms of $\left(x_{4}: x_{5}\right)$. Evidently $X_{8} \cap(u=0)=S_{8}$.
Let $\boldsymbol{P}^{4}=\boldsymbol{P}^{4}\left(x_{0}: x_{1}: x_{2}: x_{3}: u\right) \subset \boldsymbol{P}^{6}$, and let $Z_{3}=X_{8} \cap \boldsymbol{P}^{4}$. Then $Z_{3}=$ $\left(P_{0}=P_{1}=P_{2}=0\right) \subset \boldsymbol{P}^{4}$, where $P_{0}=x_{1} x_{3} / 3-x_{2}^{2} / 4, P_{1}=x_{1} u-x_{2} x_{3} / 6, P_{2}=$ $x_{2} u-x_{3}^{2} / 9$.

Therefore Z_{3} is a cone with center $o=(1: 0: \cdots: 0) \in C_{5}$ over the twisted cubic curve $C_{3}=Z_{3} \cap\left(x_{0}=0\right), C_{3}:\left(x_{1}: x_{2}: x_{3}: u\right)=\left(t_{0}^{3}: 2 t_{0}^{2} t_{1}: 3 t_{0} t_{1}^{2}: t_{1}^{3}\right)$. Let $s=s_{1} / s_{0}$, and we may suppose that the point $(0: \cdots: 0: 1) \in C_{5}$ is not a singular point of X_{8}. Then, by (3.6), the equation of $\left.\left(\operatorname{Sing} X_{8}\right)\right|_{C_{5}}$ is

$$
\begin{aligned}
f_{7}(s) & =s^{2} \partial Q_{0} / \partial u\left(1: s: \cdots: s^{5}\right)-s \partial Q_{1} / \partial u\left(1: s: \cdots: s^{5}\right)+\partial Q_{2} / \partial u\left(1: s: \cdots: s^{5}\right) \\
& =s^{2} L_{0}\left(s^{4}, s^{5}\right)-s\left(12 s+L_{1}\left(s^{4}, s^{5}\right)\right)+\left(27 / 2 s^{2}+L_{2}\left(s^{4}, s^{4}\right)\right)=3 / 2 s^{2}+o\left(s^{3}\right)
\end{aligned}
$$

where $o\left(s^{3}\right)$ is a sum of terms of degree ≥ 3. Therefore $m\left(X_{8}\right)=\operatorname{mult}_{o} f_{7}(s)=2$. q.e.d.
3.24. Let $X=X_{12} \supset S_{12}$ be general. Since $m \leq 2$ then $\operatorname{deg} s^{-m} f_{7}(s) \geq 7-$ $2=5=12-g\left(X_{12}\right)>0$. In particular $g(s):=s^{-m} f_{7}(s)$ is not a constant. Since $g(0) \neq 0$, and since the elements of $\operatorname{Sing}(X) \cap C$ are in a (1:1) correspondence with the different zeros of $g(s)=s^{-m} f_{7}(s)$ (see above), then X_{12} must be singular, which contradicts the initial assumption. This proves Lemma (A) for $g=7$.

Proof of Lemma (A) for $g=9$.

3.25. Let $X_{16} \subset \boldsymbol{P}^{10}$ contains the tangent scroll $S=S_{16}$ to the rational normal curve $C=C_{9}$, and suppose that nevertheless X_{16} is smooth.

Let $L \subset X_{16}$ be a tangent line to C, and consider the double projection $\pi=$ $\pi_{2 L}$ of X from the line L, i.e. π is the rational map on X defined by the noncomplete linear system $\left|\mathcal{O}_{X}(1-2 L)\right|$. Since $X=X_{16}$ is assumed to be smooth then, by $\S 2$ in [I2]:
(*). $\pi=\pi_{2 L}$ sends X birationally to \boldsymbol{P}^{3}. Moreover, on \boldsymbol{P}^{3} there exists a smooth irreducible curve $C=C_{7}^{3}$ of genus 3 and degree 7, which lies on a unique cubic surface $S_{3} \subset \boldsymbol{P}^{3}$, and such that the inverse to π birational map $\phi: \boldsymbol{P}^{3} \rightarrow X$ is given by the non-complete linear system $\left|\mathcal{O}_{P^{3}}(7-2 C)\right|$.

By (*), the proper image $\pi(H)$ of any hyperplane section $H \subset X$ is an irreducible component of an effective divisor $S_{7} \in\left|\mathcal{O}_{P^{3}}(7-2 C)\right|$. If moreover H contains the line L but $H \notin\left|\mathcal{O}_{X}(1-2 L)\right|$ (for example if $H=S_{16}$) then $\pi(H) \subset$ \boldsymbol{P}^{3} will be a quartic surface containing the curve $C=C_{7}^{3}$ (see the proof of the Main Theorem in §2 of [I2]), and in this case $S_{7}=\pi(H)+S_{3} \in\left|\mathcal{O}_{P^{3}}(7-2 C)\right|$.

Therefore $S_{4}:=\pi\left(S_{16}\right)$ is a quartic surface in \boldsymbol{P}^{3} containing the curve $C=$ C_{7}^{3}. Moreover, the double projection π sends the general tangent line L^{\prime} to C_{9} to a tangent line $\pi\left(L^{\prime}\right)$ to the proper image $\pi\left(C_{9}\right)$; and since $C_{9} \cong \boldsymbol{P}^{1}$ then $\pi\left(C_{9}\right)$ is rational. Therefore the quartic surface $S_{4}=\pi\left(S_{16}\right)$ is the tangent scroll to the rational curve $\pi\left(C_{9}\right) \subset \boldsymbol{P}^{3}$. The last is only possible if $\pi\left(C_{9}\right)=C_{3}$ is a twisted cubic and S_{4} is the tangent scroll to C_{3}, and we shall see that this is impossible.

The surface $S_{4} \subset \boldsymbol{P}^{3}$ is the tangent scroll to the twisted cubic C_{3}. Then, by Lemma 1.6 and p. 498 in [MU], the normalization of S_{4} is the quadric $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$, and the map $v: \boldsymbol{P}^{1} \times \boldsymbol{P}^{1} \rightarrow S_{4}$ is given by a linear system of bidegree $(1,2)$.

Let $\Gamma \subset \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ be the proper transform of C_{7}^{3}, and let (a, b) be the bidegree of Γ. Therefore $7=\operatorname{deg}\left(C_{7}^{3}\right)=2 a+b$, and $3=g\left(C_{7}^{3}\right)=g(\Gamma)=(a-1)(b-1)$. Obviously, these two equations for the integers a and b have no integral solu-tions-contradiction.

Therefore $X_{16} \supset S_{16}$ can't be smooth, which proves Lemma (A) in case $g=9$.

This completes the proof of Lemma (A).

References

[AS] E. Arrondo and I. Sols, On congruences of lines in the projective space, Mémoire no. 50, Supplément au Bulletın de la SMF, Tome 120, fasc. 3 (1992).
[FN] M. Furushima and N. Nakayama, The family of lines on the Fano threefold V_{5}, Nagoya Math. J., 116 (1989), 111-122.
[FT] M. Furushima and M. Tada, Non-normal del Pezzo surfaces and Fano threefolds of the first kınd, J. Reıne Angew. Math., 429 (1992), 183-190.
[GH] P A. Griffiths and J. Harris, Prıncıples of Algebraic Geometry, Willey, 1978.
[Gu] N. P Gushel, Fano varreties of genus 6, Math. USSR-Izv., 21 (1983), 445-459.
[H] R. Hartshorne, Algebraic Geometry, Springer-Verlag, 1977
[I1] V Isкоvsкiкн, Fano threefolds II, Math. USSR-Izv., 12 (1978), 469-506.
[I2] V Isкovskiкh, Double projection from a line on Fano threefolds of the first kind, Math. USSR-Sb., 66 (1990), 265-284.
[I3] V Isкovsкiкh, Lectures on Three-Dimensional Algebrac Varieties. Fano varieties, Moscow Unıv. Publ., 1988, (in Russian).
[IP] V Iskovskikh and Yu. Prokhorov, Algebraic Geometry V• Fano Varieties, SpringerVerlag, 1999.
[L] R. Lazarsfeld, Some applications of the theory of positive vector bundles, Lect. Notes in Math. 1092, Springer-Verlag, 1984, 29-61.
[M1] S. Mukai, Curves, K3 surfaces and Fano 3-folds of Genus ≤ 10, Algebraic Geometry and Commutatıve Algebra Volume I (H. Hijikata et al eds.), Kinokunıya, 1987, 357-377
[M2] S. Mukai, Fano 3-folds, London Math. Soc. Lect. Note Ser. 179, Cambridge, 1992, 255263.
[MU] S. Mukai and H. Umemura, Minimal rational threefolds, Lect. Notes in Math. 1016, Springer-Verlag, 1983, 490-518.
[P1] R. Piene, Some formulas for a surface in \boldsymbol{P}^{3}, Lect. Notes in Math. 687, Springer-Verlag, 1978, 196-235.
[P2] R. Piene, Cuspidal projections of space curves, Math. Ann., 256 (1981), 95-119.
[Pe] T. Peternell, Manifolds of semı-positive curvature, Lect. Notes in Math. 1646, SpringerVerlag, 1996, 98-142.
[Pr] Yu. Prokhorov, Exotıc Fano varieties, Moscow Unıv. Math. Bull., 45 (1990), 36-38.
[PS] K. Paranjape and V Srinivas, Self maps of homogeneous spaces, Invent. Math., 98 (1989), 425-444.
[Pu] P J. Puts, On some Fano threefolds that are sections of Grassmannians, Proc. Konınk. Nederl. Acad. Wetensch., 85 (1982), 77-90.
[RV] R. Remmert, A. Van de Ven, Zweı Sätze über die komplex-projectıve Ebene, Nieuw Archief voor de Wiskunde (3) VIII (1960), 147-157
[Sch] C. Schummann, Morphısms between Fano threefolds, J. Algebr. Geom., 8 (1999), 221-244.
[Sh] I. R. Shafarevich, Basic Algebraic Geometry, Springer-Verlag, 1977
Institute of Mathematics,
Bulgarian Academy of Sciences
Acad. G. Bonchev Str. 8, 1113 Sofia, Bulgaria

University of Leiden, P.O. Box 9512
2300 RA Leiden,
The Netherlands

