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HARNACK INEQUALITY AND REGULARITY OF p-LAPLACE
EQUATION ON COMPLETE MANIFOLDS

X1 ZHANG

Abstract

In this paper, we will derive a mean value mequality and a Harnack nequality for
nonnegative functions which satisfies the differential mequality

div(|f172Vf) <4 £77

i the weak sence on complete manifolds, where constants 4 >0, p > 1; as a con-
sequence, we give a C* estimate for weak solutions of the above differential inequality,
then we generalize the results mn [1], [2].

We would thank Professor Z. G. Bai and Professor Y B. Shen for their long time
encourgement, we also thank the referee for invaluable comments.

1. Introduction

Let M be a complete Riemannian manfold, and f be a real C? function on
M. Fix p > 1 and consider a compact domain Q = M. The p-energy of f on
Q, is defined to be,
1
(L.1) E,,(Q,f)z—J |VF|? dv,
Pla

The function f is said to be p-harmonic on M if f is a critical point of
E,(Q, x) for every compact domain Q — M. Equaivalently, f satisfies the Euler-
Lagrange equation.

(1.2) A, f = div(|VfIP2Vf) = 0
Let g € H; ,(Q) satisfies the equation (1.2) in the weak sence, it is:
(1.3) J (|VglP™ - Vg, V) dvg = 0
o}

for any ¢ € C°(Q), then g is said to be a weakly solution of eguation (1.2) on Q.

Key words and phrases: Complete manifold, p-Laplace Operator, Poincaré mequality, Holder
continuouty, Moser’s 1teration.
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DeriniTION.  f is called a weakly p-harmonic if f eH"’;(M) is a weak
solution of the Euler-Lagrange equation of the p-energy functional (1.2) as
follows:

| vrrcanar =o
M
for all n e C°(M).

Regularity estimates for elliptic systems on domain Q < R”, in particular the
Euler-Lagrange equation for p-energy, were first obtained by Uhlenbeck [3] for
p =2, and later by Tolksdorff [4] for p > 1. The aim of this paper is to obtain
regularity estimates for a more general class of equations on complete manifolds.
In section two and section three, by using the iteration procedure of Moser and
discussing like that in [1], we derive a mean value inequality and a Harnack
inequality for nonnegative functions which satisfies the differetial inequality of the
following form:

(1.4) div(|fP V) < 4 f77!

in the weak sence for some constant 4 > 0. As a special case: 4 = 0, using the
above Harnack inequality, we can derive a (global) Harnack inequality for weakly
p-harmonic function which is similar to a result of M. Rigoli, M. Salvatori, and
M. Vignati [2]. At the end of this paper, we will give a C* etimate for solutions
of above differential inequality. When p = 2, the above mean value inequality,
Harnack inequality, and C* estimate is just the results due to P. Li in [1]. On
the other hand, using the above Harnack inequality, we can obtain a Liouville
type theorem which can be see a generalization of the result in [2].

THEOREM. Let M be a complete noncompact Riemannian manifold with
nonnegative Ricci curvature. Then there exists a constant 0 < a < 1 such that any
p-harmonic function f defined on M satisfying the growth condition

I/ ()] = o(p*(x)),

as x — 0, where p(x) denotes the geodesic distance from o to x; must be identically
constant.

2. Mean-value inequality

LeMMA 2.1. Let M be a complete Riemannian manifold, and geodesic ball
B,(R) satisfies: B,(R)NOM = 0. If f e H, ,(Bo(R)) is a nonnegatwe function,
and satisfies the following inequality in weak sence:

(2.1) div(|Vf|P72Vf) = —4 - [P}

where constants A >0; p > 1, then for any 0 <r <R, § > p and nonnegative
Sunction n € C°(B,(r)), there:
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2 (p-1)""
(@g—p+1)f

24 J 5
== . P - £
g—r+1 Jgp

Proof. Multiplying #? - f777*! to (2.1), and integrating yields

(2.2) j VA < j £1. VPP
Bo(r) B”(r)

j W S dV(VPVS) > - A j i
B,(r) B,(r)

Using Green’s formula; Schwartz inequality; and Young inequality, we have:

(q—p+1)-j S V)

B,

SA'J ﬂp'f‘?—P'J VP2 fTPtl gt (S, Vi)
B,(r) o7,
sA'J ’7”‘f‘7+1"J VAPt pptl gt vy
By(r) B,
SA.J ”p.fri_,_f;_’f"_l.] VP f7P . yp
B,(r) By(r)

2p—2 177! )
o P I AR
B, (r)

then

22 (p-1)F"!

PP VfIP <
Jbzeo(r)’7 A (G-p+1)7

24 J » i
_— . D
g-p+1 &m” s

j 771Vl
Bo(r)
+

PrROPOSITION 2.2. Let M be a complete Riemannian manifold, and a geodesic
ball B,(R) satisfies: B,(R)NOM = Q. If there exists a sobolev inequality of the
following form:

(u—p)/pu
(2.3) <J ¢Pﬂ/<ﬂ—1’>> < Cs- V(Bo(r)) 4oy
By(r)

1/p 1/p
{([ !V¢|”) +r—‘-(j l¢|”> }
B,(r) By(r)
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Jor any ¢ e Hf (B,(r)) and 0 <r<R. Where constants p>p, C;>0, and
V(By(r)) denotes the volume of geodesic ball B,(r). Assuming f € Hy ,(B,(R)) is
a nonnegative function, and satisfies the following inequality in weak sence,

div(|Vf|P2Vf) = —4 - f77!

for some constant A > 0; then for any ¢ >0, 0 < 0 < 1, and 0 < r < R; there must
exist a constant Cy > 0, depending only on q,u,Cs, p, such that:

1/q
(2.4) Bst(l{}))f <C - (ArP +(1— 9)—p)#~(q+p)/(p~q) . V(Bo(r))_l/q‘ (JB ()fq)

Proof. Setting 0 <r; <r, <r, g=> p, and let n € C;°(B,(R)) be the cut-off
function

1; XEBo(rl)
n(x) = {0; x € B,(R)\B,(r2)

n(x) €[0,1], |Vy] <2/(r, — r1). Using the sobolev inequality (2.3) and Cauchy-
Schwartz inequality, we have

(#=p)/pu
J fti/t/(ﬂ—p)
Bo(rl)
(u=p)/p1 (u=p)/p1
= J (n- fiPyPH/(n=p) - J (- ft?/p)p-ﬂ/(u—p))
Bo(r2) B,(7)
[ Up 1/p
< G V(Bo(r) " (J IV(me)l”) +<J 7" - f">
(1) B,(r)

- 1/p
< G- V(B() M- (L o q)

) N\ p ] 1/p
or (Lom(ww 4 (L) g lWI”)) }

by formula (2.2), we have:
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(#=p)/p1
(2.5) J I (=p)
Bo(rl)

1/p
SCs' V(Bo(r))—l/#' I:(J ”p'ft?>
B,(r)

i\ P p-1
i, (1) .2 -(p—1) i
+2rJ Vnl? - q—l—(—) e e aal fq‘Vﬂp
(Bo(r)] s p (@-p+1)" lgp IV

1/p
i\? 24 =
+(i> ~—_j ”P.f‘l
r) q-p+1 Jg

124 1/p
< Coovin 16 (a4 o)

1/p
. ( J f‘i)
Bo(rZ)
1/p
.g-C.- ~u —rp—l/p' i
<17-G- G- V(Bo(r) (Arp+(r2—r1)p) JBo(rz) &

R =r3+(ra—r3) 27,

1
— . [
w=r (ﬂ —p>

where 0 <r; <ry <r. Denote k = u/(u— p), appling (2.5) to ry =Ry, r2 =
R,, ¢ = qi, we have:

ke —(+D)
(26) J fp B kl+l
BD(R}+‘)

< (17- C;- V(B,(r)™"P/¥ . (p - k')yP*

(Ar"—f— rP )l/k’ S+ J ok K
(ra —r3)? Bo(R,)

Observe that lim;_,, R, = r3, and iterating the inequality (2.6), we conclude that:

Let:

P ulp »

(27) sup fp <C- (Ar" +—_——7> . V(Bo(r)) J fp
By (rs) (r4 r3) By(rs)

where we have used 22:[20 1/k' =pu/p, 32, (i+1)/k' = u?/p?, and denote C, =

(17 p- Cs/k)" - (2k)*77.
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(a) When ¢ > p, appling (2.7) to r3 = 6 - R, and r4 = R, by Holder inequality,
we have:

28) sup 1< €V (are -4 (1 oy ry (B T )
. Bo(g) - V(B,(r))

<P (A + (1 - 0) PP Join S\
s V(B,(r)

(b) WhenO0<qg<p. Lethg=0r,hj=0r+2""-(1—=0)-r,..., hi =hi_+
27" (1 —6)-r, for each i=1,2,3,...; applying (2.7) to r3 =h;, r4 = hiyy, we
have:

P u/p B
(29)  sup fP<GC- (Ar" +m> V(B (r)™ J f*
Bo(hn) i+1 4 Ba(hH-l)

< Gy (AP + (1= 0) )P . 26Dy (B, (r) ™!
J f‘]_ sup fP—q
Bo(hl+l)

Bo(hi+1)
denote M (i) = supg, ;) /7, (2.9) becomes:

(2.10) M(i) < Cy- (ArP + (1 — 0) )P 20+ (B, (r)) !
J f7-M(1+ l-)l-(q/p)
Bo(r)
Let A=1- (gq/p), interating the inequality, we conclude that:
J—1 A
(2.11) M(0) < H{CZ (AP + (1= 0) )P . V(B,(r)™" J fq}
1=0 Bo(r)

. li+ud! .M(j)l’
let j — +o00, we have

(2.12) sup [ < {Cp- 217 (4P + (1 — ) P)HP

B, (6r)
1/q
V(Bo(r) g (L ()f")

In any event, (2.8), (2.12) imply that, for any ¢ > 0, we have the inequality

/g
sup f < C - (ArP + (1 _ 0)‘P)ﬂ‘(‘1+ﬂ)/(1"q) . V(Bo(r))_l/q- (j fq)
B, (6r) B,(r)

for some appropriate constant C; > 0 depending only on u, p,q, C;. O
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3. Harnack inequality

LemMMA 3.1. Let M be a complete Riemannian manifold, and a geodesic ball
B,(R) satisfies: Bo(R)NOM = 0. If it satisfies the following conditions:
(1) For any 0 <r < R, there exist a constant n > 0, such that

(3.1) V(By(r)) <27 V<B,, (%))
(2) Poincaré inequality, i.e there exist a constant C, >0 such that
62) | v-nr<ger |
B,(r) B,(r)

for any 0 <r <R, feH,,(Bo(r)). Where fg=[g ., f/V(Bs(r))
(3) Sobolev inequality, i.e there exist a constant Cs; >0 such that:

(u=p)/pu
(3.3) <J ¢P/4/(ﬂ—1’)> <C,- V(Bo(r))-l/ﬂ .r
B,(r)

1/p 1/p
{(j IV¢|"> +r-1-<j |¢|") }
B,(r) By(r)

Jor any ¢ € Hf ,(B,(r)), 0<r<R. Where constants p>p>1, C;>0, and
V(B,(r)) denotes the volume of geodesic ball B,(r).

Assuming f € Hy ,(B,(R)) is a nonnegative function, and satisfies the following
inequality in the weak sence

(3.4) div(|Vf|P2Vf) < A- f77!

for some constant A > 0; then for q > 0 sufficiently small, there must be exist
a constant Cs > 0, depending only on q, u, Cs, pn, C,, (AR? +1), such that:

fB,,(R/S) S dvg a .
(33) { VEBER) [ = s’

Proof. For any ¢ >0, setting f, = f +¢, f, satisfies the inequality (3.4).
Letting ¢ — 0, it is sufficient to prove that f, satisfies the inequality (3.5). So we
can assume that f > ¢ > 0, then the function £~ is in H; »(Bo(R)) and satisfies:

div(]V(f—l)lp—zv(f—l)) _ div(_f—Z(p—l) ) lVf'p—Z Vf)
= — 72PN - div(|VFIP 2 V)
+2(p—1). £ |fP
>—A .f—(p—l)
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Applying proposition 2.2, there exist a constant C; > 0, depending only on ¢, p,
u, Cg such that:

-1
(3.6) < inf )f) = sup f°!

B,(R/16 B,(R/16)

—q 1/q
< Cy-(ARP + l)ﬂ(p+q)/(p-q) . {fBu(R/8) f dvg}

V(B,(R/8))

Clearly, the lemma follows if we can estimate the product

1/ - 1/
{IBU(R/&fqd”g} q_{fB()(R/S)f qdvg} !

V(Bo(R/8)) V(Bo(R/8))

from above for some value of g > 0.
To achieve this, let us consider the function u =+ logf, where f =
—jBo(R/Z) log f dv,; then u satisfies:

(3.7)  div(|Vul"2Vu) = div(f~ D - |vrP2 L vp)

= /70 div(|Vf PR V) = (p = DSV
<A—(p-1)-|Vuff

Let ¢ the cut-off function defined by:

0, for x e M\B,(R)

2(R —r(x)) R
W(x) = — R for x € B,(R)\B, <§>

1, for xe B, <§>

where r(x) is the distance from o to x.
Multiplying (3.7) by ¥” and integrating, we have:

38 (p-1): leulp P < AJWP _ lep - div(|Vul”"2Vu)
<4 Jz//p —I—pleuV"1 P VY

sAjn//"Jr”T”le" (VU + 27! .JWW

where we have used Green’s formula, Schwartz inequality, and Young inequality.
by the above ineguality, we have
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(39) IR
B,(R/2)
24 27
ciall VP BT p
= p—lj'// +p—1J|W'

47 V(B,(R))
< . P AP
<73 (AR + 1) ——

the Poincare inequality (3.2) and (3.9) implies that:
. RP
(3.10) J < @& j Vuf?
By(R/2) 2 Ja (k)

< G- V(B,(R))

denoted Cs =27-C,/(p—1)-(AR? +1).
For Vg < p, using Holder inequality, we have

qa/p 1-(q/p)
(3.11) J lul? < (J lul") . (J 1)
B,(R/2) B,(R/2) Bo(R/2)

< C&” - V(B,(R))
On the other hand, let ¢ be a Lipschitz cut-off function, given by

0, for x e M\B,(p + o)
$(x) = ma—_r(_xz’ for x e B,(p+)\B,(p)
1, for x € B,(p).

where p,6 >0, p+0 <R
Then multiplying ¢7 - [u|?* to (3.7) for a > 2, and integrating by parts yields

(3.12) (1) J BF - |l |V
<A Jqﬁ” ulPP — J div(qu[p_zVu) P - |uP*F
<A J¢”lul”"”’ +(pa—p)- jw’ P v

+p 'JquI""2 P T (VU V)
by Young inequality we have:

(3.13)  (pa—p)-¢7- """ |Vul?

-1 _ 4(pa—p— 1)\ 7!
< p4 ulP P g7 |Vul? + (ﬂ’“?_pl_)) - $ - |Vul?
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and
(3.14) peVulP 2 P P (Vu, Vi

< 2oLl g TP 4 40 [Vl (T
Using (3.12), (3.13), (3.14); then

(.15) gl vl

24 _ 2 4(pa—p—1) pa—p-1
T AP |y|PeP . . ? . P
gp—1]¢ u +p—1 ( r—1 J¢ Vi

240! a-
e v

. 4p—1
( 24 + 2 ) J Iu|pa—17
p— 1 ([7 - 1) - of B,(p+o)

2 oy pa—p—1
N ,<4(pa P 1)> _ J IVl
p— 1 p— 1 B,(p+0)

By setting a =2, p = R/4, o = R/4; (3.15) becomes:

24 2.4 2. 4071
J [u]? - |Vul? < ( 4 > J |u|? + J |Vu|?
B,(R/4) p—1 (p—=1)-Rr) Jg&p r—=1 Jgrp

Using (3.9), (3.10), and the last inequality; then:

V(Bo(R))
RP

(3.16) lul? - |Vul” < C; -

JBO(R/4)
where we denoted C; =2-4%"1/(p—1)-(Cs+1/(p—1))- (AR? +1).
Then, we want to estimate fBo(R /4) [u]* from above.

(1) When 1 < p <2, for any g < p, by Holder inequality, (3.9), and (3.16),
we have:

- q/p 1-(4/p)
(3.17) J uf? - |Vl < j vl j IVuf?
B,(R/4) B,(R/4) B,(R/4)

B 47 1-(4/p) V(B,(R
<cil. (p_—_l.(ARP+I)> 'LRQ

Let /e Z*, such that p/~!' <2< p’; and let 1 <i</—1, by Minkowski
inequality and Poincare inequality (3.2), then
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PP WD (T > j V(1”7
B,(R/4)

-1
)
4 Bo(R/4)
1p ~1+(1/p) ?
p i+ R !
2w | ) () L
C,-Rp B,(R/4) 4 B,(R/4)

By Holder inequality, it is easy to show that (Jg g u|?"™ )P
V(B,(R/4))~ 1+ J3,(r/4) [ul?". then the last inequality becomes:

1/p 1/p
lulpxﬂ < plp . Cp - RP ] |u|(p1_1),p . |Vulp
B(R/4) B 47 B,(R/4)

R —14+(1/p) )
(1) L
4 Bo(R/4)

Using (3.17) and the last inequality, we have:

" 1/p
(3.18) J [u]?"
B,(R/4)

p . 1 pl
< {Pp4pcp . Cé’ -1, [Eﬁf (AR? + I)] : V(Bo(R))}

JBo(R/At)

4r g

G, Rr J B,(R/4)

=

[\

1/p

+ 47 =(/p) . (B (R))~ /P J |ul?’
By(R/4)

Where we have used the condition (1) V(B,(r)) <27-V(B,(r/2)), 0 <r<R.
By formula (3.10), one can conclude that: [p oy [ul” < [p o lul” < Cs-
V(B,(R)). Iterating the inequality (3.18) by finite times, one can conclude that

there must be exist a constant Cg > 0, depending only on p,#, C,, (AR? +1),
such that:

lul?' < Cs - V(B,(R))

1-(2/p")
. j 41
B,(R/4)

JBO(R/4)
By Holder inequality, we have:

1 2/p
(3.19) J M2S<J Mﬂ)
By(R/4) B,(R/4)

< G V(By(R))

1
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(2) When p > 2, we have:

2/p 1-(2/p)
(3.20) J u)? < (J |u|1’> . ( j 1)
B,(R/4) B,(R/4) B,(R/4)

< - V(B,(R))

In any event, (3.19), (3.20) imply that, for any p > 1, we have the inequality

(3.21) ul* < Co - V(B,(R))

J B,(R/4)

for some appropriate constant Cy > 0, depending only on p,#, C,, (AR? 4 1).
On the other hand, using the Minkowski inequality and the poincare in-
equality (3.2), we have:

1
I I IR
B.(R/4) 27 ) g, (r/4)
? R\ ! ?
> 2 J uz—V<Bo(—>) J u?
G- RP g, (rs) 4 Bu(R/4)
Ve —14(1/p) r
p
2w | ™) V() ]
Cp - RP B,(R/4) 4 B,(R/4)

by (3.16), (3.21), then (3.22) becomes:

(3.23) u” < Cio- V(Bo(R))

JBO(R/4)

where we denoted: Cjg = ((C; - Cp/27)"/? + 470-(p) . Cy)P .
For any g < 2p, using Holder inequality one can conclude:

§/2p 1-(4/2p)
(3.24) J ul? < J u? - J 1
B,(R/4) B,(R/4) B,(R/4)

< CH¥ - V(B,(R))
Let a > 2, by Cauchy-Schwartz inequality, we have
(3.25) [V(Blul )P < 2P[IVQI” - [u|® + a [u]™ P 7| Vul”]

By the Sobolev inequality, one can conclude:
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(u=p)/u (=p)/n
<J Iula-p-ﬂ/(ﬂ—p)> (J (¢|u|a)P'ﬂ/(/l—P))
Bo(p) Bo(p)
1/p 1/, Y?
< {Cs~ V(B,(R))™"¥ {R (JB ® IV(¢IuI”)I”> +<L ® ¢”Iul“”) ] }

<27.CP V(B,(R)) [RP j ARl +j ¢Pru|“f’}

(R

o

<27 .CP-V(B,(R))™"* [RP 2P a”J @7 - [ulP*P|Vul?
o(R)

AR LT
) Bo(R)
Using (3.9), (3.15), and the last inequality, we have:

1/k
(3.26) J |u|“P*
B,(p)

<2.Cyp - V(B,(R))I0/k

+RP~2PJ

0

p p o B pa—p
a? - | AR? + — |ul
0% ) )B,(p+o)

o (‘E&Ll_))””"’_' C(AR” +1)- V(Bo(R))

RP -1 pa
+ o V(B,(R) ]
g B,(p+0)

where we denoted: Cpj =27 CP-max{2%~1/(p—1),2%/(p— 1)}, 2041}, k =
#/(u— p).

It is easy to show that: [u|P*? < |u|” + 1, and let p > R/8, then (3.26)
becomes:

1/(k-p-a)
(3.27) (V(B,,(p))—‘ L ) |u|‘”"")
o\P

1/(k-p-a)
lu!“""")

14
< (28" cpy)Vre. ["p ' (AR" *ﬁ_p) V(B,(R)) - J juf?

B,(p+o)
ap \*
+a1’+1’“<;)L1) -(ARP+1)]

B,(p)

< <8’7- V(BO(R))“J

1/pa
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| RP 1/pa |
< Cn/pa calle. (AR" + > V(B,(R))~ j |u|P
By (p+o)

+ Clpg+ (/) <p4f 1.) - (AR? +1)"/pa

where Cp=2- 8'7/k . C11.

1/pa

339

Let: a; =2k', 0,=27%" p;=R/4 -3 0, for i=0,1,2,...; p_, = R/4.
i g=0"J

applying (3.27) to a=a;, p =p;, 0 =0,; then

1/(2pk™+!)
(3.28) <V(Bo(/)i))~1 J |ulzpk‘+l>
Bo(ﬂz)

1/2pk
< C13ﬂ D™ (V(Bo(pi—l))_l 'L( ) |“|2pk'>
(4 pl

R 8
+Ck'. Dk -k'.<p—_p—l>

where we denoted: Cp3 = (Cpy - (ARP 4 1) - 247/ p =21/ |1/2,

Iterating the inequality (3.28), we have:

/(2pk!+h)
(3.29) V(B,(p)) ™" - J |u|2"’<’“>
Bo(pl)

! R\ ! 1/2p
<[lck - p*". V<B (-)) J |u|2”)
g . ( ‘\4 Bo(R/4)
8 o e e i
"‘(pp)ZCll% -D* k- H(C{%/‘Dk )

J=1+1
+ ck' . kg!. pk. 8p
13 p— 1

R\ 2 vl .
el (o) L) - 3)
= (<V<Bo <§)>_1 ' L,,<R/4) |u|2p>1/2p i %.kl)

where Ciq = (8p/(p — 1)) [12(Cis + k™ - D*".
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For any j > 2p; let I € N such that: 2pk’ < j < 2pk'*!, then

-1
(3.30) V(Bo(§)> J )’
8 B,(R/8)
) 7/(2pk!*Y)
<{r(5(5)) " [ ™
8 B,(R/8)

R\ ! 1/2p J
o () )
4 B,(R/4)

where Cis =2"-Cly - (,u/(2p2) +1).
By (3.24), (3.30) we have:

(31 V(B° (g))_l ' JBO(R/S) et = i(ﬂ)_l - V<BO (§> >_1JBO(R/8) o

J=0
o0
<Cis+ Y (N7 (Crog- j)
7>2p

where Cig, Cy7 is appropriate positive constantes depending only on C,, Cs, 7, p,
u, AR? +1. By the Stirling inequality, we have:

=0
then, (3.31) becomes:
R -1 0
(3.32) V(Bo (§>> : J e < Cie+ Y (Cir-q-e)
B,(R/8) 7>2p

Let ¢ < (1/2)-(C17-€)™', we have:

-1
(3.33) V(B,, (g)) : J et < Cyq
B,(R/8)

where Cig is a appropriate positive constant depending only on C,, Cs, #, p, u,
ARP + 1. Applying inequalities: e? - f7 = et < 7' lUl =9 . {71 = o= < o7'lul;
we have:
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0 {0 9) o) [0 o)

2/q

-1
(a0 T ) e
8 B,(R/8)

When ¢ < (1/2)(Cy7-¢)”", by (3.6), (3.34), there exist a positive constant
depending only on C,, C;, #, p, q, u, AR? +1; such that:

1/q

R\\! .
(3.33) {V<BO(§>> JBO(R/S)fq} SCS'Bo(lle/fls)f 0

Combining Proposition 2.2 and Lemma 3.1, we have the following locally
Harnack inequality.

/9 /g

THEOREM 3.2. Let M be a complete Riemannian manifold, and geodesic
ball B,(R) satisfies: B,(R)NOM = Q. If it satisfies the conditions (1), (2), (3) in
Lemma 3.1.  Fix p > 1, assuming f € Hy ,(B,(R)) is a nonnegative function, and
satisfies the following inequality in the distribiution sence,

(3.36) |div(|VA P2V < 4- 77
for some constant A > 0; then, there must be exist a constant Ci9 > 0, depending
only on p,u,Cs,p n,Cp, (ARP + 1), such that:

3.37 su < Cyg- inf
( ) B‘,(R/I;6)f P Bo(R/16)f

Remark. When p =2, Theorem 3.2 is just the result due to P. Li in [L].
In the special case 4 = 0, by Theorem 3.2, we can conclude a globally Harnack
inequality which is similar to a result of M. Rigoli, M. Salvatori, and M. Vignati
in [2], then Theorem 3.2 can be seen as a generalization of the result in [2].

ProproSITION 3.3. Let M be a complete noncompact Riemannian manifold
(without boudary), and o be a fixed point in M. Assuming for any R >0
geodesic ball B,(R) satisfies the conditions (1), (2), (3) in Lemma 3.1. Fix p > 1,
let f € Hy ,(M) is a nonnegative function, and satisfies the following quality in the
distribiution sence,

div(|Vf|P7*Vf) =0
then, for any R > 0, there must be exist a constant Cyy > 0, depending only on p,
u, Cs, p 1, C,, such that:

su < Cy - inf

B,,(zlg)f 20 B(,(R)f

By the above grobally Harnack inequality, one can conclude a Liouville
theorem for weakly p-harmonic function.
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CoROLLARY 3.4. Let M be a complete noncompact Riemannian manifold
(without boundary), and o be a fixed point in M. Assuming for any R > 0 geodesic
ball B,(R) satisfies the conditions (1), (2), (3) in Lemma 3.1. Fix p> 1, let fisa
nonnegative weakly p-harmonic function (p > 1), then f must be constantly.

By the Gromove-Bishop volume comparision theorem and the results due to
Saloff-Coste in [5], the conditions (1), (2), (3) in Lemma 3.1 is guaranteed, in the
assumption Ricysr >0 on M. Then, we have the following Corollary.

COROLLARY 3.5. Let M be a complete noncompact Riemannian manifold with
nonnegative Ricci curvature, then there is no non-constantly nonnegative weakly p-
harmonic function. (p > 1)

4. Holder estimate

THEOREM 4.1. Let M be a complete Riemannian manifold, and geodesic ball
B,(Ry) satisfies: B,(Ry)NoM = 0. If it satisfies the conditions (1), (2), (3) in
Lemma (3.1). Fix p > 1, assuming the ue Hy ,(B,(Ro)) N L*®(B,(Ro)) and that
satisfies the following inequality in the distribiution sence,

(4.1) |div(|Vul?~2Vu)| < 4

for some constant A > 0; then, u must be a-Hdlder contivous at o. and Hélder
exponent o depending only on p,u, Cs, Cp, 1, Cp.

Proof. Denote: S(R) = supg gt, i(R)=infpgyu; let f=S(R)—u+
AV Re/(p=1) g — 4 — i(R) + AY/(»=1) . RP/(P=1) " applying Theorem 3.2 to f
and g, we have:

S(R) — ,-(%) LAV RRI-D) < ¢y (S(R) _ S(%) + AV .Rp/(p—n)

S(%) —i(R) + AYP=D . RpI(P=Y) < (l(%) — i(R) + A= 'Rp/(p_l))

where Cy; is a positive constant depending only on C,, Cs, #, u, p. Denote:
a=(Cu-1)/(Cn+1) <1, w=S(R)—i(R), by the above inequalities, we have

(4.2) w<1—12> < a(w(R) + 24"/~1) . gp/(r=1))
Iterating (4.2), we have:

(4.3) o(16™ - R) < a” - o(R) + 24"V . Re/(p-1) 3" gt
=1

<a™ - w(R) +24"=D . gp/(r=1) 1 a
—a
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For YO < R < Ry < Ry, let: (1/16)'R; < R < (1/16)""'R;, by (4.3), we have:

44) o) <o ( (1_16>H . RI)

<a™ - w(Ry)+2- 40 RE/P7D 12
—a

R —loga/log 16 , B
<al. (R—> -w(Ry) +2- 41 . ge/te U.Ta_
1

—a
let Ry =R} R, 0<t<1, then
R ~(1-1)- (loga/log 16)
o(R) <a’!- <—> - w(Ryp)
Ry
2. 4100 gE/P=D0=0  po/(p=1)r 2
1—a

let £ = (—loga/log16)-(p/(p—1) —loga/log16)~!, and denote o= p/(p—1)-
(—loga/log16) - (p/(p — 1) — loga/log16)~", by the last inequality, we have:

o(Ro) = 2aA/(»=D -Rg/(’"l)‘“
4.5 R) < R*.
@s) o(R) = (a_Rg+ .k
for any 0 < R < R. ]
When 4 =0, by inequality (4.5), for any 0 < R < Ry, we have:
@(Ro)
4.6 o e (@R
(4.6) w(R) < (ale>

if | f(x)| = o(p*(x)), as x — 0, where p(x) denotes the geodesic distance from o to
x; letting Ry — 0, then f = constant. This is the proof of the following theorem.

THEOREM 4.2. Let M be a complete noncompact Riemannian manifold
satisfies the conditions (1), (2), (3) in Lemma 3.1. Then there exists a constant
0 < a <1 such that any p-harmonic function f defined on M satisfying the growth
condition -

[f ()] = o(p*(x))

as x — 0, where p(x) denotes the geodesic distance from o to x; must be identically
constant.

CorOLLARY 4.3. Let M be a complete noncompact Riemannian manifold
with nonnegative Ricci curvature. Then there exists a constant 0 < o < 1 such that
any p-harmonic function f defined on M satisfying the growth condition

[/ ()] = o(p*(x)),
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as x — 0, where p(x) denotes the geodesic distance from o to x; Must be identically
constant.
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