HARNACK INEQUALITY AND REGULARITY OF p-LAPLACE EQUATION ON COMPLETE MANIFOLDS

XI ZHANG

Abstract

In this paper, we will derive a mean value inequality and a Harnack inequality for nonnegative functions which satisfies the differential inequality

$$|\operatorname{div}(|f|^{p-2}\nabla f)| \le A f^{p-1}$$

in the weak sence on complete manifolds, where constants $A \ge 0$, p > 1; as a consequence, we give a C^{α} estimate for weak solutions of the above differential inequality, then we generalize the results in [1], [2].

We would thank Professor Z. G. Bai and Professor Y B. Shen for their long time encourgement, we also thank the referee for invaluable comments.

1. Introduction

Let M be a complete Riemannian manfold, and f be a real C^2 function on M. Fix p > 1 and consider a compact domain $\Omega \subset M$. The p-energy of f on Ω , is defined to be,

(1.1)
$$E_p(\Omega, f) = \frac{1}{p} \int_{\Omega} |\nabla F|^p \, dv_g$$

The function f is said to be p-harmonic on M if f is a critical point of $E_p(\Omega,*)$ for every compact domain $\Omega \subset M$. Equaivalently, f satisfies the Euler-Lagrange equation.

(1.2)
$$\Delta_p f \equiv \operatorname{div}(|\nabla f|^{p-2} \nabla f) = 0$$

Let $g \in H_{1,p}(\Omega)$ satisfies the equation (1.2) in the weak sence, it is:

(1.3)
$$\int_{\Omega} \langle |\nabla g|^{p-2} \cdot \nabla_g, \nabla \phi \rangle \, dv_g = 0$$

for any $\phi \in C_0^{\infty}(\Omega)$, then g is said to be a weakly solution of equation (1.2) on Ω .

Key words and phrases: Complete manifold, p-Laplace Operator, Poincaré inequality, Hölder continuouty, Moser's iteration.

Received July 5, 1999; revised November 1, 1999.

DEFINITION. f is called a weakly p-harmonic if $f \in H_{1,p}^{loc}(M)$ is a weak solution of the Euler-Lagrange equation of the p-energy functional (1.2) as follows:

$$\int_{M} |f|^{p-2} \langle d\eta, df \rangle = 0$$

for all $\eta \in C_0^{\infty}(M)$.

Regularity estimates for elliptic systems on domain $\Omega \subset \mathbb{R}^n$, in particular the Euler-Lagrange equation for p-energy, were first obtained by Uhlenbeck [3] for $p \geq 2$, and later by Tolksdorff [4] for p > 1. The aim of this paper is to obtain regularity estimates for a more general class of equations on complete manifolds. In section two and section three, by using the iteration procedure of Moser and discussing like that in [1], we derive a mean value inequality and a Harnack inequality for nonnegative functions which satisfies the differential inequality of the following form:

$$|\operatorname{div}(|f|^{p-2}\nabla f)| \le A \cdot f^{p-1}$$

in the weak sence for some constant $A \ge 0$. As a special case: A = 0, using the above Harnack inequality, we can derive a (global) Harnack inequality for weakly p-harmonic function which is similar to a result of M. Rigoli, M. Salvatori, and M. Vignati [2]. At the end of this paper, we will give a C^{α} etimate for solutions of above differential inequality. When p = 2, the above mean value inequality, Harnack inequality, and C^{α} estimate is just the results due to P. Li in [1]. On the other hand, using the above Harnack inequality, we can obtain a Liouville type theorem which can be see a generalization of the result in [2].

THEOREM. Let M be a complete noncompact Riemannian manifold with nonnegative Ricci curvature. Then there exists a constant $0 < \alpha \le 1$ such that any p-harmonic function f defined on M satisfying the growth condition

$$|f(x)| = \circ(\rho^{\alpha}(x)),$$

as $x \to 0$, where $\rho(x)$ denotes the geodesic distance from o to x; must be identically constant.

2. Mean-value inequality

LEMMA 2.1. Let M be a complete Riemannian manifold, and geodesic ball $B_o(R)$ satisfies: $B_o(R) \cap \partial M = \emptyset$. If $f \in H_{1, p}(B_o(R))$ is a nonnegative function, and satisfies the following inequality in weak sence:

(2.1)
$$\operatorname{div}(|\nabla f|^{p-2}\nabla f) \ge -A \cdot f^{p-1}$$

where constants $A \ge 0$; p > 1, then for any $0 < r \le R$, $\tilde{q} \ge p$ and nonnegative function $\eta \in C_0^{\infty}(B_o(r))$, there:

(2.2)
$$\int_{B_{o}(r)} \eta^{p} \cdot f^{\tilde{q}-p} \cdot |\nabla f|^{p} \leq \frac{2^{p} \cdot (p-1)^{p-1}}{(\tilde{q}-p+1)^{p}} \cdot \int_{B_{o}(r)} f^{\tilde{q}} \cdot |\nabla \eta|^{p} + \frac{2A}{\tilde{q}-p+1} \cdot \int_{B_{o}(r)} \eta^{p} \cdot f^{\tilde{q}}$$

Proof. Multiplying $\eta^p \cdot f^{\tilde{q}-p+1}$ to (2.1), and integrating yields

$$\int_{B_o(r)} \eta^p \cdot f^{\tilde{q}-p+1} \cdot \operatorname{div}(|\nabla f|^{p-2} \nabla f) \ge -A \cdot \int_{B_o(r)} \eta^p \cdot f^{\tilde{q}}$$

Using Green's formula; Schwartz inequality; and Young inequality, we have:

$$\begin{split} (\tilde{q} - p + 1) \cdot \int_{B_{o}(r)} \eta^{p} \cdot f^{\tilde{q} - p} \cdot |\nabla f|^{p} \\ &\leq A \cdot \int_{B_{o}(r)} \eta^{p} \cdot f^{\tilde{q}} - p \cdot \int_{B_{o}(r)} |\nabla f|^{p - 2} \cdot f^{\tilde{q} - p + 1} \cdot \eta^{p - 1} \cdot \langle \nabla f, \nabla \eta \rangle \\ &\leq A \cdot \int_{B_{o}(r)} \eta^{p} \cdot f^{\tilde{q}} + p \cdot \int_{B_{o}(r)} |\nabla f|^{p - 1} \cdot f^{\tilde{q} - p + 1} \cdot \eta^{p - 1} \cdot |\nabla \eta| \\ &\leq A \cdot \int_{B_{o}(r)} \eta^{p} \cdot f^{\tilde{q}} + \frac{\tilde{q} - p + 1}{2} \cdot \int_{B_{o}(r)} |\nabla f|^{p} \cdot f^{\tilde{q} - p} \cdot \eta^{p} \\ &+ \left[\frac{2p - 2}{\tilde{q} - p + 1} \right]^{p - 1} \int_{B_{o}(r)} f^{\tilde{q}} \cdot |\nabla \eta|^{p} \end{split}$$

then

$$\int_{B_{o}(r)} \eta^{p} \cdot f^{\tilde{q}-p} \cdot |\nabla f|^{p} \leq \frac{2^{p} \cdot (p-1)^{p-1}}{(\tilde{q}-p+1)^{p}} \int_{B_{o}(r)} f^{\tilde{q}} \cdot |\nabla \eta|^{p} + \frac{2A}{\tilde{q}-p+1} \cdot \int_{B_{o}(r)} \eta^{p} \cdot f^{\tilde{q}} \qquad \Box$$

PROPOSITION 2.2. Let M be a complete Riemannian manifold, and a geodesic ball $B_o(R)$ satisfies: $B_o(R) \cap \partial M = \emptyset$. If there exists a sobolev inequality of the following form:

$$(2.3) \qquad \left(\int_{B_{o}(r)} \phi^{p\mu/(\mu-p)} \right)^{(\mu-p)/p\mu} \leq C_{s} \cdot V(B_{o}(r))^{-1/\mu} \cdot r \\ \cdot \left\{ \left(\int_{B_{o}(r)} |\nabla \phi|^{p} \right)^{1/p} + r^{-1} \cdot \left(\int_{B_{o}(r)} |\phi|^{p} \right)^{1/p} \right\}$$

for any $\phi \in H^c_{1,p}(B_o(r))$ and 0 < r < R. Where constants $\mu > p$, $C_s > 0$, and $V(B_o(r))$ denotes the volume of geodesic ball $B_o(r)$. Assuming $f \in H_{1,p}(B_o(R))$ is a nonnegative function, and satisfies the following inequality in weak sence,

$$\operatorname{div}(|\nabla f|^{p-2}\nabla f) \ge -A \cdot f^{p-1}$$

for some constant $A \ge 0$; then for any q > 0, $0 < \theta < 1$, and 0 < r < R; there must exist a constant $C_1 > 0$, depending only on q, μ, C_s, p , such that:

$$(2.4) \quad \sup_{B_o(\theta r)} f \le C_1 \cdot (Ar^P + (1-\theta)^{-p})^{\mu \cdot (q+p)/(p \cdot q)} \cdot V(B_o(r))^{-1/q} \cdot \left(\int_{B_o(r)} f^q \right)^{1/q}$$

Proof. Setting $0 < r_1 < r_2 \le r$, $\tilde{q} \ge p$, and let $\eta \in C_0^{\infty}(B_o(R))$ be the cut-off function

$$\eta(x) = \begin{cases} 1; & x \in B_o(r_1) \\ 0; & x \in B_o(R) \setminus B_o(r_2) \end{cases}$$

 $\eta(x) \in [0,1], \ |\nabla \eta| \le 2/(r_2 - r_1).$ Using the sobolev inequality (2.3) and Cauchy-Schwartz inequality, we have

$$\left(\int_{B_{o}(r_{1})} f^{\tilde{q}\cdot\mu/(\mu-p)}\right)^{(\mu-p)/p\mu} \\
\leq \left(\int_{B_{o}(r_{2})} (\eta \cdot f^{\tilde{q}/p})^{p\cdot\mu/(\mu-p)}\right)^{(\mu-p)/p\mu} = \left(\int_{B_{o}(r)} (\eta \cdot f^{\tilde{q}/p})^{p\cdot\mu/(\mu-p)}\right)^{(\mu-p)/p\mu} \\
\leq C_{s} \cdot V(B_{o}(r))^{-1/\mu} \cdot \left[r\left(\int_{B_{o}(r)} |\nabla(\eta \cdot f^{\tilde{q}/p})|^{p}\right)^{1/p} + \left(\int_{B_{o}(r)} \eta^{p} \cdot f^{\tilde{q}}\right)^{1/p}\right] \\
\leq C_{s} \cdot V(B_{o}(r))^{-1/\mu} \cdot \left[\left(\int_{B_{o}(r)} \eta^{p} \cdot f^{\tilde{q}}\right)^{1/p} + 2r\left(\int_{B_{o}(r)} (|\nabla\eta|^{p} \cdot f^{\tilde{q}} + \left(\frac{\tilde{q}}{p}\right)^{p} \cdot \eta^{p} \cdot f^{\tilde{q}-p} \cdot |\nabla f|^{p})\right)^{1/p}\right]$$

by formula (2.2), we have:

$$(2.5) \qquad \left(\int_{B_{o}(r_{1})} f^{\tilde{q} \, \mu/(\mu-p)} \right)^{(\mu-p)/p\mu} \\ \leq C_{s} \cdot V(B_{o}(r))^{-1/\mu} \cdot \left[\left(\int_{B_{o}(r)} \eta^{p} \cdot f^{\tilde{q}} \right)^{1/p} \\ + 2r \left(\int_{B_{o}(r)} |\nabla \eta|^{p} \cdot f^{\tilde{q}} + \left(\frac{\tilde{q}}{p} \right)^{p} \cdot \frac{2^{p} \cdot (p-1)^{p-1}}{(\tilde{q}-p+1)^{p}} \cdot \int_{B_{o}(r)} f^{\tilde{q}} \cdot |\nabla \eta|^{p} \\ + \left(\frac{\tilde{q}}{p} \right)^{p} \cdot \frac{2A}{\tilde{q}-p+1} \cdot \int_{B_{o}(r)} \eta^{p} \cdot f^{\tilde{q}} \right)^{1/p} \right] \\ \leq C_{s} \cdot V(B_{o}(r))^{-1/\mu} \cdot \left[16\tilde{q} \cdot \left(Ar^{p} + \frac{r^{p}}{(r_{2}-r_{1})^{p}} \right)^{1/p} + 1 \right] \cdot \left(\int_{B_{o}(r_{2})} f^{\tilde{q}} \right)^{1/p} \\ \leq 17 \cdot \tilde{q} \cdot C_{s} \cdot V(B_{o}(r))^{-1/\mu} \cdot \left(Ar^{p} + \frac{r^{p}}{(r_{2}-r_{1})^{p}} \right)^{1/p} \cdot \left(\int_{B_{o}(r_{2})} f^{\tilde{q}} \right)^{1/p}$$

Let:

$$\begin{cases} R_i = r_3 + (r_4 - r_3) \cdot 2^{-i}, \\ q_i = p \cdot \left(\frac{\mu}{\mu - p}\right)^i. \end{cases}$$

where $0 < r_3 < r_4 \le r$. Denote $k = \mu/(\mu - p)$, appling (2.5) to $r_1 = R_{t+1}$, $r_2 = R_t$, $\tilde{q} = q_i$, we have:

(2.6)
$$\left\{ \int_{B_{o}(R_{i+1})} f^{p \cdot k^{i+1}} \right\}^{k^{-(i+1)}} \\ \leq \left(17 \cdot C_{s} \cdot V(B_{o}(r))^{-1/\mu} \right)^{p/k^{i}} \cdot \left(p \cdot k^{i} \right)^{p/k^{i}} \\ \left(Ar^{p} + \frac{r^{p}}{(r_{4} - r_{3})^{p}} \right)^{1/k^{i}} \cdot 2^{(i+1)p/k^{i}} \cdot \left\{ \int_{B_{o}(R_{i})} f^{p \cdot k^{i}} \right\}^{k^{-i}}$$

Observe that $\lim_{i\to\infty} R_i = r_3$, and iterating the inequality (2.6), we conclude that:

(2.7)
$$\sup_{B_o(r_s)} f^p \le C_2 \cdot \left(Ar^p + \frac{r^p}{(r_4 - r_3)^p} \right)^{\mu/p} \cdot V(B_o(r))^{-1} \cdot \int_{B_o(r_4)} f^p$$

where we have used $\sum_{i=0}^{\infty} 1/k^{i} = \mu/p$, $\sum_{i=0}^{\infty} (i+1)/k^{i} = \mu^{2}/p^{2}$, and denote $C_{2} = (17 \cdot p \cdot C_{s}/k)^{\mu} \cdot (2k)^{\mu^{2}/p}$.

(a) When $q \ge p$, appling (2.7) to $r_3 = \theta \cdot R$, and $r_4 = R$, by Hölder inequality, we have:

(2.8)
$$\sup_{B_{o}(\theta r)} f \leq C_{2}^{1/p} \cdot (Ar^{p} + (1-\theta)^{-p})^{\mu/p^{2}} \cdot \left(\frac{\int_{B_{o}(r)} f^{p}}{V(B_{o}(r))}\right)^{1/p} \\ \leq C_{2}^{1/p} \cdot (Ar^{p} + (1-\theta)^{-p})^{\mu/p^{2}} \cdot \left(\frac{\int_{B_{o}(r)} f^{q}}{V(B_{o}(r))}\right)^{1/q}$$

(b) When 0 < q < p. Let $h_0 = \theta r$, $h_1 = \theta r + 2^{-1} \cdot (1 - \theta) \cdot r_1, \ldots, h_i = h_{i-1} + 2^{-i} \cdot (1 - \theta) \cdot r$, for each $i = 1, 2, 3, \ldots$; applying (2.7) to $r_3 = h_i$, $r_4 = h_{i+1}$, we have:

(2.9)
$$\sup_{B_{o}(h_{i})} f^{p} \leq C_{2} \cdot \left(Ar^{p} + \frac{r^{p}}{(h_{i+1} - h_{i})^{p}} \right)^{\mu/p} \cdot V(B_{o}(r))^{-1} \cdot \int_{B_{o}(h_{i+1})} f^{p} dr dr$$

$$\leq C_{2} \cdot \left(Ar^{p} + (1 - \theta)^{-p} \right)^{\mu/p} \cdot 2^{(i+1)\mu} \cdot V(B_{o}(r))^{-1}$$

$$\cdot \int_{B_{o}(h_{i+1})} f^{q} \cdot \sup_{B_{o}(h_{i+1})} f^{p-q}$$

denote $M(i) = \sup_{B_o(h_i)} f^p$, (2.9) becomes:

(2.10)
$$M(i) \leq C_2 \cdot (Ar^p + (1-\theta)^{-p})^{\mu/p} \cdot 2^{(i+1)\mu} \cdot V(B_o(r))^{-1} \cdot \int_{B_o(r)} f^q \cdot M(1+i)^{1-(q/p)}$$

Let $\lambda = 1 - (q/p)$, interating the inequality, we conclude that:

$$(2.11) M(0) \le \prod_{l=0}^{J-1} \left\{ C_2 \cdot (Ar^p + (1-\theta)^{-p})^{\mu/p} \cdot V(B_o(r))^{-1} \cdot \int_{B_o(r)} f^q \right\}^{\lambda^l} \cdot 2^{(i+1)\mu\lambda^l} \cdot M(j)^{\lambda^J}$$

let $j \to +\infty$, we have

(2.12)
$$\sup_{B_o(\theta r)} f \le \{C_2 \cdot 2^{\mu \cdot p^2} q^{-1} (Ar^p + (1-\theta)^{-p})^{\mu/p} \cdot V(B_o(r))^{-1}\} q^{-1} \cdot \left(\int_{B_o(r)} f^q\right)^{1/q}$$

In any event, (2.8), (2.12) imply that, for any q > 0, we have the inequality

$$\sup_{B_o(\theta r)} f \le C_1 \cdot (Ar^P + (1-\theta)^{-p})^{\mu \cdot (q+p)/(p \cdot q)} \cdot V(B_o(r))^{-1/q} \cdot \left(\int_{B_o(r)} f^q \right)^{1/q}$$

for some appropriate constant $C_1 > 0$ depending only on μ, p, q, C_s .

3. Harnack inequality

LEMMA 3.1. Let M be a complete Riemannian manifold, and a geodesic ball $B_o(R)$ satisfies: $B_o(R) \cap \partial M = \emptyset$. If it satisfies the following conditions:

(1) For any 0 < r < R, there exist a constant $\eta > 0$, such that

$$(3.1) V(B_o(r)) \le 2^{\eta} \cdot V\left(B_o\left(\frac{r}{2}\right)\right)$$

(2) Poincaré inequality, i.e there exist a constant $C_p > 0$ such that

$$(3.2) \qquad \int_{B_o(r)} |f - f_B|^p \le C_p \cdot r^p \cdot \int_{B_o(r)} |\nabla f|^p$$

for any 0 < r < R, $f \in H_{1,p}(B_o(r))$. Where $f_B = \int_{B_o(r)} f / V(B_o(r))$.

(3) Sobolev inequality, i.e there exist a constant $C_s > 0$ such that:

$$(3.3) \qquad \left(\int_{B_{o}(r)} \phi^{p\mu/(\mu-p)} \right)^{(\mu-p)/p\mu} \leq C_{s} \cdot V(B_{o}(r))^{-1/\mu} \cdot r \\ \cdot \left\{ \left(\int_{B_{o}(r)} |\nabla \phi|^{p} \right)^{1/p} + r^{-1} \cdot \left(\int_{B_{o}(r)} |\phi|^{p} \right)^{1/p} \right\}$$

for any $\phi \in H_{1,p}^c(B_o(r))$, 0 < r < R. Where constants $\mu > p > 1$, $C_s > 0$, and $V(B_o(r))$ denotes the volume of geodesic ball $B_o(r)$.

Assuming $f \in H_{1,p}(B_o(R))$ is a nonnegative function, and satisfies the following inequality in the weak sence

(3.4)
$$\operatorname{div}(|\nabla f|^{p-2}\nabla f) \le A \cdot f^{p-1}$$

for some constant $A \ge 0$; then for q > 0 sufficiently small, there must be exist a constant $C_5 > 0$, depending only on q, μ , C_s , $p\eta$, C_p , $(AR^p + 1)$, such that:

(3.5)
$$\left\{ \frac{\int_{B_o(R/8)} f^q \, dv_g}{V(B_o(R/8))} \right\}^{1/q} \le C_5 \cdot \inf_{B_o(R/16)} f$$

Proof. For any $\varepsilon > 0$, setting $f_{\varepsilon} = f + \varepsilon$, f_{ε} satisfies the inequality (3.4). Letting $\varepsilon \to 0$, it is sufficient to prove that f_{ε} satisfies the inequality (3.5). So we can assume that $f \ge \varepsilon > 0$, then the function f^{-1} is in $H_{1,p}(B_o(R))$ and satisfies:

$$\begin{split} \operatorname{div}(|\nabla (f^{-1})|^{p-2}\nabla (f^{-1})) &= \operatorname{div}(-f^{-2(p-1)} \cdot |\nabla f|^{p-2} \cdot \nabla f) \\ &= -f^{-2(p-1)} \cdot \operatorname{div}(|\nabla f|^{p-2} \cdot \nabla f) \\ &+ 2(p-1) \cdot f^{-2p+1} \cdot |\nabla f|^p \\ &\geq -A \cdot f^{-(p-1)} \end{split}$$

Applying proposition 2.2, there exist a constant $C_2' > 0$, depending only on q, p, μ, C_s such that:

(3.6)
$$\left(\inf_{B_o(R/16)} f \right)^{-1} = \sup_{B_o(R/16)} f^{-1}$$

$$\leq C_2' \cdot (AR^p + 1)^{\mu(p+q)/(p \cdot q)} \cdot \left\{ \frac{\int_{B_o(R/8)} f^{-q} \, dv_g}{V(B_o(R/8))} \right\}^{1/q}$$

Clearly, the lemma follows if we can estimate the product

$$\left\{ \frac{\int_{B_o(R/8)} f^q \, dv_g}{V(B_o(R/8))} \right\}^{1/q} \cdot \left\{ \frac{\int_{B_o(R/8)} f^{-q} \, dv_g}{V(B_o(R/8))} \right\}^{1/q}$$

from above for some value of q > 0.

To achieve this, let us consider the function $u = \beta + \log f$, where $\beta = -\int_{B_a(R/2)} \log f \, dv_g$; then u satisfies:

(3.7)
$$\operatorname{div}(|\nabla u|^{p-2}\nabla u) = \operatorname{div}(f^{-(p-1)} \cdot |\nabla f|^{p-2} \cdot \nabla f)$$
$$= f^{-(p-1)} \cdot \operatorname{div}(|\nabla f|^{p-2} \cdot \nabla f) - (p-1)f^{-p} \cdot |\nabla f|^{p}$$
$$\leq A - (p-1) \cdot |\nabla u|^{p}$$

Let ψ the cut-off function defined by:

$$\psi(x) = \begin{cases} 0, & \text{for } x \in M \backslash B_o(R) \\ \frac{2(R - r(x))}{R}, & \text{for } x \in B_o(R) \backslash B_o\left(\frac{R}{2}\right) \\ 1, & \text{for } x \in B_o\left(\frac{R}{2}\right) \end{cases}$$

where r(x) is the distance from o to x.

Multiplying (3.7) by ψ^p and integrating, we have:

$$(3.8) \qquad (p-1) \cdot \int |\nabla u|^p \cdot \psi^p \le A \int \psi^p - \int \psi^p \cdot \operatorname{div}(|\nabla u|^{p-2} \nabla u)$$

$$\le A \int \psi^p + p \int |\nabla u|^{p-1} \cdot \psi^{p-1} \cdot |\nabla \psi|$$

$$\le A \int \psi^p + \frac{p-1}{2} \int \psi^p \cdot |\nabla u|^p + 2^{p-1} \cdot \int |\nabla \psi|^p$$

where we have used Green's formula, Schwartz inequality, and Young inequality. by the above inequality, we have

(3.9)
$$\int_{B_{o}(R/2)} |\nabla u|^{p} \leq \int \psi^{p} \cdot |\nabla u|^{p}$$
$$\leq \frac{2A}{p-1} \int |\psi^{p} + \frac{2^{p}}{p-1} \int |\nabla \psi|^{p}$$
$$\leq \frac{4^{p}}{p-1} \cdot (AR^{p} + 1) \cdot \frac{V(B_{o}(R))}{R^{p}}$$

the Poincare inequality (3.2) and (3.9) implies that:

(3.10)
$$\int_{B_{o}(R/2)} |u|^{p} \leq \frac{C_{p} \cdot R^{p}}{2^{p}} \int_{B_{o}(R/2)} |\nabla u|^{p}$$
$$\leq C_{6} \cdot V(B_{o}(R))$$

denoted $C_6 = 2^p \cdot C_p/(p-1) \cdot (AR^p + 1)$. For $\forall q \leq p$, using Hölder inequality, we have

(3.11)
$$\int_{B_{o}(R/2)} |u|^{q} \leq \left(\int_{B_{o}(R/2)} |u|^{p} \right)^{q/p} \cdot \left(\int_{B_{o}(R/2)} 1 \right)^{1 - (q/p)}$$
$$\leq C_{6}^{q/p} \cdot V(B_{o}(R))$$

On the other hand, let ϕ be a Lipschitz cut-off function, given by

$$\phi(x) = \begin{cases} 0, & \text{for } x \in M \backslash B_o(\rho + \sigma) \\ \frac{\rho + \sigma - r(x)}{\sigma}, & \text{for } x \in B_o(\rho + \sigma) \backslash B_o(\rho) \\ 1, & \text{for } x \in B_o(\rho). \end{cases}$$

where $\rho, \sigma > 0$, $\rho + \sigma \le R$. Then multiplying $\phi^p \cdot |u|^{pa-p}$ to (3.7) for $a \ge 2$, and integrating by parts yields

$$(3.12) (p-1) \int \phi^{p} \cdot |u|^{pa-p} \cdot |\nabla u|^{p}$$

$$\leq A \int \phi^{p} \cdot |u|^{pa-p} - \int \operatorname{div}(|\nabla u|^{p-2} \nabla u) \cdot \phi^{p} \cdot |u|^{pa-p}$$

$$\leq A \int \phi^{p} |u|^{pa-p} + (pa-p) \cdot \int \phi^{p} \cdot |u|^{pa-p-1} \cdot |\nabla u|^{p}$$

$$+ p \cdot \int |\nabla u|^{p-2} \cdot \phi^{p-1} \cdot |u|^{pa-p} \cdot \langle \nabla u, \nabla \phi \rangle$$

by Young inequality we have:

$$(3.13) (pa-p) \cdot \phi^{p} \cdot |u|^{pa-p-1} \cdot |\nabla u|^{p}$$

$$\leq \frac{p-1}{4} \cdot |u|^{pa-p} \cdot \phi^{p} \cdot |\nabla u|^{p} + \left(\frac{4(pa-p-1)}{p-1}\right)^{pa-p-1} \cdot \phi^{p} \cdot |\nabla u|^{p}$$

and

$$(3.14) p \cdot |\nabla u|^{p-2} \cdot \phi^{p-1} \cdot |u|^{pa-p} \cdot \langle \nabla u, \nabla \phi \rangle$$

$$\leq \frac{p-1}{4} |u|^{pa-p} \cdot \phi^{p} \cdot |\nabla u|^{p} + 4^{p-1} \cdot |\nabla u|^{pa-p} \cdot |\nabla \phi|^{p}$$

Using (3.12), (3.13), (3.14); then

$$(3.15) \qquad \int \phi^{p} \cdot |u|^{pa-p} \cdot |\nabla u|^{p}$$

$$\leq \frac{2A}{p-1} \int \phi^{p} \cdot |u|^{pa-p} + \frac{2}{p-1} \cdot \left(\frac{4(pa-p-1)}{p-1}\right)^{pa-p-1} \cdot \int \phi^{p} \cdot |\nabla u|^{p}$$

$$+ \frac{2 \cdot 4^{p-1}}{p-1} \cdot \int |u|^{pa-p} \cdot |\nabla \phi|^{p}$$

$$\leq \left(\frac{2A}{p-1} + \frac{2 \cdot 4^{p-1}}{(p-1) \cdot \sigma^{p}}\right) \cdot \int_{B_{o}(\rho+\sigma)} |u|^{pa-p}$$

$$+ \frac{2}{p-1} \cdot \left(\frac{4(pa-p-1)}{p-1}\right)^{pa-p-1} \cdot \int_{B_{o}(\rho+\sigma)} |\nabla u|^{p}$$

By setting a = 2, $\rho = R/4$, $\sigma = R/4$; (3.15) becomes:

$$\int_{B_o(R/4)} |u|^p \cdot |\nabla u|^p \le \left(\frac{2A}{p-1} + \frac{2 \cdot 4^{2p-1}}{(p-1) \cdot R^p}\right) \cdot \int_{B_o(R/2)} |u|^p + \frac{2 \cdot 4^{p-1}}{p-1} \cdot \int_{B_o(R/2)} |\nabla u|^p$$

Using (3.9), (3.10), and the last inequality; then:

(3.16)
$$\int_{B_o(R/4)} |u|^p \cdot |\nabla u|^p \le C_7 \cdot \frac{V(B_o(R))}{R^p}$$

where we denoted $C_7 = 2 \cdot 4^{2p-1}/(p-1) \cdot (C_6 + 1/(p-1)) \cdot (AR^p + 1)$.

Then, we want to estimate $\int_{B_o(R/4)} |u|^2$ from above.

(1) When $1 , for any <math>\tilde{q} \le p$, by Hölder inequality, (3.9), and (3.16), we have:

$$(3.17) \qquad \int_{B_{o}(R/4)} |u|^{\tilde{q}} \cdot |\nabla u|^{p} \leq \left(\int_{B_{o}(R/4)} |u|^{p} \cdot |\nabla u|^{p} \right)^{\tilde{q}/p} \cdot \left(\int_{B_{o}(R/4)} |\nabla u|^{p} \right)^{1-(\tilde{q}/p)} \\ \leq C_{7}^{\tilde{q}/p} \cdot \left(\frac{4^{p}}{p-1} \cdot (AR^{p}+1) \right)^{1-(\tilde{q}/p)} \cdot \frac{V(B_{o}(R))}{R^{p}}$$

Let $l \in \mathbb{Z}^+$, such that $p^{l-1} < 2 \le p^l$; and let $1 \le i \le l-1$, by Minkowski inequality and Poincare inequality (3.2), then

$$\begin{split} & \int_{B_{o}(R/4)} p^{tp} \cdot |u|^{(p^{t}-1)\cdot p} \cdot |\nabla u|^{p} \geq \int_{B_{o}(R/4)} |\nabla (|u|^{p^{t}})|^{p} \\ & \geq \frac{4^{p}}{C_{p} \cdot R^{p}} \cdot \int_{B_{o}(R/4)} \left| \left(|u|^{p^{t}} - V \left(B_{o} \left(\frac{R}{4} \right) \right)^{-1} \cdot \int_{B_{o}(R/4)} |u|^{p^{t}} \right) \right|^{p} \\ & \geq \frac{4^{p}}{C_{p} \cdot R^{p}} \left[\left(\int_{B_{o}(R/4)} |u|^{p^{t+1}} \right)^{1/p} - V \left(B_{o} \left(\frac{R}{4} \right) \right)^{-1 + (1/p)} \cdot \int_{B_{o}(R/4)} |u|^{p^{t}} \right]^{p} \end{split}$$

By Hölder inequality, it is easy to show that $(\int_{B_o(R/4)} |u|^{p^{i+1}})^{1/p} \ge V(B_o(R/4))^{-1+(1/p)} \cdot \int_{B_o(R/4)} |u|^{p^i}$. then the last inequality becomes:

$$\left(\int_{B_{o}(R/4)} |u|^{p^{i+1}} \right)^{1/p} \leq \left\{ \frac{p^{ip} \cdot C_{p} \cdot R^{p}}{4^{p}} \cdot \int_{B_{o}(R/4)} |u|^{(p^{i}-1) \cdot p} \cdot |\nabla u|^{p} \right\}^{1/p} + V \left(B_{o} \left(\frac{R}{4} \right) \right)^{-1 + (1/p)} \cdot \int_{B_{o}(R/4)} |u|^{p^{i}}$$

Using (3.17) and the last inequality, we have:

$$(3.18) \qquad \left(\int_{B_{o}(R/4)} |u|^{p^{i+1}}\right)^{1/p}$$

$$\leq \left\{\frac{p^{ip} \cdot C_{p}}{4^{p}} \cdot C_{7}^{p^{i-1}} \cdot \left[\frac{4^{p}}{p-1} \cdot (AR^{p}+1)\right]^{p^{i}} \cdot V(B_{o}(R))\right\}^{1/p}$$

$$+ 4^{\eta \cdot (1-(1/p))} \cdot V(B_{o}(R))^{-1+(1/p)} \cdot \int_{B_{o}(R/4)} |u|^{p^{i}}$$

Where we have used the condition (1) $V(B_o(r)) \leq 2^{\eta} \cdot V(B_o(r/2))$, $0 < r \leq R$. By formula (3.10), one can conclude that: $\int_{B_o(R/4)} |u|^p \leq \int_{B_o(R/2)} |u|^p \leq C_6 \cdot V(B_o(R))$. Iterating the inequality (3.18) by finite times, one can conclude that there must be exist a constant $C_8 > 0$, depending only on $p, \eta, C_p, (AR^p + 1)$, such that:

$$\int_{B_o(R/4)} |u|^{p'} \le C_8 \cdot V(B_o(R))$$

By Hölder inequality, we have:

(3.19)
$$\int_{B_o(R/4)} |u|^2 \le \left(\int_{B_o(R/4)} |u|^{p^l} \right)^{2/p^l} \cdot \left(\int_{B_o(R/4)} 1 \right)^{1 - (2/p^l)}$$

$$\le C_8^{2/p^l} \cdot V(B_o(R))$$

(2) When $p \ge 2$, we have:

(3.20)
$$\int_{B_o(R/4)} |u|^2 \le \left(\int_{B_o(R/4)} |u|^p \right)^{2/p} \cdot \left(\int_{B_o(R/4)} 1 \right)^{1 - (2/p)}$$
$$\le C_6^{2/p} \cdot V(B_o(R))$$

In any event, (3.19), (3.20) imply that, for any p > 1, we have the inequality

(3.21)
$$\int_{B_o(R/4)} |u|^2 \le C_9 \cdot V(B_o(R))$$

for some appropriate constant $C_9 > 0$, depending only on $p, \eta, C_p, (AR^p + 1)$. On the other hand, using the Minkowski inequality and the poincare inequality (3.2), we have:

$$(3.22) \int_{B_{o}(R/4)} |u|^{p} \cdot |\nabla u|^{p} = \frac{1}{2^{p}} \int_{B_{o}(R/4)} |\nabla (u^{2})|^{p}$$

$$\geq \frac{2^{p}}{C_{p} \cdot R^{p}} \cdot \int_{B_{o}(R/4)} \left| \left(u^{2} - V \left(B_{o} \left(\frac{R}{4} \right) \right)^{-1} \cdot \int_{B_{o}(R/4)} u^{2} \right) \right|^{p}$$

$$\geq \frac{2^{p}}{C_{p} \cdot R^{p}} \left[\left(\int_{B_{o}(R/4)} u^{2p} \right)^{1/p} - V \left(B_{o} \left(\frac{R}{4} \right) \right)^{-1 + (1/p)} \cdot \int_{B_{o}(R/4)} u^{2} \right]^{p}$$

by (3.16), (3.21), then (3.22) becomes:

(3.23)
$$\int_{B_o(R/4)} u^{2p} \le C_{10} \cdot V(B_o(R))$$

where we denoted: $C_{10} = ((C_7 \cdot C_p/2^p)^{1/p} + 4^{\eta(1-(1/p))} \cdot C_9)^p$. For any $\tilde{q} \le 2p$, using Hölder inequality one can conclude:

(3.24)
$$\int_{B_{o}(R/4)} |u|^{\tilde{q}} \leq \left(\int_{B_{o}(R/4)} |u|^{2p} \right)^{\tilde{q}/2p} \cdot \left(\int_{B_{o}(R/4)} 1 \right)^{1 - (\tilde{q}/2p)}$$

$$\leq C_{10}^{\tilde{q}/2p} \cdot V(B_{o}(R))$$

Let $a \ge 2$, by Cauchy-Schwartz inequality, we have

$$|\nabla(\phi|u|^{a})|^{p} \leq 2^{p}[|\nabla\phi|^{p} \cdot |u|^{ap} + a^{p}|u|^{pa-p}\phi^{p}|\nabla u|^{p}]$$

By the Sobolev inequality, one can conclude:

$$\left(\int_{B_{o}(\rho)} |u|^{a \cdot p \cdot \mu/(\mu - p)}\right)^{(\mu - p)/\mu} \left(\int_{B_{o}(\rho)} (\phi |u|^{a})^{p \cdot \mu/(\mu - p)}\right)^{(\mu - p)/\mu} \\
\leq \left\{C_{s} \cdot V(B_{o}(R))^{-1/\mu} \left[R\left(\int_{B_{o}(R)} |\nabla (\phi |u|^{a})|^{p}\right)^{1/p} + \left(\int_{B_{o}(R)} \phi^{p} |u|^{ap}\right)^{1/p}\right]\right\}^{p} \\
\leq 2^{p} \cdot C_{s}^{p} \cdot V(B_{o}(R))^{-p/\mu} \left[R^{p} \int_{B_{o}(R)} |\nabla (\phi |u|^{a})|^{p} + \int_{B_{o}(R)} \phi^{p} |u|^{ap}\right] \\
\leq 2^{p} \cdot C_{s}^{p} \cdot V(B_{o}(R))^{-p/\mu} \left[R^{p} \cdot 2^{p} \cdot a^{p} \int_{B_{o}(R)} \phi^{p} \cdot |u|^{pa-p} |\nabla u|^{p} \right. \\
+ R^{p} \cdot 2^{p} \int_{B_{o}(R)} |u|^{ap} \cdot |\nabla \phi|^{p} + \int_{B_{o}(R)} \phi^{p} |u|^{ap}\right]$$

Using (3.9), (3.15), and the last inequality, we have:

$$(3.26) \qquad \left(\int_{B_{o}(\rho)} |u|^{a \cdot p \cdot k} \right)^{1/k}$$

$$\leq 2 \cdot C_{11} \cdot V(B_{o}(R))^{(1-k)/k} \left[a^{p} \cdot \left(AR^{p} + \frac{R^{p}}{\sigma^{p}} \right) \int_{B_{o}(\rho + \sigma)} |u|^{pa - p} \right.$$

$$+ a^{p} \left(\frac{4(pa - p - 1)}{p - 1} \right)^{pa - p - 1} \cdot (AR^{p} + 1) \cdot V(B_{o}(R))$$

$$+ \frac{R^{p}}{\sigma^{p}} \cdot V(B_{o}(R))^{-1} \cdot \int_{B_{o}(\rho + \sigma)} |u|^{pa} \right]$$

where we denoted: $C_{11} = 2^p \cdot C_s^p \cdot \max\{2^{3p-1}/(p-1), 2^{3p+1}/(p-1)^2, 2^{p+1}\}, k = \mu/(\mu-p).$

It is easy to show that: $|u|^{pa-p} \le |u|^{pa} + 1$, and let $\rho \ge R/8$, then (3.26) becomes:

$$(3.27) \quad \left(V(B_{o}(\rho))^{-1} \int_{B_{o}(\rho)} |u|^{a \cdot p \cdot k} \right)^{1/(k \cdot p \cdot a)}$$

$$\leq \left(8^{\eta} \cdot V(B_{o}(R))^{-1} \int_{B_{o}(\rho)} |u|^{a \cdot p \cdot k} \right)^{1/(k \cdot p \cdot a)}$$

$$\leq (2 \cdot 8^{\eta/k} \cdot C_{11})^{1/pa} \cdot \left[a^{p} \cdot \left(AR^{p} + \frac{R^{p}}{\sigma^{p}}\right) V(B_{o}(R))^{-1} \cdot \int_{B_{o}(\rho + \sigma)} |u|^{pa} + a^{p+pa} \left(\frac{4p}{p-1}\right)^{pa} \cdot (AR^{p} + 1) \right]^{1/pa}$$

$$\leq C_{12}^{1/pa} \cdot a^{1/a} \cdot \left(AR^{p} + \frac{R^{p}}{\sigma^{p}}\right)^{1/pa} \cdot \left(V(B_{o}(R))^{-1} \cdot \int_{B_{o}(\rho+\sigma)} |u|^{pa}\right)^{1/pa} + C_{12}^{1/pa} a^{1+(1/a)} \left(\frac{4p}{p-1}\right) \cdot (AR^{p} + 1)^{1/pa}$$

where $C_{12} = 2 \cdot 8^{\eta/k} \cdot C_{11}$. Let: $a_i = 2k^i$, $\sigma_i = 2^{-4-i}$, $\rho_i = R/4 - \sum_{j=0}^i \sigma_j$, for i = 0, 1, 2, ...; $\rho_{-1} = R/4$. applying (3.27) to $a = a_i$, $\rho = \rho_i$, $\sigma = \sigma_i$; then

$$(3.28) \qquad \left(V(B_{o}(\rho_{i}))^{-1} \cdot \int_{B_{o}(\rho_{i})} |u|^{2pk^{i+1}}\right)^{1/(2pk^{i+1})}$$

$$\leq C_{13}^{k^{-i}} \cdot D^{ik^{-i}} \left(V(B_{o}(\rho_{i-1}))^{-1} \cdot \int_{B_{o}(\rho_{i-1})} |u|^{2pk^{i}}\right)^{1/2pk^{i}}$$

$$+ C_{13}^{k^{-i}} \cdot D^{ik^{-i}} \cdot k^{i} \cdot \left(\frac{8p}{p-1}\right)$$

where we denoted: $C_{13} = (C_{12} \cdot (AR^p + 1) \cdot 2^{4+p})^{1/2p}, D = 2^{1/2p} \cdot k^{1/2}$ Iterating the inequality (3.28), we have:

$$(3.29) \qquad \left(V(B_{o}(\rho_{l}))^{-1} \cdot \int_{B_{o}(\rho_{l})} |u|^{2pk^{l+1}}\right)^{1/(2pk^{l+1})}$$

$$\leq \prod_{l=0}^{l} C_{13}^{k^{-l}} \cdot D^{ik^{-l}} \cdot \left(V\left(B_{o}\left(\frac{R}{4}\right)\right)^{-1} \cdot \int_{B_{o}(R/4)} |u|^{2p}\right)^{1/2p}$$

$$+ \left(\frac{8p}{p-1}\right) \sum_{l=0}^{l-1} C_{13}^{k^{-l}} \cdot D^{ik^{-l}} \cdot k^{l} \cdot \prod_{j=l+1}^{l} (C_{13}^{k^{-j}} \cdot D^{ik^{-l}})$$

$$+ C_{13}^{k^{-l}} \cdot K^{l} \cdot D^{lk^{-l}} \cdot \left(\frac{8p}{p-1}\right)$$

$$\leq C_{14} \left(\left(V\left(B_{o}\left(\frac{R}{4}\right)\right)^{-1} \cdot \int_{B_{o}(R/4)} |u|^{2p}\right)^{1/2p} + \sum_{l=0}^{l} k^{l}\right)$$

$$\leq C_{14} \left(\left(V\left(B_{o}\left(\frac{R}{4}\right)\right)^{-1} \cdot \int_{B_{o}(R/4)} |u|^{2p}\right)^{1/2p} + \frac{\mu}{p} \cdot k^{l}\right)$$

where $C_{14} = (8p/(p-1)) \prod_{i=0}^{\infty} (C_{13}+1)k^{-i} \cdot D^{ik^{-i}}$.

For any j > 2p; let $l \in N$ such that: $2pk^{l} < j \le 2pk^{l+1}$, then

$$(3.30) V\left(B_{o}\left(\frac{R}{8}\right)\right)^{-1} \cdot \int_{B_{o}(R/8)} |u|^{J}$$

$$\leq \left\{V\left(B_{o}\left(\frac{R}{8}\right)\right)^{-1} \cdot \int_{B_{o}(R/8)} |u|^{2pk^{l+1}}\right\}^{J/(2pk^{l+1})}$$

$$\leq \left\{2^{\eta} \cdot V(B_{o}(\rho_{l}))^{-1} \cdot \int_{B_{o}(\rho_{l})} |u|^{2pk^{l+1}}\right\}^{J/(2pk^{l+1})}$$

$$\leq \left\{2^{\eta} \cdot C_{14}\left(\left(V\left(B_{o}\left(\frac{R}{4}\right)\right)^{-1} \cdot \int_{B_{o}(R/4)} |u|^{2p}\right)^{1/2p} + \frac{\mu}{p} \cdot k^{l}\right)\right\}^{J}$$

$$\leq C_{15}^{J} \cdot \left(\left(V\left(B_{o}\left(\frac{R}{4}\right)\right)^{-1} \cdot \int_{B_{o}(R/4)} |u|^{2p}\right)^{1/2p} + j\right)^{J}$$

where $C_{15} = 2^{\eta} \cdot C_{14} \cdot (\mu/(2p^2) + 1)$. By (3.24), (3.30) we have:

$$(3.31) V\left(B_o\left(\frac{R}{8}\right)\right)^{-1} \cdot \int_{B_o(R/8)} e^{q\cdot |u|} = \sum_{j=0}^{\infty} (j!)^{-1} \cdot q^j \cdot V\left(B_o\left(\frac{R}{8}\right)\right)^{-1} \int_{B_o(R/8)} |u|^j$$

$$\leq C_{16} + \sum_{j>2p}^{\infty} (j!)^{-1} \cdot (C_{17}q \cdot j)^j$$

where C_{16} , C_{17} is appropriate positive constantes depending only on C_p , C_s , η , p, μ , $AR^p + 1$. By the Stirling inequality, we have:

$$j^{J} \le (j!) \cdot e^{J}$$

then, (3.31) becomes:

$$(3.32) V\left(B_o\left(\frac{R}{8}\right)\right)^{-1} \cdot \int_{B_o(R/8)} e^{q\cdot |u|} \le C_{16} + \sum_{l>2p}^{\infty} (C_{17} \cdot q \cdot e)^{l}$$

Let $q \le (1/2) \cdot (C_{17} \cdot e)^{-1}$, we have:

(3.33)
$$V\left(B_o\left(\frac{R}{8}\right)\right)^{-1} \cdot \int_{B_o(R/8)} e^{q|u|} \le C_{18}$$

where C_{18} is a appropriate positive constant depending only on C_p , C_s , η , p, μ , $AR^p + 1$. Applying inequalities: $e^{q\beta} \cdot f^q = e^{qu} \le e^{q \cdot |u|}$, $e^{-q\beta} \cdot f^{-q} = e^{-qu} \le e^{q \cdot |u|}$; we have:

$$(3.34) \qquad \left\{ V \left(B_o \left(\frac{R}{8} \right) \right)^{-1} \int_{B_o(R/8)} f^{-q} \right\}^{1/q} \cdot \left\{ V \left(B_o \left(\frac{R}{8} \right) \right)^{-1} \int_{B_o(R/8)} f^{q} \right\}^{1/q}$$

$$\leq \left\{ V \left(B_o \left(\frac{R}{8} \right) \right)^{-1} \int_{B_o(R/8)} e^{q \cdot |u|} \right\}^{2/q} \leq C_{18}^{2/q}$$

When $q \le (1/2)(C_{17} \cdot e)^{-1}$, by (3.6), (3.34), there exist a positive constant depending only on C_p , C_s , η , p, q, μ , $AR^p + 1$; such that:

$$(3.35) \qquad \left\{ V\left(B_o\left(\frac{R}{8}\right)\right)^{-1} \int_{B_o(R/8)} f^q \right\}^{1/q} \le C_5 \cdot \inf_{B_o(R/16)} f \qquad \Box$$

Combining Proposition 2.2 and Lemma 3.1, we have the following locally Harnack inequality.

THEOREM 3.2. Let M be a complete Riemannian manifold, and geodesic ball $B_o(R)$ satisfies: $B_o(R) \cap \partial M = \emptyset$. If it satisfies the conditions (1), (2), (3) in Lemma 3.1. Fix p > 1, assuming $f \in H_{1,p}(B_o(R))$ is a nonnegative function, and satisfies the following inequality in the distribution sence,

$$|\operatorname{div}(|\nabla f|^{p-2}\nabla f)| \le A \cdot f^{p-1}$$

for some constant $A \ge 0$; then, there must be exist a constant $C_{19} > 0$, depending only on p, μ, C_s, p η, C_p , $(AR^p + 1)$, such that:

(3.37)
$$\sup_{B_o(R/16)} f \le C_{19} \cdot \inf_{B_o(R/16)} f$$

Remark. When p = 2, Theorem 3.2 is just the result due to P. Li in [L]. In the special case A = 0, by Theorem 3.2, we can conclude a globally Harnack inequality which is similar to a result of M. Rigoli, M. Salvatori, and M. Vignati in [2], then Theorem 3.2 can be seen as a generalization of the result in [2].

PROPOSITION 3.3. Let M be a complete noncompact Riemannian manifold (without bouldary), and o be a fixed point in M. Assuming for any R > 0 geodesic ball $B_o(R)$ satisfies the conditions (1), (2), (3) in Lemma 3.1. Fix p > 1, let $f \in H_{1,p}(M)$ is a nonnegative function, and satisfies the following quality in the distribution sence,

$$\operatorname{div}(|\nabla f|^{p-2}\nabla f)=0$$

then, for any R > 0, there must be exist a constant $C_{20} > 0$, depending only on p, μ , C_s , p η , C_p , such that:

$$\sup_{B_o(R)} f \le C_{20} \cdot \inf_{B_o(R)} f$$

By the above grobally Harnack inequality, one can conclude a Liouville theorem for weakly *p*-harmonic function.

COROLLARY 3.4. Let M be a complete noncompact Riemannian manifold (without boundary), and o be a fixed point in M. Assuming for any R > 0 geodesic ball $B_o(R)$ satisfies the conditions (1), (2), (3) in Lemma 3.1. Fix p > 1, let f is a nonnegative weakly p-harmonic function (p > 1), then f must be constantly.

By the Gromove-Bishop volume comparision theorem and the results due to Saloff-Coste in [5], the conditions (1), (2), (3) in Lemma 3.1 is guaranteed, in the assumption $Ric_M \ge 0$ on M. Then, we have the following Corollary.

COROLLARY 3.5. Let M be a complete noncompact Riemannian manifold with nonnegative Ricci curvature, then there is no non-constantly nonnegative weakly pharmonic function. (p > 1)

4. Hölder estimate

THEOREM 4.1. Let M be a complete Riemannian manifold, and geodesic ball $B_o(R_0)$ satisfies: $B_o(R_0) \cap \partial M = \emptyset$. If it satisfies the conditions (1), (2), (3) in Lemma (3.1). Fix p > 1, assuming the $u \in H_{1,p}(B_o(R_0)) \cap L^{\infty}(B_o(R_0))$ and that satisfies the following inequality in the distribution sence,

$$|\operatorname{div}(|\nabla u|^{p-2}\nabla u)| \le A$$

for some constant $A \ge 0$; then, u must be α -Hölder continuous at o. and Hölder exponent α depending only on $p, \mu, C_s, C_p, \eta, C_p$.

Proof. Denote: $S(R) = \sup_{B_o(R)} u$, $i(R) = \inf_{B_o(R)} u$; let $f = S(R) - u + A^{1/(p-1)} \cdot R^{p/(p-1)}$, $g = u - i(R) + A^{1/(p-1)} \cdot R^{p/(p-1)}$, applying Theorem 3.2 to f and g, we have:

$$S(R) - i\left(\frac{R}{16}\right) + A^{1/(p-1)} \cdot R^{p/(p-1)} \le C_{22}\left(S(R) - S\left(\frac{R}{16}\right) + A^{1/(p-1)} \cdot R^{p/(p-1)}\right)$$

$$S\left(\frac{R}{16}\right) - i(R) + A^{1/(p-1)} \cdot R^{p/(p-1)} \le C_{22}\left(i\left(\frac{R}{16}\right) - i(R) + A^{1/(p-1)} \cdot R^{p/(p-1)}\right)$$

where C_{22} is a positive constant depending only on C_p , C_s , η , μ , p. Denote: $a = (C_{22} - 1)/(C_{22} + 1) < 1$, $\omega = S(R) - i(R)$, by the above inequalities, we have

(4.2)
$$\omega\left(\frac{R}{16}\right) \le a(\omega(R) + 2A^{1/(p-1)} \cdot R^{p/(p-1)})$$

Iterating (4.2), we have:

(4.3)
$$\omega(16^{-m} \cdot R) \le a^m \cdot \omega(R) + 2A^{1/(p-1)} \cdot R^{p/(p-1)} \sum_{i=1}^m a^i$$
$$\le a^m \cdot \omega(R) + 2A^{1/(p-1)} \cdot R^{p/(p-1)} \frac{a}{1-a}$$

For $\forall 0 < R < R_1 \le R_0$, let: $(1/16)^l R_1 < R \le (1/16)^{l-1} R_1$, by (4.3), we have:

$$(4.4) \qquad \omega(R) \leq \omega \left(\left(\frac{1}{16} \right)^{l-1} \cdot R_1 \right)$$

$$\leq a^{l-1} \cdot \omega(R_1) + 2 \cdot A^{1/(p-1)} \cdot R_1^{p/(p-1)} \cdot \frac{a}{1-a}$$

$$\leq a^{-1} \cdot \left(\frac{R}{R_1} \right)^{-\log a/\log 16} \cdot \omega(R_1) + 2 \cdot A^{1/(p-1)} \cdot R_1^{p/(p-1)} \cdot \frac{a}{1-a}$$

let $R_1 = R_0^{1-t} \cdot R^t$, 0 < t < 1, then

$$\omega(R) \le a^{-1} \cdot \left(\frac{R}{R_0}\right)^{-(1-t) \cdot (\log a/\log 16)} \cdot \omega(R_0)$$

$$+ 2 \cdot A^{1/(p-1)} \cdot R_0^{p/(p-1) \cdot (1-t)} \cdot R^{p/(p-1) \cdot t} \frac{a}{1-a}$$

let $t = (-\log a/\log 16) \cdot (p/(p-1) - \log a/\log 16)^{-1}$, and denote $\alpha = p/(p-1) \cdot (-\log a/\log 16) \cdot (p/(p-1) - \log a/\log 16)^{-1}$, by the last inequality, we have:

(4.5)
$$\omega(R) \le R^{\alpha} \cdot \left(\frac{\omega(R_0)}{a \cdot R_0^{\alpha}} + \frac{2aA^{1/(p-1)} \cdot R_0^{p/(p-1)-\alpha}}{1-a} \right)$$

for any $0 < R < R_0$.

When A = 0, by inequality (4.5), for any $0 < R < R_0$, we have:

(4.6)
$$\omega(R) \le R^{\alpha} \cdot \left(\frac{\omega(R_0)}{a \cdot R_0^{\alpha}}\right)$$

if $|f(x)| = o(\rho^{\alpha}(x))$, as $x \to 0$, where $\rho(x)$ denotes the geodesic distance from $\rho(x)$ to $\rho(x)$; letting $\rho(x)$, then $\rho(x)$ then $\rho(x)$ the proof of the following theorem.

Theorem 4.2. Let M be a complete noncompact Riemannian manifold satisfies the conditions (1), (2), (3) in Lemma 3.1. Then there exists a constant $0 < \alpha \le 1$ such that any p-harmonic function f defined on M satisfying the growth condition

$$|f(x)| = \circ(\rho^{\alpha}(x))$$

as $x \to 0$, where $\rho(x)$ denotes the geodesic distance from o to x; must be identically constant.

COROLLARY 4.3. Let M be a complete noncompact Riemannian manifold with nonnegative Ricci curvature. Then there exists a constant $0 < \alpha \le 1$ such that any p-harmonic function f defined on M satisfying the growth condition

$$|f(x)| = \circ(\rho^{\alpha}(x)),$$

as $x \to 0$, where $\rho(x)$ denotes the geodesic distance from o to x; Must be identically constant.

REFERENCES

- P Li, Lecture Notes on Geometric Analysis, Lecture Notes Series 6, Research Institute of Mathematics and Global Analysis Research Center, Seoul National University, (1993).
- [2] M. RIGOLI, M. SALVATORI AND M. VIGNATI, A note on p-subharmonic functions on Complete manifolds, Manuscripta Math., 99 (1997), 339–359.
- [3] K. UHLENBECK, Reqularity of nonlineare elliptic systems, Acta. Math., 138 (1977), 219-240.
- [4] P TOLKSDORFF, Every where regularity for some quasi-linear systems with a lack of ellipticity, Ann. Mat. Pura Appl., 134 (1983), 241–266.
- [5] L. SALOFF-COSTE, Uniformmly elliptic operators on Riemannian manifolds, J. Differential Geom., 36 (1992), 417-450.

DEPARTMENT OF MATHEMATICS ZHEJIANG UNIVERSITY (XX) HANGZHOU 310028 P.R. CHINA