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ON A DUALITY THEOREM OF ABELIAN VARIETIES OVER

HIGHER DIMENSIONAL LOCAL FIELDS

YOSHIHIRO KOYA

Abstract

In this paper, we prove a duality theorem of abelian varieties over higher

dimensional local fields under some conditions. It might be a one of generalization of

the classical Tate duality theorem of abelian varieties over local fields.

1. Introduction

In this paper we show a duality theorem of the Galois cohomology groups
related to abelian varieties over higher dimensional local fields. It might be a
good generalization of the classical Tate duality of abelian varieties over usual
local fields.

In order to understand our situation, we recall the classical Tate duality.
Let K be a local field of characteristic 0, that is, a complete discrete valuation
field with finite residue field. Let A be an abelian variety over K, and A1 the
dual variety of A over K. The Weil-Barsotti formula makes the following
identification (cf. [7, Theoreme 6, §16, No. 17 Chapitre VII])

Then we know that the canonical pairing

Hr(K,A)xHχ-r{K,At)^Q/Z (r = 0,l)

induces isomorphisms

H\K,A)=A\K)\

Hι(K,At)=A(K)\

where A\κy and A(K)* stand for the Pontrjagin duals of them. The proof of
the fact above deeply depends on the local class field theory.

The above remark and Kato's higher dimensional local class field theory
might lead us to the idea to establish the higher Tate duality. Actually one
can prove a duality theorem between the torsion parts of abelian varieties over
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them without any difficulty. But the point is to collect such torsion parts and to
recover the duality of the whole abelian varieties.

The idea to do it is to use the motivic cohomology. Thus our generalization
of the classical Tate duality is described in terms of hypercohomology. More
exactly, our higher Tate duality has the following form:

THEOREM 1.1 (cf. Theorem 5.1). Let K be an Λτ-dimensional local
field. There exists the following canonical pairing

Hr{K,At®LZ{N-\)) x HN~r(K,A) -> β/Z

and it induces the isomorphism

HN~r(K,At®LZ(N- l))(non-/>) = (IΓ(KΪA))*(non-p)

for each r = 0,1,..., N. About the notation "non-/?", consult with the end of this
section.

Here Hr(K,A) stands for limnH
r(K,A)/n, and Z(m) means the Kahn

complex which is defined by

ί
Z if m = 0;

Gm ® L • ®L GmJ-m] if m > 0.

ra-times

As is well-known, the complex Z(n) has the following properties:
THEOREM 1.2 (Proposition 1, [1]). (1) Z(n) is acyclic outside [l,w].
(2) For each m prime to ch(K) there exists a distinguished triangle:

It might be easy to understand that our approach is one of the philosophy
shown in [5].

Finally the author would like to mention some difficulties for strengthening
our result. In the proof of our main theorem, we extensively enjoy the theory of
the Euler-Poincare characteristic of the Galois cohomology of higher dimensional
local fields with finite coefficient. In other words we use the generalized method
introduced in [6, §2 and §3, Chapter I]. As in Remark 3.2, if AT is a 2-
dimensional local field with the residue field FP((T)), the group Hι(K,μp) is
infinite. And we cannot use the Euler-Poincare characteristic in such a case.
This is the reason why the author cannot treat the /^-primary torsion part.

NOTATIONS AND CONVENTIONS. In this paper, unless the contrary is explicitly
stated, we employ the following notations and conventions:

(1) For an abelian group A, we denotes the group of w-torsion elements of A
by An and sometime by A/n the quotient group A/nA. Moreover, for a fixed
prime number p, we denote



ON A DUALITY THEOREM OF ABELIAN VARIETIES 299

^4(non — p) =

where the product runs through all prime which is prime to p, and A (I) means
the /-primary torsion part of A.

(2) For an abelian group A, we put A* = Hom(A,Q/Z).
(3) Let A, B and C be abelian groups. If the sequence

A(non — p) —> i?(non — p) —> C(non — p)

is exact, then we call that the sequence

is exact modulo ^-primary torsion part.
(4) For a field F, we denote the separable closure of F by Fs.
(5) For a complete discrete valuation field K, we denote by Knτ the maximal

unramified extension field of K.
(6) For a finite set M, we denote the order of M by [M].

2. Duality with finite coefficient

In this section we establish a duality theorem of the Galois cohomology with
finite coefficient, which is an easy consequence of the higher dimensional local
class field theory.

In this section let K be an TV-dimensional local field, and F its residue
field. Then there is a sequence of fields k = ko,..., k^-x = F, kπ = K with the
following properties:

(1) ko is a finite field.
(2) kt is a complete discrete valuation field whose residue field is kt-\ for

each / = 1,..., N.
We often mention some properties of the field ko above. Thus it might be

convenient to call the field ko the final residue field of K.

THEOREM 2.1. Let K be an N-dimensional local fields and k its final residue
field. Let M be a finite Gal(Ks/K)-module. Assume that the order n of M is
prime to ch(k) = p > 0. Then the canonical map induced by the Yoneda pairing

ocr(K,M) : Ext^(M,iς x ) -> HN+ι~r(K,M ®L Z(N - 1))*

is an isomorphism for each r — 0, . . . , TV + 1.
Furthermore the order of the both groups are finite.

Proof First of all we prove the finiteness.
By the TV-dimensional local class field theory established by Kato ([2], [3] and

[4]), we already know that there exists a canonical isomorphism

Hr{K,Z/nZ) = (Kr

MK/nKr

MK)\
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If n is prime to ch(fc), and therefore to ch(F), we have the isomorphism

Kr

MK/nKr

MK = Kr

MF/nKr

MF © K^F / nKr

M

xF

for each r = l , . . . , 7 V + l . Thus it is not hard to see that this group is finite.
Now we take a finite Galois extension field L of K such that
(1)L contains a primitive «-th root of 1;
(2) Gal(Ks/L) acts trivially on M.

Then we may assume that M ®L Z(N — 1) is isomorphic to the direct sum of
finite number of copies of Z/niiZ, where m, is a divisor of n, as a complex of
Gal(X,/L)-module. Therefore the group Hr(L,M ®L Z(N - 1)) is a finite
group for each r = 0,..., N -f 1. The Hochschild-Serre spectral sequence

Hr(L/K, HS(L, M ®L Z(N - 1))) => Hr+s(K, M ®L Z(N - 1))

proves that the group Hr(L,M ®L Z(N — 1)) is finite for each r.
Next we prove that the map αr(K,M) is an isomorphism for each

Consider the induced module RL/KM of M such that Hr(K,RL/κM) =
Hr(L,M). Then we have the following exact sequence:

0 -> M -> i?L /*M -> TV -» 0,

where N is the cokernel of the map M —> RL/KM. Furthermore it should
be noted that this map induces the canonical restriction map Hr(K,M) —>
Hr(L,M).

Now assume for a while that αr(L, M) is an isomorphism for each r.
Consider the following commutative diagram,

HN~r(κ,

where we put Jί = N ®L Z{N - 1) and Ji = M ®L Z(N - 1). Assume that we
proved that the map <xr+ι(K, M) is isomorphic for any M, and therefore for N
defined above. From the five lemma we can conclude that the map ocr(K,M) is
surjective. Therefore, since M is assumed to be any, the map <xr(K,N) is also
surjective. Hence, again by using the five lemma (or elementary diagram
chasing), we can conclude that the map ocr(K,M) is injective.

Thus we can prove in the same manner that the map α ' " 1 ^ , M) is an
isomorphism.

The rest we have to do is to prove that the map αr(L, M) is an isomorphism
for each r. Since G&l(Ks/L) acts trivially on M, we may assume M = Z/nZ.
In this case we already know Extr

L(Z/nZ,K*) = Hr(L,μn). Thus we only have
to show that the map

αr(L,Z/nZ) : H\L,μn) -+ H'(L,
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is an isomorphism for every r. But this is nothing but the TV-dimensional local
class field theory established by Kato. •

COROLLARY 2.2. Under the conditions in Theorem 2.1, we have isomorphisms:

Hr(K, MD) -> HN+ι~r(K, M ®L Z(N - 1))*.

Here MD = HomKs(M,K*).

Proof. Since K* is divisible by any integers prime to ch(F), we have
Έxtr

Ks(M,K*) = 0 for all r > 0. Therefore, from the spectral sequence:

/ r ( t f , E x t ^ ( M , * , x ) ) => Extj,(M,7ςx),

we can conclude Hr{K,MD) = Extr

κ(M,K*). •

The following proposition can be easily proved by the similar method used
in the proof of the main theorem in this section. This proposition might be used
in the later section.

PROPOSITION 2.3. Let K be a henselian discrete valuation field with a sep-
arably closed residue field F. And let M be a finite Gal(Ks/K)-module whose
order is prime to ch(F). Then, we have M(K) ~ Hι(K,M). Here the iso-
morphism is induced by the cup-product pairing.

Proof. Let L be a finite extension field of K such that the group Gdλ(Ls/L)
acts trivially on M. Then, as in the proof of Theorem 2.1, there is an exact
sequence:

0 -+ M -> RL/KM -> N -• 0,

where TV is the cokernel of the map M —> RL/KM, and this map induces the
canonical restriction map Hq{K,M) —» Hq(L,M).

Consider the following commutative diagram:

0 > M(K) > M(L) > H°(K,N)

OL(K,M) =* a(K,N)

Hι(K,M) > HX(L,M) • H\K,N)

It is clear that α(ϋΓ, M) is injective. Since M is any, α(X, TV) is also injective.
Therefore, by elementary diagram chasing, we can show that the map oc(K, M) is
also surjective. •

3. The Euler-Poincare characteristic

In this section, unless the contrary is explicitly stated, let K be an TV-
dimensional local field with residue field F, and k the final residue field.
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In this section we define the Euler-Poincare characteristic of the Galois
cohomology with finite coefficient, and calculate them under some conditions.

First of all we define the Euler-Poincare characteristic.

DEFINITION 3.1. Let K be an TV-dimensional local field, and M a finite
Gal(Λ^/if)-module whose order is prime to ch(fc) = p > 0. Then, the Euler-
Poincare characteristic χ{K,M) is defined as follows:

1=0

where [Hι(K,M)] stands for the order of the group Hι(K,M).

Note that the above sum is actually a finite sum because the cohomological
dimension of higher dimensional local fields are finite.

Remark 3.2. In the case which the order of M is divided by ch(k) = p > 0,
the order of the Galois cohomology group Hι{K,M) may be infinite. Let K be
a 2-dimensional local field of characteristic 0 whose residue field is F = FP((T)),
for example. Assume now M = μp. In such a case the order of Hι(K, M) is no
longer finite. Indeed,

Hι(K,μp)=Kx/(Kxy =

However, we have an exact sequence

Therefore, the group Hλ(K,μp) cannot be finite.
This is the reason why we cannot adopt the above definition of the Euler-

Poincare characteristic in such a case.
Thus in the rest of the paper we assume that the order of M is prime to the

characteristic of the final residue field of the field we consider.

PROPOSITION 3.3. Let K be an N-dimensional local fields and M a finite
Ga\(Ks/K)-module.

Then

Proof. We prove by induction on N.
In the case N = 0, that is, in the case which K is a finite field, we know

Gdλ(Ks/K) = Z. Let σ be a generator of Z. Then, we have an exact sequence

Therefore, we have χ(K, M) = 0.
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Assume N > 0. Since the order of M is prime to ch(k) = p > 0, we have an
exact sequence

0 -+ Hr(F,H°(Km,M)) -> Hr(K,M) -+ Hr~\K,H\Km,M)) -> 0.

Here we should note that the group Hr(Knτ,M) is finite for each r = 0,1.
Thus we have

1=0

= χ(F, H°(Knr, M)) - χ(F, Hι(Km, M)).

By the induction hypothesis, we can conclude χ(K, M) = 0 . Π

The following proposition is an application of the result of this section.

PROPOSITION 3.4. Let K be an N-dimensional local field and k be its final
residue field of K. And let T be an affine torus over K. If n is a non-negative
integer prime to ch(&) = p > 0, then we have [Tn(K)] < [T(K)/nT(K)].

Proof We prove the proposition by induction on N. Clearly the assertion
holds in the case which K is a finite field. Therefore, we may assume N > 0.

From the Hochschild-Serre spectral sequence, we have an exact sequence:

0 -+ H*(F, Tn) -> H«(K, Tn) - H«-\F,H\Km, Tn)) -> 0.

From the above sequence, we have:

q=2 q=2 q=\

On the other hand, from the definition of the Euler-Poincare characteristic, we
know:

f2(-l)q-l[H«(F,Hι(Km,Tn))} = [H°(F,Hl(Km,Tn))}>0.
q=\

Added to this, from the induction hypothesis, we can conclude:

Σ{-\)q[H*{F, Tn)} = [T(F)/nT(F)} - [Tn(F)\ > 0,
q=2

(Since Hι(F, T) = 0, we deduce Hι(F, Tn) = T(F)/nT(F)).
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Therefore, we have shown that

[T(K)/nT(K)} - [Tn(K)} = Σ(- l )*[/Γ*(* , Tn)\ > 0.

This completes the proof of the proposition. •

4. Estimations of the orders of kernel and cokernel

In this section, unless the contrary is explicitly stated, we keep notations and
conventions in the previous section. The aim of this section is to prove the
following proposition.

PROPOSITION 4.1. Let K be an N-dimensional local field with residue field F,
and A an abelίan variety over K. Let n be a non-negative integer prime to
ch(fc) =p>0. Then, for each r = 0 , 1 , . . . , N - 1,

[Hr(K,A®LZ(N- l))//i] = [Hr(K,A®LZ(N-l))n].

We need some lemma.

LEMMA 4.2. Let K be an N-dimensional local field. And let m> N. Then
the group Hr{K, lim nμ®m){non — p) is finite for each r.

Proof We prove the lemma by using induction on N. If N = 0, the
statement is clear because K is a finite field.

Thus we may assume N > 0. From the Hochschild-Serre spectral sequence,
the following sequence is exact:

0 -> H\F,μfm) -+ Hr(K,μfm) -+ H'-ι(F,Hι(Km,μ?m)) -+ 0

Since n is prime to the characteristic of F, we have Hx(Knuμ®m) =
μnm~ι\Fs). By taking limit, we obtain an exact sequence

0 - Hr(F,\\mnμfm) -+ Hr(K,\jmnμfm) -+ Hrl(F, l im^f ("-1))) -+ 0

From the induction hypothesis, the both right and left groups are finite.
This completes the proof of the lemma. •

LEMMA 4.3. Let K be an N-dimensional local field with the residue
field F. And let A be an abelian variety over K. If for an arbitrary abelian
variety B over F the group Hr(F, YminBn ® μnN~ ) is finite, then the group
Hr(KJljmnAn®μf{N~l)) is also finite*.

Proof. Since any abelian varieties have a potentially semi-abelian reduction,
we may assume that A has semi-abelian reduction. Added to this, since the
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connected component of A{FS) is of index finite, we may assume that A(FS) is
connected. Then we may also assume that A(FS) is an extension of an abelian
variety B by an affine torus G®m. Therefore, there is an exact sequence:

and therefore

From the assumptions of the lemma and Lemma 4.2, we can deduce that the
group Hr(F1hmnAn®μf{N~l)) is also finite.

Consider the Hochschild-Serre spectral sequence

From this we have

0 -> Hi(F,An®μf) { , n ® μ f )

\ \ f ^ ) -+ 0.

Since Hι(Km,An) — An(Km) (cf. Proposition 2.3), the limits of the both right and
left groups are finite. This completes the proof of the lemma. •

LEMMA 4.4. Let K be a henselian discrete valuation field with a separably
closed residue field F. Then we have

Hr{K,A®LZ(N - l))(non-/>) = \jmnAn(K) ® μf m(K),

for r = 0,1.

Proof. From the hypercohomology spectral sequence

Hp(K,J4fq(A®LZ{N- 1))) ^Hp+q(K,A®LZ(N- 1)),

we have

H°(K,A®LZ(N - 1)) - JtT°(A ®LZ(N - i

On the other hand, from the universal coefficient theorem

p+q=Q

p+q=\

and the properties of the Kahn complex, we observe

Jtr°(A ®L Z(N - 1)) = T o r z μ ( i Q , Jf1 (Z(N - 1))).
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Therefore, we have

^\A®L Z{N -\))GΆX{KS/K) =Ίovz{A(K)^

From the fact that the right side is divisible and the Kummer theory of the Kahn
complex, we obtain an exact sequence:

—>Hr(K,A ®LZ{N - 1)) - ^ Hr(K,A ®L Z(N - 1)) - ^ 0 ,

for r = 0,1. By taking limit and applying Lemma 2.3, we obtain our desired
result. •

We prove the proposition by induction on N. If N = 1, the assertion is
classical. Thus we may assume N > 1. From the Hochschild-Serre spectral
sequence

Hp{F,Hq(Km,A®LZ{N-\))) =» Hp+q{K,A®LZ(N-\))

and the previous lemma, we can deduce that the sequence

0 -> Hq(F, \jmnΛn ® μf{N~ι)) -> Hq(K,A®LZ(N - 1))

-> Hq-\F,\jmnAn® μf(N-V) -> 0

is exact modulo /7-primary torsion part. From Lemma 4.3, both the right and
left groups is finite for q< N — 1. Therefore, the middle group is also finite.
This completes the proof of the proposition.

5. The higher Tate duality

In this section, unless the contrary is explicitly stated, we keep our notations
and conventions in the previous section. Added to this, for any abelian group A,
we put

A = lira n A/nA.

In this section we prove our main theorem:

THEOREM 5.1. The canonical pairing

Hr(K,Aί®LZ(N-l)) x HN~r(K,A) -> Q/Z

induces the isomorphism

HN~r(K,At®LZ(N- l))(non-/>) = (HΊJC^A))*(non-p)

for each r = 0 , 1 , . . . ,7V.
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In the rest of the paper we put

At(N-l)=At®LZ(N-l)

M _ A t φ u®(N-\)

Let n be a positive integer prime to ch(λ ) = p > 0. Consider the following
commutative diagram:

0 >HN-\K,At{N-\))/n >HN(K,Jί) >HN(K,At(N - l))n >0

0 > H\K,A)*n >H\K,Any > (A(K)/nA(K)Y > 0,

where the middle vertical arrow is an isomorphism (Corollary 2.2), and all
horizontal sequences are exact. By using the snake lemma, we see that the map

HN(K,A\N- l))(non-/?) -> (TA(K)Y(non-p)

is surjective. In order to show that the map is injective, we only have to show
that the map

HN(K,A'(N - l))n -+ (A(K)/nA(K))*

is injective for each n prime to p. But, we already know that the map is
surjective. Thus, we may compare the order of the both. By easy calculation,
we know

1=0

= [H\K,A\N-\))n]

ι + [H\K,A'(N -

+ (-l)N([HN-ι(K,A'(N- l))/«] + [HN(K,A'(N- 1))J)

+ (-l)N+'ί[HN+ι(K,Jί)}

Since [Hr{K,A'(N- \))/n] = [Hr(K,A'(N - l))n] (Proposition 4.1), we have

χ{K,M) = (-l)N[HN(K,A'(N-l))n] + (-l)N+1[HN+ι(K,Jί)}.

From Proposition 3.3, we can conclude

[HN(K,A'{N-l))π] = \HN+\K,Jί)} - [H°(K,An)}.

If we show [An(K)\ < [A(K)/n], we can conclude that the map

HN(K,A\N - l))(non-/?) -• (A(K))*(non-p)

is an isomorphism. Thus the rest task to do is to prove the following lemma:
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LEMMA 5.2. Let K be an N-dimensional local field. And let A be an abelian
variety over K. Then we can find a finite extension field L of K such that
[An(L)\ < [A(L)/n] for an arbitrary non-negative integer n prime to ch(fc).

Proof If N = 0, the assertion is trivial. Thus, we may assume N > 0.
Since any abelian variety has potentially semi-abelian reduction, we can take a
finite extension L such that A{E) may be an extension of an abelian variety by an
affine torus, where E is the residue field of L. Therefore, we have [A(E)/n] >
[An(E)] = [An(L)] (Proposition 3.4). Here we also use the induction hypothesis.
From the theory of Neron model, the canonical reduction map A(L) —> A(E) is
surjective. Hence, we have [A(L)/n] > [A(E)/n]. •

Note that the fact that the map

HN(L,A\N-\))(μon-p) -+ (A(LJ)*(non-p)

is an isomorphism also allows us to deduce [̂ 4«(X)] = [A(L)/n].
Now let Ator be the torsion part of A. From the above argument, we

can deduce that the group A(L)/Ator(L) is ^-divisible. On the other hand, let
Q be the cokernel of the canonical map A(K) —> A(L). Then Q/Qχoτ is also
^-divisible because of the surjectivity of the map A(L) —> ζλ Therefore
[Q/nQ] = [Qxoτ/nQxoτ]' Since the group Qtor is finite, we also have [An(K)} =
[A(K)/nA(K)]. After all, we can conclude that the map

HN(K,At(N- l))(non-/?) -> (A(K)y(non-p)

is also an isomorphism.
The rest can be proved inductively by using Proposition 4.1.
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