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ON SECTIONAL GENUS OF QUASI-POLARIZED MANIFOLDS WITH

NON-NEGATIVE KODAIRA DIMENSION, Π

YOSHIAKI FUKUMA

Abstract

Let {X,L) be a quasi-polaπzed manifold over the complex number field with

d i m Z = n and κ{X) > 0. If n = 2,κ{X) > 0, and h°(L) = dim H° (L) > 2, then in our

previous paper we studied a lower bound for sectional genus g(L). In this paper, we

mainly consider the case m which n = 3, κ{X) > 0, and h°(L) > 3, and we obtain a

lower bound for g(L) which is a generalization of the result of our previous paper.

0. Introduction

Let X be a smooth projective manifold over the complex number field C
with dim X — n and let I be a Cartier divisor on X. Then (X, L) is called a
polarized (resp. quasi-polarized) manifold if L is ample (resp. nef and big). The
sectional genus is defined by the following formula:

where Kx is the canonical divisor of X.
A classification of (X, L) with small value of sectional genus was obtained

by several authors. On the other hand, Fujita proved the following Theorem
(see Theorem (2.13.1) in [FjO]).

THEOREM 0.1. Let {X,L) be a polarized manifold. Then for any fixed n and
g(L) there are only finitely many deformation type of (X, L) unless (X, L) is a
scroll over a smooth curve.

(For a definition of the deformation type of (X,L)} see §13 of Chapter II
in [FjO].) By this theorem, Fujita proposed the following Conjecture; which is
interesting but difficult.
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CONJECTURE. Let (X,L) be a quasi-polarized manifold. Then g(L) > q(X),
where q(X) =άimHι(Θχ) is the irregularity of X.

If dimX = 2 and h°(L) > 0, then we can easily prove the above Conjecture.
In [Fk4], we proved that the above Conjecture is true if d i m Z = 3 and h°(L) >
2. In [Fk3], we improved the above inequality if the Kodaira dimension κ(X)
of X is non-negative and h°(L) > 2, that is,

THEOREM 0.2. Let (X,L) be a quasi-polarized surface with κ(X) > 0 and
h°(L) > 2. Then we get g(L) > 2q(X) — 1 unless the rational map defined by \L\
is of special type.

(In detail, see Theorem 3.1 in [Fk3].)
In this paper, we consider the 3-dimensional version of Theorem 0.2, that is,

we improve a lower bound for g(L) if d i m Z = 3, h°(L) > 3, and κ(X) > 0. The
main result, which is a generalization of Theorem 0.2, is the following:

THEOREM 2.2. Let (X, L) be a quasi-polarized 3-fold with κ{X) > 0 and
h°(L) > 3. We use Notation 2.1. Then (X,L) satisfies one of the following'.

(1) g(L)>2q(X)-l.
(2) dim W = 2, M3 is not big, g(L) > q{Wr) + 2g(Fφ) > q(X) + g{F*\ and

(WnAr) is a scroll over a curve with q{Wr) > 2, where we take Wr as a minimal
resolution of W.

(3) dim W = 1, M 3 is not big, g{Ba) > 3, and g(L) > g(Ba) + 2q(Fa) + 1 >
q(X)+q(Fa) + l.

Here we should mention that at present we do not know whether there exists
an example of the cases (2) and (3) in Theorem 2.2 or not.

The main theorem seems to enables us to study (X,L) with dimX = 3,
κ(X) > 0 and h°(L) > 3 in detail. If n = 2, then in [Fk5] we obtained some
results about a lower bound of KXL by using the result of [Fk3]. So if n = 3,
we expect that we can get a result about a lower bound of KXL

2 by using the
result of this paper. We use the customary notations in algebraic geometry.

The author would like to thank the referee for giving him some useful
comments and suggestions.

1. Preliminaries

DEFINITION 1.1. Let I be a smooth projective variety with dim X >
dim Y > 1. Then a morphism / : X —> Y is a fiber space if / is surjective with
connected fibers. Let L be a Cartier divisor on X. Then (/, X, 7, L) is called a
quasi-polarized (resp. polarized) fiber space if / : X —> Y is a fiber space and L is
nef and big (resp. ample).
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DEFINITION 1.2. Let X and Y be projective varieties with dimX = n and
dim Y = m, and let L be a line bundle on X. Then we say that (X, L) is a
scroll over Γ if there exists a fiber space π : X -> Y such that any fiber of π is
isomorphic to pn~m and L| F = 0p»-™(l), where \<m<n. A quasi-polarized
fiber space ( / , Z , Γ,L) is called a scroll if (i%LF) ^ ( P w " m , ^ P « - ( l ) ) for any
fiber F oί f where dim X — n> m — dim Γ > 1.

DEFINITION 1.3. (1) Let {X\,L\) and (A^,^) be quasi-polarized manifolds
where Â  may have singularities for z = 1,2. Then (X\,L\) and (A^,^) are
said to be birationally equivalent if there is another variety G with birational
morphisms gt : G —• Xt (i = 1,2) such that gjfLi = #2^2-

(2) Let ( / j , ^ , F,Li) and (/2,A^2, F,L 2) be quasi-polarized fiber spaces,
where X, may have singularities for / = 1,2. Then (f{,X\, Y,L\) and (f2,X2,
Y^Li) are said to be birationally equivalent if there is another variety G with
birational morphisms Qi : G —> Â  (/ = 1 , 2 ) such that g\L\ = ̂ |^2 and f\° g\ =

THEOREM 1.4. L^ί (Ar,L) fe α quasi-polarized 3-fold. Then there exists
a quasi-polarized variety (X',L') which is birationally equivalent to (X,L) and
satisfies one of the following conditions:

(1) Kχ'-\-2L' is nef for the canonical Q-bundle Kχ>\
(2) Δ(L') = 0;
(3) {X',L') is a scroll over a curve,

where X' is a normal projective variety with only Q-factorial terminal singularities.

Proof See Theorem 4.2 in [Fjl]. Π

Remark 1.5. Theorem 1.4 is true for dim X = n if the Flip Conjecture (see
[KMM]) is true for d imA^tf .

THEOREM 1.6. Let (/, Ar, C,L) be a quasi-polarized fiber space with dimX =
3 and dim C — 1. Then there exists a quasi-polarized fiber space (f',X',C,L')
which is birationally equivalent to (/, AT, C,L) such that (/', X', C,L') satisfies one
of the following conditions:

(1) Kx,,c + 2L' is nef
(2) (/',Ar',C,L') is a scroll,

where X' is a normal projective variety with only Q-factorial terminal singularities

Proof See Lemma 0.2 and Theorem 1.3 in [Fk2]. Here we show the
outline of proof. We can prove the following by a method similar to the proof
of Theorem 4.2 in [Fjl]:

There exists a quasi-polarized fiber space (f',Xf, C,L') which is birationally
equivalent to (f,X,C,L) such that (/'\X'\C,L') satisfies one of the following
conditions:
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(1) Kx,,c + 2L' is /'-nef;
(2) (f\X',C,L') is a scroll,

where X' is a normal projective variety with only β-factorial terminal singu-
larities and KXι/c — Kχ> - (f')*Kc. Next we can prove that Kχ>/C + 2L' is nef
if KχijC + 2L1 is /'-nef by the same argument as in the proof of Theorem 1.1.2
in [Fkl]. G

THEOREM 1.7. Let (X,L) be a quasi-polarized manifold with dimA r >2.
Assume that L is spanned by global sections. Then g(L) > q(X).

Proof. See Theorem 7.2.10 in [BS]. •

THEOREM 1.8. Let (X,L) be a quasi-polarized manifold with dimZ > 2 and
κ(X) > 0 such that L is spanned by global sections. Then g(L) > 2q(X) — 1.

Proof See Corollary 3.2 and Corollary 3.3 in [Fk3]. D

DEFINITION 1.9. Let (X,L) be a quasi-polarized manifold with h°(L) > 2.
Let X1 be a smooth projective manifold and let μ : X' —> X be a birational
morphism such that Bs|M'| = φ, where \M'\ is the movable part of |μ*(L)|.
Then we define dim^|L|(^Γ) as άimφ\M,\(X').

DEFINITION 1.10. Let D\ and Dι be divisors on a smooth projective
manifold X. We denote D\ > D2 if ^ i — L>2 is linearly equivalent to an effective
divisor on X.

DEFINITION 1.11 (See [FkO] and [Fk3]). (1) Let (X,L) be a quasi-polarized
surface. Then (X,L) is called L-minimal if LE > 0 for any (-l)-curve E on X.

(2) For any quasi-polarized surface (X,L), there is a quasi-polarized surface
(X\,L\) and a birational morphism μ: X—> X\ such that L = μ*(L\) and
(Xi,Li) is Li-minimal. Then we call (X\,L\) an L-minimalization of (X,L).

(3) Let (/, X, C, L) be a quasi-polarized fiber space with dim X = 2 and
d i m C = 1. Then (f,X,C,L) is said to be relatively L-minimal if ZJ? > 0 for
any (—1)-curve E on X which is contained in a fiber of/.

(4) For any quasi-polarized fiber space (/, X, C, L) with dim X = 2 and
dimC = 1, there exist a quasi-polarized fiber space {fx,X\, C,L\) and a birational
morphism μ : X—> X\ such that f = f\°μ, L = μ*(L\), and (/1?Xi,C,Li) is
relatively L\-minimal. Then we call (fλ,X\, C,L\) a relative L-minimalization of

LEMMA 1.12. Let (X,L) be an L-minimal quasi-polarized surface with
κ(X) > 0. Then Kx + L is nef

Proof (See Lemma 2.4 in [Fk3]). If Kx + L is not nef, then there is a
(-l)-curve E on X such that {Kx + L)E < 0 since κ(X) > 0. Because KXE =
— 1, we have LE = 0. But this contradicts assumption. •
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LEMMA 1.13. Let (f,X,C,L) be a relatively L-minimal quasi-polarized fiber
space with dimX = 2 and κ(X) > 0. Then Kx/C + L is nef, where Kx/C =
Kx — f*Kc'- relative canonical divisor of f.

Proof (See Lemma 2.5 in [Fk3]). Let D be an irreducible reduced curve
on X such that f(D) is not a point. Let μ : X —• X' be a relatively minimal
model of / : X -> C and /)' = //(/)). Then A^/C2) > KX,/CD'. On the other
hand AV/c is n ef because κ(X) > 0. Hence {KX/C + £)£> > 0. Next we prove
that KX/c + L is /-nef. If Xχ/c + L is not /-nef, then there is a (—l)-curve E
on X such that f(E) is a point and (KX/C + L)£ < 0 because κ(X) > 0. Since
KX/CE = —1, we have LE = 0. But this contradicts the assumption. •

LEMMA 1.14 (G. Xiao). Let (f,X,C) be a fiber space with
κ{X) > 0 and g(C) = 0. Then q{X) < (l/2)(g(F) + 1), where F is a general fiber
off

Proof See [X]. •

LEMMA 1.15. Let {X,L) be an L-minimal quasi-polarized surface. Assume
that \L\ is spanned. Then g(L)>2q(X) — l unless (X,L) is a scroll over a
smooth curve.

Proof If κ{X) > 0, then this is proved by Corollary 3.2 in [Fk3]. So we
assume κ{X) = — oo. If q(X) < 1, then this is true. Hence we may assume that
q(X) > 2. Then K\ < 8(1 - q(X)). So we obtain

(Kx + L)2 =K2+ 2{KX + L)L - L2

<S(l-q(X))+2(2g(L)-2)-L2

= 4(g(L)-2q(X) + l)-L2.

If Kx + L is nef, then {Kx + L)2 > 0. Therefore g(L) > 2q{X). If Kx + L is
not nef, then (X, L) is a scroll over a smooth curve since (X, L) is L-minimal and
q(X) > 2 (see the proof of Theorem 3.1 in [FkO]). •

2. Main result

Before we prove the main theorem, we fix the notation which are used later.

NOTATION 2.1. (1) Let (X,L) be a quasi-polarized manifold with dimX =
/i, κ{X) > 0, and h°(L) > 2. We assume that the Flip Conjecture is true. Then
by Theorem 1.4 and Remark 1.5, there exist a quasi-polarized variety (Vι,L\), a
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smooth projective variety F, and birational morphisms η : Y —• X and ηx : Γ —>
Fi such that η*L — η\L\ and J£>i + 2Li is nef, where Fi is a normal projective
variety with only β-factorial terminal singularities. Let θ: V2 —> Fi be a
resolution of Fi, that is, # is a birational morphism with F2\#~1(Sing V\) ^
Fi\SingFi, where SingVi denotes the singular locus of V\. Let Li — Θ*(L\).
Let IM2I be the movable part of IL2I and let Z2 be the fixed part of |Z,2| We
put F2,o = V2, ^2,0 = L2, and M.2^ = M2. By Hironaka Theory, there exist a
sequence of blowing ups: μk : F ^ —• F2?A:-i along a smooth center Bk-\, and a
non-negative integer t such that Bs|M2,ί| = 0 and Bs|M2,ί_i| # 0, where M^k is
the movable part of \μ£(M2,k-i)\- Let μ = μ{o ••> oμt, F3 = F^,, L3 = μ* (1,2)5
and M3 = M2,t Let Z^ be the μ^-exceptional effective divisor. Then there is
a morphism ^ M 3 | : F3 —> PN defined by |Λf3|. Let W = φ\M2\(K}) Then, by
taking Stein factorization, there exist a normal projective variety W, a morphism
φ : F3 -^ W, and a finite morphism ε : W -> W such that ψ\M^ = εo φ.

(2) Assume that 2 < dim W < n - 1 and h°(L) > n. Then any general

member S3 of |M 3 | is irreducible by Bertini Theorem. Then h°(μ*(L2)\S3) >

n—\ and ( ĵAf3|) 3̂

 : ^3 ~^ ^|M3|(^3) ^S t n e niorphism defined by iΛfjl^. Let A

be a hyperplane bundle Θw(\). Then S3 — ψ\MΛA). Let Wr be a resolution

r \ Wr ^ W, and let ̂ 4 = εM and ^ r = r*A. Then there exist a smooth pro-

jective variety F3, a birational morphism v : F3 —> F3, and a fiber space ^ : F 3 —•
PFr such that φov = roψ. Let 7γ be a general fiber of φ and L3 = v*Lτ>.

(3) Assume that d i m ^ = l . Let p:Xa->X be a birational morphism
such that the movable part of \p*L\ is base point free. Let Lα = ρ*L and let
Ma be the movable part of |Lα | . Let φa : Xa -+ PN be the morphism defined by
|M α | . Then ίF = ̂ α(Xα). By taking Stein factorization, there exists a smooth
projective curve Ba, a finite morphism ω : Ba —> PF, and a fiber space φa\Xa-^
Ba such that ^α = ωoφa. Let F a be a general fiber of ι/̂ α.

THEOREM 2.2. Lei (X, L) be a quasi-polarized 3-fold with κ(X) > 0 and
h°(L) > 3. We use Notation 2.1. Then (X,L) satisfies one of the following:

(1) g(L)>2q(X)-L
(2) dim W = 2, M 3 & /ιoί W ,̂ #(L) > ̂ (PFr) + 2^(F^) > q(X) + ^(/^), α«J

(WnAr) is a scroll over a curve with q{Wr) > 2, where we take Wr as a minimal
resolution of W.

(3) dim W = 1, M 3 w «or 6/gf, g(Ba) > 3, α«J gf(L) > g(Ba

q(X)+q(Fa) + l.
a)

Proof We use Notation 2.1.
(I) The case in which M3 is big.
Then we consider a quasi-polarized 3-fold (F3,M3). By Theorem 1.4, there

exist a smooth projective variety (7, a quasi-polarized 3-fold (V^M^) and
birational morphisms σ\ : U -* V3 and σ2 : £/ —> F3

; such that σfMs = σ̂ Λf̂  and
^F3/ + 2M3 is nef, where F3 is a normal projective variety with dim F3' = 3 with
only (λ-factorial terminal singularities. Then
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g(L) = g(L3) = l+^(Kv,+ 2L3)L2

because L3 is nef. Since σ\Mτ, = σ^M^ and F3' has only ζ)-factorial terminal
singularities, we obtain

g(L) > \ + l-(Kv + 2 γ

On the other hand,

2M3

/)((σ1*L3) + K

because σt*L3 and σ\Ms are nef. Therefore g(L) > 1 4- ( l / 2 ) ( ^ + 2M3

/)(M3

/)2 =
g{M^). Since Bs|M3 | = φ and F 3 has only ^-factorial terminal singularities,
any general section 5 3 of |M 3 | is smooth by Bertini's Theorem. Hence #(M3) =
g(M^\s,) > 2q(S^) - 1 by Theorem 1.8 since κ(S^) > 0.

CLAIM 2.3. q(S$ = h\θv>) = q(X).

Proof. Let λ : V'{ -> K3' be a resolution of F3

; and M3" = A*(M3

;). Then
Bs|M3

; | = φ. Since S3 is a general member of |M 3 | , we may assume that S% =
A*(53) is a smooth projective surface which is a member of |M3"|. Then 53 ' is
birationally equivalent to S3 and so ^(S3') = q(S$). Since S3' is nef and big on
V^, we obtain that q(S^) = q{V%) by Kawamata-Viehweg Vanishing Theorem.
Because V[ has only rational singularities, we have hι(Θv>) = q(V%) = q(X).
This completes the proof of Claim 2.3. Π
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Therefore by this Claim, we get g(L) > 2q(X) — 1.
(II) The case in which M3 is not big.

Then dim W < 2.
(II-l) The case in which dim W = 2.

First we prove the following Claim.

CLAIM 2.4. q(S3) > q(V3) = q(X).

Proof. Let Λ ^ |M 3 | be a linear pencil such that BsΛ / 0 and a general
member of Λ is smooth and irreducible. (We can take this Λ since dim W = 2.)
Then we make a fiber space defined by Λ. Let φA : V3 —> Pι be the rational
map defined by Λ. Let τ : V4 —> V3 be an elimination of indeterminacy of φA.
Then there exists a morphism h : V4 —• Pι. We remark that A has connected
fibers by the choice of Λ. Hence q{Fh) > q{V^) = q(V3), where Fh is a general
fiber of h. On the other hand, since S3 is a general member of |M 3 | , we may
assume that Fh is birationally equivalent to S3. Hence q(S3) = q(Fh) > q{V3) =
q(X). This completes the proof of Claim 2.4. Π

Since KVχ +2L\ is nef, we obtain

g(L)=g(L3) = 1 +±(μ* oθ^K^+l 2

> 1 + λ- (μ* o r ( ^ + 2L0)(^* o Θ*(LX))S3.

On the other hand, let E be an effective ^-exceptional divisor on V2, then
μ*(E)(μ* oθ*(Lι))S3 = 0 since 0(£) is 0-dimensional. Hence

1 +^μ*(KV2 +2θ*Lλ)(μ* oθ*(Lι))S3.

By Claim 2.4 in [Fk4], we have

μ*(KV2+2θ*Lι)(μ*oθ*(Lι))S3

> (KV3 + S3 + (μ* o θ*(Lx)))(μ* o Θ*(L{))S3

Thereforejf(L) 3 _

Let S3 be a general member of |v*M3| such that v(S3) = S3. We consider

ψ3 = ψ\~ : S3 ~^Ar. Then (ι^3,S3,^r,L3|^r) is a quasi-polarized fiber space.

We put N3 = L3\<?. We remark that g(N3) = gf(Z,3|S3). So we obtain g(L) >

g(N3). By construction, v*M 3 |g ^ ΣΓ=i^3,^ where F 3 5 / is a general fiber of φ3

and a is a positive integer. Hence N3 — Σ?=\ 3̂,z ̂  0.

(Π-l-1) The case in which^(Λ) = 0.

Let F3 be a general fiber of φ3.
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CLAIM 2.5. g(N3) > g(fi).

Proof (See alsρ^ Theorem 3.1 in [Fk3]). Let β:S^->T be an N3~
minimalization of (S3, #3) and Nτ = β*(N3). Then τV3 = β*(Nτ) and ^ r + # r
is nef by Lemma 1.12. jLet βj : Tj —> TJ+\ be a blowing up at a point of 7}+i,
β = βt-ιθ. oβ0, To ^S3, and Γ, = 7\ Let MTj = (βj-i)ΛMτj-ι) for j =
l , . . . , ί , Λ/Γ,O = Σ Γ = I ^ 3 , I 5

 a n d Mτ = MTit. Then M Γ is nef. Let M Γ j =

(βj)*(Mτj+\) — ΠjEj, where iζ, is the (—l)-curve of βj: for y = 0 , . . . , / — 1. Then
we remark that Πj > 0 for any / Then

t-\

(Ks;^N3)(N3 - Mτ,o) = (KT + NT)(NT - Mτ,t) ~J2nJ'

Since ( M Γ ? 0 ) 2 = (ΣΓ=i ^ ) 2 = °> w e obtain that Af J = Σ/ld /i?. Because Λy >

0, we obtain that ΣjZo "j ^ Σ7=o Λ/ Therefore

/-I

o + ( * r + iVΓ)(7VΓ - MΓ > /) - ΣnJ

j=o

t-\

o-J2nf
7=0

Since TY^ — M^ > 0 and Mj is^ nef, we obtain that NτMτ - M\ > 0^ Hence
(AΓg + N3)N3 > K^Mτ,o > 2g(F3) - 2 since a > 1. Hence g(N3) > g(F3). This
completes the proof of Claim 2.5. •

Hence g(N3) > g(F3). On th^pther hand, by Lemma 1.14 g(F3) > 2q(S3) -
1. Therefore g(L) > g(N3) > g(F3) > 2^(S3) - 1 = 2<?(S3) - 1 > 2q(X) - 1 by
Claim 2.4.

(II-1-2) The case in which g(Ar) > 1.
Then a>2. Indeed, if α = l , then Λ°(v*M3|^) - 1 and Λ°(v*M3) = 2.

But this is a contradiction because A°(L3) = ho(L2) = ho(Lx) - A°(L) > 3.

CLAIM 2.6.

[ if

where F3 is a general fiber of ι̂ 3.

By taking a relative τV3-minimalization of (^3,iS3,^r,τY3), we may

assume that (^3,53,^4r,τY3) is relatively τY3-minimal (see Definition 1.11). Hence

by Lemma 1.13, A~,^ -f Â 3 is nef. Since τV3 - Y^=γF^t > 0, we obtain
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1=1 \ι=l /

1=1 (=1

l=\

where F3 is a general fiber of ι̂ 3.
On the other hand

g(N3) = g(Ar)+-(K^/Ar+N3)N3 + (N3F3 - \){g{Ar) - 1).

Hence

> g(Ar) + fl(^(F3) - 1) +±ΣN3F3iί + (7V3F3 - \)(g(Ar) - 1).
z 1=1

If N3F^>2, then X^= 17V 3?^ > 2a > 4 and we obtain

since α > 2 ^ ^ __

If 7V3F3 = 1, then there exists a section C3 of φ3 such that N3 — C3 —

ΣJLi ^3,/ ^ 0. Since N3 - C3 — J2^=ι ^3,/ ^s contained in fibers of ^ 3 , we obtain

^(C3 + Σ,?=i*\ι)C3 H e n c e

/
ι=l ι=l

= (2ag(F3) - a) + α.

Hence ( ^ ^ + ^3)^3 > 2a(g(F3)) > 4g(F^). This completes the proof of
Claim 2.6. r D

If N3F>>2, then #(L) > g(N3) > 2q{S3) - 1 ̂ 2 ^ ( 5 3 ) - 1 > 2q(X) - 1 by
Claim 2.4. So we consider the case in which 7V3F3 = 1.
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If (WnAr) is not a scroll over a curve, then g(Ar) >2q(Wr) — 1 by Lemma
1.15. (We_remark that (WnAr) is Ar-m\mm?i\ because Wr is a minimal res-
olution of W.) On the other hand g(Fi) = q(Fψ). Hence

>2q(X)-L

Hence (WnAr) is a scroll over a curve if g(L) < 2q(X) - 1.
If g(Ar) = 1, then q(Wr) < 1 and we obtain

Hence gf( Γ̂) > 2 if g(L) < 2q(X) - 1.
(Π-2) The case in which dim W = 1.

Here we use the notation in Notation 2.1 (3). We remark that Mα ~
Σ)/=î α,« for some positive integer b and a general fiber Fα^ of φa.

(Π-2-1) The case in which gf(5α) = 0.
Then b>2. Indeed if fe = 1, then h°(La) = Λ°(Mα) < 2. This is a contradiction
since h°{La) = h°(L) > 3.

By the same argument as the proof of the Case (2) of Theorem 2.1 in [Fk4],

g(L) = g(La)

where Fa is a general fiber of φa.
Since κ(Tα) > 0 and b > 2, we have

= 2 f l f ( L β | F a i ) - l .

On the other hand, q(Fa) > q(Va) = q(X) and g(U\Fo) > q(Fa) since h°(La\FJ >
1. Therefore
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g(L) > 2g(La\FJ - 1

> 2q(Fx) - 1

>2q{X)-\.

(Π-2-2) The case in which g(Ba) > 1.
Then we remark that b > 3. Indeed if b < 2, then Λ°(L) = h°(Lx) =
h°(Mx) < 2 since g(Ba) > 1. But this is a contradiction. We consider the quasi-
polarized fiber space (ψx,Xx,Ba,Lx). By the same argument as the proof of the
Case (1) of Theorem 2.1 in [Fk4], we can prove

g(L) = g(La)

l-(KXJB,+2Lx)(Lx)
2 + (g(Bx)

a) + l-(KXa/Ba+2L0l)LaMa

> g(Ba) +^(KXt/Ba +2La)LaFa,

where Fa is a general fiber of φa.
Since b > 3 and ^(Fα) > 0, we obtain that

g{L) > g(Ba) + b- (KF, + 2La\F

Since g(L) e Z, we obtain that

g(L) > g(Ba) + 3g{U\FJ - 3 + 2

- g(Ba) + 2g{Lx\FJ + g(Lx\FJ - 1.

Because κ(Fx) > 0, we have gf(Lα|F ) > 2. Moreover g{La\F ) > q{Fa) since
h°(Lx\FJ > 0. Hence

> g(Ba) + 2q(Fa) + 1

>q(X)+q(Fx) + l.

If ^(5a) = 1 or 2, then

g(L)> 2g(Bx) -l+2g(Lx\FJ

>2q(Vx)-l

= 2q(X)-l.

This completes the proof of Theorem 2.2. •
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3. Conjecture

Before we propose the Conjecture, we give the notations used later.

NOTATION 3.1. Let (X,L) be a polarized /i-fold with h°(L) > 2. Let \M\
be the movable part of \L\, and let Z be the fixed part of \L\. We put Xo = X,
Lo = L, and Mo = M. By Hironaka Theory, there exist a sequence of blowing
ups: μk : ¥2^ —> Vi,k-\ along a smooth center Bk-\, and a non-negative integer
t such that Bs|M2,ί| = 0 and Bs|Λf2,ί—1| Φ 0> where M^k is the movable part
of \μ£(M2,k-\)\- Let μ = μx o 0/1), if' = X,, and Af'' = Af,. Let £* be the
/^-exceptional effective divisor and Z' = μ*L — M'. Then there is a morphism
^ M / | : X' -> P7^ defined bŷ  |Af;|. Let W = φ\M,\(JΓ). Then there exist a
normal protective variety W, a morphism ^ : X1 —>J¥, and a finite morphism
ε: W -± W such that #?|M,| = εo φ. Let r: Wr —> W be a resolution of JF.
Then there exist a smooth projective variety X", a birational morphism #7 : X" —>
Z r , and a fiber space / " : X" -> PFr such that φoθ' = rof". By definition
there exists an ample and spanned line bundle Λ on W such that M ; = φ?M,AA).
Let 4̂ = ε*(^) and Ar = r*(A). We remark that ^ r is nef, big, and spanned.
Let L" = (0')*(Z/) and let F" be a general fiber of / " .

CONJECTURE 3.2. Let (X,L) be a quasi-polarized manifold with dimX = «,
κ(X) > 0, Λ/iέ/ A°(L) > n. We use Notation 3.1. Then (X,L) satisfies one of the
following:

(1) g{L)>2q(X)-\.
(2) 2 < m - dim W < n - 1, Λf' w w ί ftigf, ^(L) > q( Wr) + 2^(Fr/) +

(Λ — m — 1) > q(X) + ^(-F") + (n — m — 1), β«rf (WnAr) is bίratίonally equivalent
to a scroll over a curve with q{ Wr) > n ̂ jn + 1.

(3) dim»Γ=l, M1 is not big, g{W)>n, and g(L) > g{Wr) + 2q(F") +
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