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A GENERALIZATION OF MALLIAVIN’S UNIQUENESS THEOREM*'t
GUuUANTIE DENG

Abstract

Using Malliavin’s uniqueness theorem about Watson’s Problem, we obtain a
generalization of Malliavin’s uniqueness results and a discrete version of a Phragmén-
Lindelof theorem.

1. Introduction

Recently, B. Korenblum and the others give some results about a gener-
alization of Carleman’s uniqueness theorem and a discrete Phragmén-Lindel6f
theorem. In this paper, we will give a further generalization about these results
by using a generalization of Malliavin’s uniqueness theorem.

Let v(x) be a function defined on [0,+c0) and let H(v) be the set of such
functions f(z) which are holomorphe in the half-plane C, = {z=x+iy: x> 0}
continuous in the closed half-plane cl(C.) = {z=x+iy:x >0} such that the
following condition

(1) |f(2)] < Aexp{Ax + xv(x)}

hold for z=x+iye Cy, r=|z|. (The symbol 4 is used for the large enough,
positive constant, not necessarily the same at each occurrence.) Let A = {4,} be
an increasing sequence of positive real numbers such that the following separation
condition
(2) 8 =inf{lpt1 —A:n=12,...} >0
and the following Malliavin’s uniqueness condition ([11]) for H(v)

o0
(3) J S(A(r) — a)r?dr = 40

1
holds for any real number a, where
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1
(4) A(=2 > 5 ifr>A, and A(r)=0, if r<i;
A<r,AeA
S(t) = sup{xt — xv(x) : x = 0}.

Malliavin’s uniqueness theorem ([8] and [11]) says that, if f € H(v) and f(41) =0
for Ae A, (2) and (3) hold, then f =0 on C,. Therefore we shall call the set
A, which satisfies (2) and (3), Malliavin’s uniqueness set for H(v). A well-known
Phragmén-Lindel6f Theorem says that if / € H(1) is bounded in the positive real
axis, then f'is bounded in cl(C.). In this paper, we prove that if the separation
condition (2) and Malliavin’s uniqueness condition (3) hold, /' € H(v) and

(5) p=lim i log|f(4)| < oo
then f is of exponential type p. So we write our theorem as follows:

THEOREM 1. Suppose that the set A = {,} is Malliavin’s uniqueness set for
H(v). If feH(v) and (5) holds, then f is of exponential type p and

(6) |/ (2)] < Aexp(px)
holds for z=x+iye C,.

Remark 1. If p=—oo then f =0, so our theorem is a generalization of
Malliavin’s uniqueness theorem.

As a corollary of Theorem 1, we have the following theorem about a signed
Borel measure.

THEOREM 2. Suppose that the set A = {A,} is Malliavin’s uniqueness set for
H(v). If pis a signed Borel measure on (—oo,+o0) and

+00
(7) J e™|du(t)| < Aexp(xv(x) + xA) for x>0,
- + 00
(8) p= lirglOo ln_llog(J e'“’ld,u(t)]) <

then du is a measure supported on (—c0,p).

2. Proof of Theorems

In order to prove Theorem 1, we need a generalization of Malliavin’s
uniqueness theorem about Watson’s problem ([4], [5], [6] and [11]).

Lemma 1. Let A = {4,} be a sequence of positive numbers such that (2)
holds, let v(x) be a continuous, increasing function on [0,+00) and let A(r) be
defined by (4). Suppose that the function g(z) is analytic in C,, continuous in
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cl(Cy) such that

l9(2)] < 1+ exp{xv(x) — xA(r) + Ax}.
If (3) holds, then g(z) is bounded in C. and the upper boundedness is not greater
than 2.

The proof of Lemma 1 is similar to that given in [5], [6], [8], [11] and is here
omitted.

Proof of Theorem 1. W. H. J. Fuchs ([8]) has proved that the function v
in (1) can be replaced by a continuous, increasing function and the uniqueness
condition (3) also satisfy. So we suppose that such conditions also hold, we
suppose also that A; > 8 hold. First the function

zZ
filz) = /@) 2
G(z)(1+7z2)
is analytic in C; — A, where G(z) is Fuch’s function ([7] and [12]) defined by

w0 -1(E2) ()

n=1

W. H. J. Fuchs ([7] and [12]) has proved that the function G(z) is analytic in the
half plane {z=x+iy: x> —4}, and that

|G(z)| < exp{xA(r) + Ax}, zeC4, r=]z|;
|G(2)| = exp{xA(r) — Ax}, ze C(A,d)
|G (n)| = exp{AnA(dn) — Aln}, n=1,2,...,
where C(A,0) = C — ()% D(1,6), D(Jn,6) = {z: |z — 4| <J}. Therefore we
obtain that
A
z)| <
A6l < o

holds for z € C(A,d), r =|z|. The function h,(¢) defined by

ha(1) = __l‘roofl(f)e":’ d¢

27 ) i

exp{xv(x) — xA(r) + Ax},

is continuous on (—oo0,+o0) and that

E+i100
m)= Y anet - Rt

deAd<E 2mi e

holds for & > 0, & ¢ A, where the coefficients a(1) are the residues of fi(z) at the
points A€ A. Since
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f(j’) 2; i = [\7 llm logla()'”)l —
G (A1 +4) n—+oo An

(Malliavin’s Uniqueness condition (3) implies that A(r) is unbounded in [0, c).)
the function

a(d) =

)

ha(t) = a(R)e™

AeA
is an entire function of ¢+ = o+ iz. The function g,(z) defined by
+0c
0@ = | n(0) = ale) explz(o - )

is an entire function of z=x+iy, and for z¢ A, x <&, ¢ A

6o(z) = 1 rﬂoojrl( ) o dr Z a(l) oo

 2ni i C— 2 kmeAi—z

and for x > 0,

4100
ga(z) _ 2nlJ fl e~ % dc — Z o Z)e—za,

IOOC_Z leA

since, for any &£ >0, £¢ A and any o, there exists a constant A(&,0), Az =
inf{A:AeA,A> ¢} such that

lh3(1) — ha(1)] < A(¢, o) [exp(—<1) + exp{—Ae(1 — 0)}].
So there exists a constant B(o) depending only on o, and J such that, for x < 44,
z=Xx+1iy, we have

B(o)
195(2)] < e5—-

and for x >0, we have
lgs(2)| < A(o) + exp{4 + Ao — x5 + xv(x) — xA(|z])},

where A(0) is a constant depending only on ¢. Lemma implies that the function
gs(z) is bounded in the entire complex plane, so it follows from the Liouville
theorem that the entire function g,(z) is identically equal to a constant, thus the
entire function g,(z) is identically equal to zero. Therefore the following equality

+100f1()
IOOC_

holds for z = x+ iy, x > 0 and for any . By taking ¢ = —A(r) + 4 in (9), we
obtain, from (5) and (2), that

FEI<A+4S explnlA() = AG)]) +4 3 exp(—4,) < Aexp(Ar)

An<r An>r

O Sien(=0)= 5| L ew-to)dr— 37 el
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(Using |A(x) — A(y)| < A|logx —logy|, and sup{t(logr —logt: >0} =re™!)
where r = |z|. Therefore the function f(z) is of exponential type in the half
plane, bounded on the imaginary axis by (1), so a well-known discrete Phramén-
Lindel6f theorem ([1] p. 200 and [2]) implies that (6) holds.

Proof of Theorem 2. The condition (7) implies that the function f(z) defined
by

+00
f@) = emauts
—0
is analytic in C, = {z = x+iy : x>0} continuous in the closed half-plane cl(C.))
={z=x+1iy:x >0} and the conditions (1) and (5) are satisfied. Theorem 1
implies that (6) holds.
Define the function F(z) by setting

flz)
F(z) = o
(2) 1+ ¢
Clearly, F is analytic on C, = {z = x+ iy : x > 0} continuous in the closed half-
plane cl(C;)) ={z=x+iy:x >0} and is square summable on the imaginary
axis. Thus we can apply the Paley-Wiener theorem ([13], p. 8, Theorem V) to
concludde that

0
F(z) = J_ Y(t)e” dt

for some ¥ € L?((—,0)). We shall assume that y is defined for all real
numbers (by setting () =0 for all ¢ > 0).
On the imaginary axis, we have two representation for F

+00 e~Pv +o0
J Y()e? dt = F(iy) = T iyJ e du(t).
—o —o0

Using notation f for the Fourier transform of (ie., flx) = fi: f(y)e?*dy), and
letting, (1) = Y(¢ — p), we arrive at

¥, () = 7(3) du()
where y is the function
y(f)=¢e" if t<0; and p(£)=0 if >0

Hence

b(3) = by =p) = (=) = |

+00

=X dut) = | e dutx)
y

+ 00

Thus, for all > p, we have f:“ e *du(x) =0, which implies that the total

variation of du on (p,+0) is 0; i.e., the measure du(¢) is supported in (—oo, p].
This complete the proof of Theorem 2.
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