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MINIMALLY IMMERSED LEGENDRIAN SURFACES IN

SASAKIAN 5-MANIFOLDS

MlTSUfflRO ITOH

Abstract

Minimal, Legendπan surfaces in a Sasakian 5-manifold are considered in terms of

the cubic differential form and a generalization of the theorem given by S. Yamaguchi

et al is obtained. A lower bound for the index of second variation for those surfaces

is also derived.

§1. Introduction

The purpose of this paper is to investigate Legendrian surfaces minimally
immersed in a Sasakian 5-manifold.

Totally real or Lagrangian submanifolds of a Kahler manifold are recently
well investigated, as is surveyed in [4]. In contrast with this, there is a few
knowledge of geometry of Legendrian submanifolds of a Sasakian manifold,
although in the regular contact case its situation is parallel to geometry of
Lagrangian submanifolds.

We concentrate upon minimal Legendrian surfaces in a 5-dimensional
Sasakian manifold and generalize a theorem in [11] given by S. Yamaguchi, M.
Kon and Y. Miyahara, held for minimal Legendrian surfaces in a 5-dimensional
Sasakian space form, a special kind of Sasakian 5-manifold.

A Sasakian 5-manifold is a metric contact manifold (M, η, ζ, φ, g) for which
the (1,1)-tensor φ satisfies

(1) (Vχφ)Y = g{X,Y)ξ-η(Y)X

for the Levi-Civita connection V.
A surface in a Sasakian 5-manifold is called Legendrian when its tangent

spaces all belong to the contact subbundle Ker// = {X e TM \ η(X) = 0} of the
tangent bundle TM.

The unit 5-sphere S5 with a standard metric, a typical Sasakian space form,
admits as Legendrian embeddings of Riemann surfaces a totally geodesic em-
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bedding of a round 2-sphere S2 ([2]) and a minimal embedding of a flat 2-torus
T2 ([5]).

However, any compact Riemann surface of negative constant Gaussian
curvature K can not be minimally immersed in S5 as Legendrian surface, as
shown by S. Yamaguchi et al in the following theorem.

THEOREM ([11]). Let M be a 5-dimensional Sasakian space form, i.e., a
Sasakίan 5-manifold with constant φ-sectional curvature k and Σ —» M be a
minimally immersed Legendrian surface in M.

(i) If Σ is a compact Riemann surface of genus g = 0, then Σ —• M is totally
geodesic.

(ii) If Σ is a complete Riemann surface with K > 0, then Σ —> M is totally
geodesic or Σ is flat.

(iii) If Σ —» M is a complete Riemann surface with K < 0 and (k + 3)/4 —
AΓ > α > 0 for a constant oc, ί/zerc ^Γ = 0.

This theorem is shown in [11] by making use of a cubic differential J =
J(z)Jz3 on the surface, which is induced from the second fundamental form of
the immersion.

However their proof relies on the Sasakian space form condition. We
can relax this constant ^-sectional curvature condition from their theorem by
investigating explicitly the holomorphicity of the cubic differential.

In order to relax the Sasakian space form condition we employ in terms of
isothermal coordinate the curvature hypothesis

with respect to the Riemannian curvature tensor R of (M,g).
The holomorphicity of Ά is guaranteed by this hypothesis even though M is

not a Sasakian space form.
We then have our main theorems.

THEOREM A. Let Σ —> M be a compact, connected orientable Legendrian
surface minimally immersed in a Sasakian 5-manifold.

Assume Σ —• M satisfies the curvature hypothesis (2).
(i) If Σ has genus zero, then the immersion Σ —> M is totally geodesic.
(ii) If the Gaussian curvature K > 0, then either Σ —> M is totally geodesic or

(Σ, g) is flat and the second fundamental form σ has constant norm.
(iii) If K < 0 and M has positive sectional curvature, then (Σ, g) is flat 2-torus.

THEOREM B. Let Σ —> M be a compact, open connected, orientable Legendrian
surface minimally immersed in a Sasakian 5-manifold.

Assume Σ —> M satisfies the curvature hypothesis (2).
(i) If the Gaussian curvature K < 0 and there is a constant K such that K >

K > 0 for the sectional curvature K of (M,g), then (Σ,#) is flat.
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(ii) If the Gaussian curvature K >0 and the sectional curvature K of M is
uniformly bounded from above i.e., K < c for a constant c, then either the im-
mersion Σ —• M is totally geodesic, or (Σ, g) is flat and the second fundamental
form σ has constant norm and the covariant derivative V'σ has only ξ-component.

Theorems A, B generalize the theorems in [11]. In fact, if a Sasakian 5-
manifold M is Sasakian space form, then it is seen from the curvature property of
the space form that any Legendrian surface is curvature invariant, in other words

R(TΣ,TΣ)TΣcn TΣ

so that the hypothesis (2) is fulfilled, since g{TΣ,φ(TΣ)) = 0.

We give several remarks relating to our theorems.

Remarks, (i) Theorem A, (iii) holds even if Σ —» M does not satisfy (2).
(ii) In the above theorems the dimension of M can be relaxed into In + 1 >

5, provided a minimally immersed surface Σ —> M fulfills

σ(TpΣ, TPΣ) c= φ(TpΣ)

for any point p.
(iii) When a Sasakian manifold M is regular contact, M has a Boothby-

Wang fibration over a Hodge manifold M with a circle fibre and admits a
Riemannian submersion n : M —> M ([3], [6]). As shown by Rechziegel in [9]
a minimal Legendrian immersion / : Σ —> M corresponds in a local sense to a
minimal Lagrangian immersion π of : Σ —> M.

The Boothby-Wang fibration of the Sasakian 5-manifold S5 is the Hopf
fibration S5 —> CP2 so that the typical minimally embedded Legendrian surfaces
S2 c S5 and T2 a S5 correspond to the minimally embedded Lagrangian surfaces
RP2 c CP2 and Γ 2 / Z 3 c CP2 where Z 3 is the cyclic group of order 3.

(iv) M. Kameda obtained quite similar results relating to Legendrian sub-
manifolds of ^-parallel mean curvature in a Sasakian manifold (see [7]).

In the final section we will deal with the index of a minimal Legendrian
surface in a Sasakian 5-manifold with respect to the second variation of area and
will obtain in Proposition 6.2 a formula of the index form in terms of intrinsic
geometry of M and a surface Σ. As a consequence we get Theorem 6.1 in which
the index has a lower bound in terms of the space of holomorphic vector fields
on Σ. Similar results are obtained in [8] for minimal surfaces in a complex 2-
dimensional Kahler manifold.

The author is grateful to the referee for valuable comments.

§2. Sasakian manifolds and Legendrian surfaces

A contact manifold (M, η) of dimension 2 ^ + 1 is called metric contact,
when it admits a Riemannian metric g and a tensor φ e Γ(M, End(ΓM)) sat-
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isfying

(4) φ(φX) = -X + η(X)ζ,

(5) g(φ(X),φ(Y)) = g(X, Y) - η(X)η(Y),

(6) ±

Here ξ is the Reeb field, that is, ξ is a vector field on M satisfying η{ξ) = 1 and
dη(ξ, X) = 0 for any vector X.

A metric contact manifold is called Sasakian if

(7) $χφ){Y)=g{X,Y)ζ-η{Y)X.

Remark that φ restricted to the contact subbundle Ker/7 is from (5) an
almost complex structure. The Reeb field ξ is normal to Ker?/ and fulfills

(8) Φ(ξ)=O,

which shows that ξ gives a unit Killing field over M.
Like a holomorphic sectional curvature of a Kahler manifold, a sectional

curvature of a ^-invariant plane section in Ker?/ of a Sasakian manifold is
defined and is called a ^-sectional curvature. A Sasakian manifold of constant
^-sectional curvature is called a Sasakian space form.

Typical examples of Sasakian space form are an odd dimensional unit sphere

S2n+ι c cn+\ w i t h t h e characteristic field ξ = J(d/dr), R2n+X with the standard
contact structure and the product space Bn x R with a contact form η = ω + dt
where Bn is a simply connected bounded domain in Cn with the Kahler form dω.

We assume (M,η,ζ,φ,g) be a Sasakian 5-manifold.
Let Σ —• M be a connected immersed surface in M.
Then the induced tangent bundle of M splits as

TM\Σ = TΣ@NΣ

where NΣ is the normal bundle of the immersion. Then the Gauss formula and
the Weingarten formula are

(9)

(10)

for tangent vectors X, Y of Σ and a normal field v. Here V is the induced Levi-
Civita connection on Σ and σ is the second fundamental form and, Av and Vx are
the shape operator and the normal bundle connection, respectively.

The induced metric on Σ is denoted by the same letter g which we abbreviate
frequently as <•,•>.

The equations of Gauss and Codazzi are for tangent vectors X, 7, F, W

(li) <Λ(JΓ, 7 ) F , wy = <Λ(JT, γ)v, wy

(12) (Λ(JΓ, y)K)X = (V»(F, F) - (V^)(JΓ, K)
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where V' is the covariant differentiation on the bundle NΣ® S(T*Σ) given by

(13) (V»(y, V) = V£(σ(Y, V)) - σ(VxY, V) - σ(Y^xV).

DEFINITION 2.1. An immersed surface Σ —• M is called Legendrian, if TPΣ c
(Kevη)p for any point p of Σ.

Then, for a Legendrian surface the restricted metric g\KQΐη is ^-invariant,
(φ(X)yφ(Y)} = <Jf, F> so that at any point it holds

(14) TpΣLφ{TpΣ)

(15) (Kerη)p = TpΣ®φ(TpΣ),

and hence

NΣ = φ(TΣ)@Rξ.

In what follows we assume that an immersed surface be Legendrian.

LEMMA 2.1. For a Legendrian surface Σ —* M

(i)

(16) v£(φ(v)) = φ(vxv) +

(ϋ)

(17) (σ(X,Y),ξ) =

and

(iii) the 3-tensor defined by

(18) Q(X,Y,W) = (σ(X,Y

is symmetric.

The proof is shown by using the formula (8) together with the fact that a
surface is Legendrian.

We assume now that Σ is orientable and fix an orientation.
We take an orthonormal frame {e\,e-ι\ of Σ compatible with the orientation.

Then {φ(e\),φ(e2),ξ} gives an orthonormal frame of the normal bundle 7VΣ in
which σ has the components

(19) σ$ = (σ(ehej),φ(ek)\ i,j,k= 1,2

enjoying the symmetry

(20) σ £ = σ j = σ 4 , i,j,k = 1,2

The mean curvature vector H is defined by H = (1/2) ΣΪ=ι σ{eί-> ed-
Notice that the vector φ{H) is tangent to Σ with norm \φ{H)\ = \H\.
Then, in virtue of Hopf 's theorem we observe that if Σ is a compact, con-

nected orientable Legendrian surface of genus g(Σ) Φ 1 immersed in a Sasakian
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5-manifold M and have constant norm \H\, then H = 0, in other words, the im-
mersion is minimal.

Associated to the orthonormal frame {e\,e2} compatible with the orienta-
tion of Σ we define an almost complex structure / : TΣ —• TΣ at each point by
j(e\) = e2, J{e2) = -ex. Then <JX,JY} = (X, Y} for tangent vectors X, Y.

Moreover it holds V/ = 0.
In fact, if we set the connection forms ω\,ω\ = — ω\ such that for / =

1,2 Vxet = ωJ

i(X)ej where j φ i, then (VxJ)(ex) = Vx(Jex) - J(Vxex) reduces to
ω\{X)e\ +ω\{X)e\ = 0 and similarly (VχJ)(e2) =0. So, / is parallel.

Suppose that the mean curvature vector H be a non-zero over a surface Σ.
Then φ{H) is non-zero tangent vector field over Σ so that {φ(H),J(φ(H))}
constitutes a globally defined orthonormal frame field. We have then

PROPOSITION 2.1. Let Σ —>• M be a connected orientable, immersed Le-
gendrian surface in a Sasakian 5-manifold. If H is non-zero, and parallel, i.e.,
VLH = 0, then Σ must be flat.

Remark 2.1. The surface Σ stated in Proposition 2.1 has genus zero,
provided Σ is compact.

Proof We have

(21) Vχ(Φ{H)) = φ{V^H + AH(X)) + <JT, H}ξ - <f, H}X

= Φ{AH{X))

We take the tangential component to have Vχ(φ(H)) = 0 which shows that
the tangent vector φ(H) is parallel. Q.E.D.

We introduce isothermal coordinates x, y so that Σ is a Riemann surface
having complex coordinates z = x + iy. We define as usual complex vector fields
d/dz, δ/δz and their dual dz,dz.

So the metric has the form

(22) g = E{dx2 + dy2) = — (dz®dz + dz® dz)

and
1 d\

is an orthonormal frame compatible with the orientation. The Levi-Civita
connection satisfies

d d d dlogE d
( 2 3 ) V a / & Tz = Vd/df Tz = 0' Wd/dz Tz ~ ~~dz~~ Tz'
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In terms of an isothermal coordinate the Gaussian curvature K is written as

(24) K=X-Δg\o%E

where Ag = -l/E{d2/δx2 + B2/δy2} = -4/E(δ2/δzδz) is the Laplacian.
In order to investigate Legendrian surfaces more adequately we take the

complexified vector bundles TΣC and φ(TΣc) to extend complex linearly the
metric g = (.-,•), the second fundamental form σ and φ.

So,

d δ\ n I d δ\ E
0 )

and

§3. Minimal Legendrian surfaces and the cubic differential

Let Σ —> M be a connected, orientable Legendrian surface immersed in a
Sasakian 5-manifold which is minimal, i.e., H = 0.

We give a precise defintion of the cubic differential Ά — St{z) dz3, a smooth
section of the holomorphic complex line bundle (x)3^"* {β~* denotes the bundle of
(1,0)-forms) over Σ, by

LEMMA 3.1. For a minimally immersed Legendrian surface Σ —> M

(i)

(28) 2 | | J | | 2 = ||<τ||2

and

(ϋ)
(29) \\Ά\\\z) = Kp-Kp, peΣ

where z is the complex coordinate of a point p, and Kp and Kp denote the sectional
curvature of the plane section TpΣ and the Gaussian curvature of Σ, respectively.

Proof (i) Since the immersion is minimal and Legendrian, | |σ| |2 =

(30) IH| 2 = 4{( σ J 1 ) 2 + (σ 2

1 ) 2 }.

On the other hand | | J | | 2 is measured by the Hermitian fibre metric of ®3^~*

induced from the metric g so that (dz3,dz3) = (2/E)3 and hence p | | 2 =

(2/Eγ\l(z)\2. Here &{z) = E^[Ej2{a\x - iσ2

u). Thus we have (28).
(ii) follows directly from the equation of Gauss. Q.E.D.
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PROPOSITION 3.1. Let M be a Sasakίan 5-manifold of positive sectional
curvature and Σ —> M be a compact connected, orientable Legendrian surface
immersed minimally in M.

(i) If the Gaussian curvature K < 0, then (Σ, g) is a flat 2-torus.
(ii) If K is constant, then either K — 0 or K is positive constant.

Theorem A, (iii) follows from Proposition 3.1.

Proof (i) Since K — K > 0 over Σ from the curvature assumption, Ά
vanishes nowhere from (29). Hence the bundle (χ) 3 ^* is trivial as a smooth
product bundle so that the first Chern class 3ci(^*) = 0 and thus the genus
g(Σ) = 1, namely Σ is a 2-torus. That K = 0 is shown by the Gauss-Bonnet
theorem.

(ii) is derived from (i). Q.E.D.

Remark 3.1. The second fundamental form for a Legendrian surface Σ is in
general written

where °U — <%(z) dz is a first order differential over Σ given by <%(z) =
<H,φ(d/dz)>.

So, if the surface Σ is minimally immersed,

Moreover, a fourth order differential Ψ* = ΊV{z) dz4 is defined by

(33)

and it holds

So, iV vanishes identically, provided the immersion is minimal.

LEMMA 3.2.

(34)
dz

Proof. We denote, for simplicity, d/dz by Z. First we show

(35) J;J( ±
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From the definition of Ά(z) we have in fact

(36) j_Ά{z) = <V±(σ(Z,Z),φ(Z)} + <σ(Z,Z), V±

of which the second term vanishes, namely

(37) <σ(Z,Z),V^(Z))> = 0.

This will be shown as follows.

Since M is Sasakian and the surface is Legendrian, we have from (8)

v±(Φ(z)) = φ(v2z) + (z.zyξ = <z,zyξ.

Since σ has no ^-component, the term (37) reduces to zero so that

Here we used (23).

In the equation of Codazzi

(R(X, Y)V)L = (V»(F, V) - {Vγσ){X, V),

we set Y = V = Z and also X — Z to have

(Viσ)(Z,Z) = {R{Z,Z)Z)L + (V'zσ)(Z,Z)

whose second term vanishes, because from (23) and (26)

( V » ( Z , Z) = V^(σ(Z, Z)) - σ(V z Z,Z) - σ(Z, VZZ)

reduces to zero. So, we get Lemma 3.2. Q.E.D.

Thus we get the following proposition which gives the holomorphicity
criterion for Ά.

PROPOSITION 3.2. Let Σ —> M be a connected, orίentable surface mimίmally
immersed in a Sasakian 5-manifold.

If the immersion is Legendrian and satisfies the curvature hypothesis (2), then
the cubic differential Ά is a holomorphic section of ® 3 ^"*.

From Proposition 3.2 the following genus theorem is easily derived.

THEOREM 3.1. Let M be a Sasakian 5-manifold and Σ —> M a compact
connected, orίentable surface immersed in M as a Legendrian submanifold.

Assume that the immersion is minimal and satisfies the curvature hypothesis

(2)
(i) If the genus g(Σ) = 0, then & — 0 so that the immersion is totally geodesic.
(ii) If g(Σ) = 1, then 1 vanishes nowhere, provided J φ 0 somewhere.
(iii) If g(Σ) > 2, the zero-point set of 1 is non-empty and consists of totally

geodesic points, i.e., points where σ = 0.

Theorem 3.1 yields Theorem A, (i).
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Proof. The proof is shown as follows. From the assumptions and the
curvature hypothesis £ is a holomorphic section of ®3^~*. For a compact
Riemann surface Σ the dimension dimi/°(Σ; ® 3^"*) = 0,1 or positive according
to 0(Σ)=O,1 or g> 1.

So we see that if g(Σ) = 0, then SI = 0 and hence from Lemma 3.1, (i) σ = 0.
When #(Σ) = 1, the bundle (x)3^"* is a product bundle and hence (ii) is

derived.
For the case g(Σ) > 2 it is seen that Si vanishes somewhere. Otherwise Si

gives a global holomorphic frame to ® 3 ^"* and so the genus must be one. This
is a contradiction. From Lemma 3.1, (i) the zero-point set {/? e Σ; i = 0} is
exactly the set of totally geodesic points. Q.E.D.

Remark 3.2. With respect to Theorem 3.1, (iii) the number of zero-points of
Ά can be represented as

where {mi,...,wv} are the multiplicities of the zero-points {/*i,...,/v} of SI.

Before proceeding to §4 we give in the following proposition a certain
curvature condition equivalent to the curvature hypothesis (2).

PROPOSITION 3.3. For a Legendrian surface Σ —> M immersed in a Sasakian
5-manifold the following are equivalent,

(i) the curvature hypothesis (2) holds,
(ii) there exist a 2-form ω and a covariant 3-tensor α over Σ such that the

normal bundle part of the ambient space curvature tensor R satisfies

(R{X, Y)V)L = ω(X, Y)φ(V) + *(X, F, V)ξ

for tangent vectors X, 7, V of Σ.

Proof (ii) => (i) is easily shown, since φ(d/dz) is a normal vector so that
the LHS of the curvature hypothesis (2) reduces to ω(X, Y)(φ(d/dz),φ(d/dz)} +
oc(X,Y,V){ξ,φ{d/dz)) where Y = V - d/dz and X = Ϋ, and this vanishes
because

(i) => (ii): Put in the hypothesis (2)

d 1 /—, x d 1 /—, x

— = -VE(e\ - ιe2), γ_ = -VE(eι + ιe2).

Then, (i) is equivalent to

i, e2)e2, φ(e2))
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and

(R{eλ, e2)eλ, φ(eφ + (R(eλ, e2)e2, φ(eφ = 0.

Since Σ is Legendrian, each tangent vector to Σ belongs to Ker^ = ζL. So
from formula a) in Lemma, 1 Chapter V, [1]

(R{eue2)e2,φ{eφ + (R(eue2)φ{e2), exy = 0

and hence one gets

<Λ(έ?i, e2)e2, φ{ex)y = (R(e{, e2)ex, φ(e2)) = 0.

Therefore (i) holds if and only if

(R(eue2)ex)
L=cφ(ex)modRξ

for a constant c.
This can be written as

for some linear f o r m / = / ( F ) in V.
It is not difficult to see that this is equivalent to the form stated in

(ii). Q.E.D.

§4. Complete minimal Legendrian surfaces

Now we assume the surface Σ is complete and open.
We have then the following flatness theorem.

THEOREM 4.1 (THEOREM B, (i) in §1). Let M be a Sasakian 5-manίfold with
sectional curvature K > K > 0 for a positive constant K.

Let Σ —>• M be a complete open, orientable Legendrian surface minimally
immersed in M.

Suppose the surface Σ satisfies the curvature hypothesis (2).
If the Gaussian curvature K is nonpositive, then K must be zero everywhere so

that (Σ, g) is flat.

Proof J is holomorphic from the curvature hypothesis. On the other hand
from Lemma 3.1, (ii) | | J | | is positive over Σ.

Consider the real valued function log| |J | | 2 . Since

logpH 2 = logΆ{z)Ά{z) - 31og£ + 31og2,

and Ά(z) is holomorphic, we can take the Laplacian of log||=2||2 to have

Δ

or equivalently
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Δ l o g p | | 2 = -6EK

which is nonnegative.
Thus the function log| |ϋ| | is subharmonic. It is bounded from below, since

from the formula (29) l o g p | | 2 = log{^ - K} > log/c.
We define a conformal metric g* over Σ by

{dy)2) = X-

which has zero Gaussian curvature, because

Since g is complete and ( l / 2 ) p | | 2 / 3 > (l/2)/c1/3, g* is also complete.
Hence its universal covering space Σ is the Euclidean complex plane over which
any subharmonic function which is bounded from below must be constant.
Thus, log 11J11 is constant, when lifted to Σ and hence also constant over Σ.

It is now immediate to conclude K = 0. Q.E.D.

The following is a direct consequence of Theorem 4.1.

COROLLARY of THEOREM 4.1. Let M be a Sasakίan 5-manifold whose

sectional curvature satisfies K > K > 0 for a positive constant K and Σ —• M be an
orientable, complete open Legendrίan surface immersed minimally in M.

Suppose that Σ satisfies the curvature hypothesis (2).
If the Gaussian curvature K is constant, then K — 0 or K is a positive constant.

§5. The Simon's type formula for Δ^||σ| |2

The Simon's type formula can be obtained from a general setting of minimal
submanifolds ([5]).

However, for a minimally immersed Legendrian surface fulfilling the cur-
vature hypothesis (2) we observed that the norms satisfy | |σ| | 2 = 2|| J | | 2 and 2, is
holomorphic.

Therefore, instead of deducing the formula directly we will show the fol-
lowing formula.

LEMMA 5.1. If the cubic differential Ά is holomorphic,

(38) ΔJ3||2 = -2||D'J2||2-6*||J||2.

Here Df denotes the (l,0)-part of the Hermitian holomorphic connection D on the

bundle ® 3 ^"*, naturally induced from the Levi-Civita connection.

To show this formula we notice that for smooth sections 0>t = ^i(z)dz3,

i= 1,2 of the bundle ®3^~* the Hermitian fibre metric is given
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Then the connection D is uniquely defined for a complex vector field X in
such a way that

and

The (1,0)-part of D can be then given

where β(z) = -3(d/dz)\ogE.
Therefore we have in terms of the Gaussian curvature formula (24)

Dd/dz(Dd/d£0>ι) - Dd/d2(Dd/dzPι) = 3 ί J ^ l o g £ j ^ i = ~

Proof of Lemma 5.1. Since J is a holomorphic section of

Thus Ag\\l\\2 = -(4/E)(d2/dzdz)(^l) = -(4/E)(d/dz)(Dd/δzl^) is given
as

Δ,PH 2 = ~{(Dd/dfDd/dzΆ,Ά) + (Z>a/aẑ ,/>a/&5)}

which turns out to be the formula of Lemma 5.1, since

Dd/dz(Dd/dzΆ) - {Dd/dz(Dd/d,l) - Dd/δz(Dd/δz£)} = ^EKl Q.E.D.

LEMMA 5.2. For the holomorphίc cubic differential Ά

where V"σ denotes the ξL-component of V'σ.

Proof Since the surface is minimal, we can write σ as

σ = σzz dz2 + σzz dz2',

where σzz = (2/E)Ά{z)φ(d/dz) and then have
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(39) ^ »

All other components of V"σ vanish except for the complex conjugate of (39).

So, ||V//σ||2 = <V//σ,V"σ} = (2/E)3 (E/2) 2 4 2

- \\D'£\\2. Q.E.D.

By applying these lemmata we get the following propositions.

PROPOSITION 5.1. Let Σ —> M be a compact, connected orientable Legendrίan
surface minimally immersed in a Sasakian 5-manifold M.

Suppose Σ has nonnegative Gaussian curvature K and satisfies the curvature
hypothesis (2).

Then, (i) the immersion Σ —> M is totally geodesic or (ii) Σ is flat and \\σ\\ is
constant and the covarίant derivative V'σ has only a ξ-component.

PROPOSITION 5.2. Let Σ —> M be a complete, open Legendrίan surface im-
mersed minimally in a Sasakian 5-manifold.

Suppose the ambient sectional curvature K of M fulfills K < c for a constant c.
IfΣ has K > 0 and satisfies, same as before, the curvature hypothesis (2), then

either Σ —• M is totally geodesic, or (Σ, g) is flat and the second fundamental form
σ has a constant norm and its covarίant derivative V'σ has only a ξ-component.

THEOREM A, (ii) and THEOREM B, (ii) in §1 are immediate from these
propositions.

We will show these propositions.

Proof of Proposition 5.1. First we assume K = 0 identically. Then from
(38) we have

0:= f Ag\\£\\2dσΣ = -2\ \\Dfl\\2dσΣ
JΣ JΣ

so D'Q = 0 and hence from Lemma 5.2 V"σ vanishes.
Now we assume K is not identically zero. Then there is a neighborhood U

on which K > 0. Thus we have

0 = - [ Ag\\£\\2dσΣ>6\ K\\l\\2.
JΣ JΣ

Since K > 0, 1 — 0 on U and hence Si is identically zero from the holomoφhicity
of SI. So we get the conclusion. Q.E.D.

Proof of Proposition 5.2. Take the universal covering surface Σ of Σ. We
have then a minimal immersion Σ —> M, which is also Legendrian. Since K > 0,
Σ is biholomorphic to the complex plane as a Riemann surface.
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From the formula (38) together with K > 0 it follows Δ ^ | | J | | 2 < 0 . So
- | | J | | 2 is a subharmonic function which is bounded below, because - | | J | | 2 = K-
K > —c. Over the complex plane any subharmonic function which is bounded
below must be constant. Therefore, | | J | | 2 is constant over Σ and also over Σ.

If ||Ά | | = 0, then, from Lemma 3.1 the immersion Σ —> M is totally geodesic.
When | | J | | is a positive constant, we have K— —(l/6)Δ^log| |J | | 2 = 0 and from
Lemmata 5.1 and 5.2 V"σ = 0. Q.E.D.

§6. The second variation of minimal immersions

We will give the second variational formula of area for a minimally im-
mersed Legendrian surface in a Sasakian 5-manifold.

Since the normal bundle NΣ splits as NΣ = φ(TΣ) © Rξ, the space of normal
variation vector fields is the direct sum of Γ(Σ,Rξ) and {φ(V)\V e Γ(Σ, ΓΣ)}.

PROPOSITION 6.1. Let Σ —• M be a compact, connected orientable Legendrian
surface minimally immersed in a Sasakian 5-manifold.

Then the index form «/(*,*) associated to the second variation, restricted to
is given

= [
J
[

JΣ

F, W e Γ(Σ, ΓΣ)

Here, V*V denotes the rough Laplacίan on TΣ and RICM is the Riccί tensor of

Remark. The Reeb vector field ξ restricted to Σ gives a null vector of the
index form </(•,) so that nul(,/) > 1, since ξ generates a 1-parameter isometric
contact transformations of M.

Proof The formula of second variation for a minimal immersion is given in
[10] as

= ί
J

veΓ(Σ,7VΣ)
Σ

Here (i) V^v is the smooth section of Γ*Σ <g> NΣ given by (W±v)(X) = V^v for a
tangent vector X,

(ii) R, A : NpΣ —> NpΣ are endomorphisms, defined respectively by

ι = l

for an orthonormal basis {e\,e{\ and

A(y) = Ά(A(v))
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for an endomorphism A : NPΣ ^ ® 2 ^ * Σ , (A(v))(X, Y) = <v,σ(X, Γ)> and the
adjoint operator *A of A.

For a minimal Legendrian surface Σ —> M it is seen that

We have moreover for v = φ(V)

2

In order to relate this term to a much more geometrical term we add the
following term to both side of the above

Σ <R{φ{ei), φ{ V))φ(e,), φ{ vy> + <R(ξ, φ( V))ξ, φ( V))
1=1

From the ^-invariance of the curvature tensor R together with the equation
of Gauss we get the following

<Λ(v),v> - (Kp + \\n2W\\2 - \\V\\2 = -RicM(V, V),

where we used also the formula R(X,ξ)X — —ξ for a unit vector X orthogonal
to ξ.

So

), v> - Oί(v), v> = -RicM{V, V) + (1

Since V^v = φ(VV) + <•, V}ξ, <V^v, V^v) = <V^ VF> + || V\\2 so that

[ <V±v,V±v>Jcr= [ {<VK,VK> + ||K||2}rfσ.
JΣ JΣ

It follows then

^ " ( 0 ) = \{\\VV\\2 + (2 + K)\\V\\2-RicM(V,V)}dσΣ

JΣ

and the formula in Proposition 6.1 is derived by polarization. Q.E.D.

PROPOSITION 6.2. For V e Γ(Σ, TΣ) the index form */(•, •) can be expressed
quadratically

S(φ(V),φ(V))= f {4\\~dr\\2 + 2\\V\\2 - RίcM{V,V)}dστ,
JΣ

where we write the dual V* e Γ(Σ, Γ*Σ) of V as V* = r + "F, V = rT(z) dz.

Proof The above formula is obtained by applying the Weitzenbock for-
mula to V*V.
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We have (VW)1 1 = ΨWVK So, if we write

in terms of the (1,0)-part Ψ\ together with its complex conjugate, then we have

so that

- ~ v d / d z ( |

or

V*VF* = -KV%

Thus, since * : TΣ -> Γ*Σ is isometric,

<V*VF, F> = —

= -AΊ| F| | 2

and by partial integral

Hence, we get the desired form of ./(•,•)• Q.E.D.

THEOREM 6.1. Let Σ be a compact connected orientable Rίemann surface. If
> M be a minimal Legendrian immersion into a Sasakίan 5-manifold.
Assume RICM\^ — 2g > 0 over Σ. Then

> 2g(Σ)

Proof Notice that the genus g(Σ) is given by the dimension of the space of
holomorphic 1-forms over Σ.

For -TeH°(Σ, Θ(f*)) we set V e Γ(Σ, TΣ) by V* = Ψ* + ̂  So from the
curvature assumption we get in Proposition 6.2

J(φ(V),φ(V))<0

which shows the required lower bound for the index of */(-,-)• Q.E.D.
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