ON SECTIONAL GENUS OF QUASI-POLARIZED MANIFOLDS WITH NON-NEGATIVE KODAIRA DIMENSION, II

Yoshiaki Fukuma

Abstract

Let (X, L) be a quasi-polarized manifold over the complex number field with $\operatorname{dim} X=n$ and $\kappa(X) \geq 0$. If $n=2, \kappa(X) \geq 0$, and $h^{0}(L)=\operatorname{dim} H^{0}(L) \geq 2$, then in our previous paper we studied a lower bound for sectional genus $g(L)$. In this paper, we mainly consider the case in which $n=3, \kappa(X) \geq 0$, and $h^{0}(L) \geq 3$, and we obtain a lower bound for $g(L)$ which is a generalization of the result of our previous paper.

0. Introduction

Let X be a smooth projective manifold over the complex number field C with $\operatorname{dim} X=n$ and let L be a Cartier divisor on X. Then (X, L) is called a polarized (resp. quasi-polarized) manifold if L is ample (resp. nef and big). The sectional genus is defined by the following formula:

$$
g(L)=1+\frac{1}{2}\left(K_{X}+(n-1) L\right) L^{n-1}
$$

where K_{X} is the canonical divisor of X.
A classification of (X, L) with small value of sectional genus was obtained by several authors. On the other hand, Fujita proved the following Theorem (see Theorem (2.13.1) in $[\mathrm{Fj} 0]$).

Theorem 0.1. Let (X, L) be a polarized manifold. Then for any fixed n and $g(L)$ there are only finitely many deformation type of (X, L) unless (X, L) is a scroll over a smooth curve.
(For a definition of the deformation type of (X, L), see $\S 13$ of Chapter II in [Fj0].) By this theorem, Fujita proposed the following Conjecture; which is interesting but difficult.

[^0]Conjecture. Let (X, L) be a quasi-polarized manifold. Then $g(L) \geq q(X)$, where $q(X)=\operatorname{dim} H^{1}\left(\mathcal{O}_{X}\right)$ is the irregularity of X.

If $\operatorname{dim} X=2$ and $h^{0}(L)>0$, then we can easily prove the above Conjecture. In [Fk4], we proved that the above Conjecture is true if $\operatorname{dim} X=3$ and $h^{0}(L) \geq$ 2. In [Fk3], we improved the above inequality if the Kodaira dimension $\kappa(X)$ of X is non-negative and $h^{0}(L) \geq 2$, that is,

Theorem 0.2. Let (X, L) be a quasi-polarized surface with $\kappa(X) \geq 0$ and $h^{0}(L) \geq 2$. Then we get $g(L) \geq 2 q(X)-1$ unless the rational map defined by $|L|$ is of special type.
(In detail, see Theorem 3.1 in [Fk3].)
In this paper, we consider the 3-dimensional version of Theorem 0.2, that is, we improve a lower bound for $g(L)$ if $\operatorname{dim} X=3, h^{0}(L) \geq 3$, and $\kappa(X) \geq 0$. The main result, which is a generalization of Theorem 0.2 , is the following:

Theorem 2.2. Let (X, L) be a quasi-polarized 3-fold with $\kappa(X) \geq 0$ and $h^{0}(L) \geq 3$. We use Notation 2.1. Then (X, L) satisfies one of the following:
(1) $g(L) \geq 2 q(X)-1$.
(2) $\operatorname{dim} W=2, M_{3}$ is not $b \imath g, g(L) \geq q\left(W_{r}\right)+2 g\left(F_{\psi}\right) \geq q(X)+g\left(F_{\psi}\right)$, and (W_{r}, A_{r}) is a scroll over a curve with $q\left(W_{r}\right) \geq 2$, where we take W_{r} as a minimal resolution of \widetilde{W}.
(3) $\operatorname{dim} W=1, M_{3}$ is not big, $g\left(B_{\alpha}\right) \geq 3$, and $g(L) \geq g\left(B_{\alpha}\right)+2 q\left(F_{\alpha}\right)+1 \geq$ $q(X)+q\left(F_{\alpha}\right)+1$.

Here we should mention that at present we do not know whether there exists an example of the cases (2) and (3) in Theorem 2.2 or not.

The main theorem seems to enables us to study (X, L) with $\operatorname{dim} X=3$, $\kappa(X) \geq 0$ and $h^{0}(L) \geq 3$ in detail. If $n=2$, then in [Fk5] we obtained some results about a lower bound of $K_{X} L$ by using the result of [Fk3]. So if $n=3$, we expect that we can get a result about a lower bound of $K_{X} L^{2}$ by using the result of this paper. We use the customary notations in algebraic geometry.

The author would like to thank the referee for giving him some useful comments and suggestions.

1. Preliminaries

Definition 1.1. Let X be a smooth projective variety with $\operatorname{dim} X>$ $\operatorname{dim} Y \geq 1$. Then a morphism $f: X \rightarrow Y$ is a fiber space if f is surjective with connected fibers. Let L be a Cartier divisor on X. Then (f, X, Y, L) is called a quasi-polarized (resp. polarized) fiber space if $f: X \rightarrow Y$ is a fiber space and L is nef and big (resp. ample).

Definition 1.2. Let X and Y be projective varieties with $\operatorname{dim} X=n$ and $\operatorname{dim} Y=m$, and let L be a line bundle on X. Then we say that (X, L) is a scroll over Y if there exists a fiber space $\pi: X \rightarrow Y$ such that any fiber of π is isomorphic to \boldsymbol{P}^{n-m} and $\left.L\right|_{F}=\mathcal{O}_{P^{n-m}}(1)$, where $1 \leq m<n$. A quasi-polarized fiber space (f, X, Y, L) is called a scroll if $\left(F, L_{F}\right) \cong\left(\boldsymbol{P}^{n-m}, \mathcal{O}_{\boldsymbol{P}^{n-m}}(1)\right)$ for any fiber F of f, where $\operatorname{dim} X=n>m=\operatorname{dim} Y \geq 1$.

Definition 1.3. (1) Let $\left(X_{1}, L_{1}\right)$ and (X_{2}, L_{2}) be quasi-polarized manifolds where X_{l} may have singularities for $l=1,2$. Then $\left(X_{1}, L_{1}\right)$ and $\left(X_{2}, L_{2}\right)$ are said to be birationally equivalent if there is another variety G with birational morphisms $g_{1}: G \rightarrow X_{1}(i=1,2)$ such that $g_{1}^{*} L_{1}=g_{2}^{*} L_{2}$.
(2) Let $\left(f_{1}, X_{1}, Y, L_{1}\right)$ and (f_{2}, X_{2}, Y, L_{2}) be quasi-polarized fiber spaces, where X_{l} may have singularities for $i=1,2$. Then (f_{1}, X_{1}, Y, L_{1}) and (f_{2}, X_{2}, Y, L_{2}) are said to be birationally equivalent if there is another variety G with birational morphisms $g_{i}: G \rightarrow X_{i}(i=1,2)$ such that $g_{1}^{*} L_{1}=g_{2}^{*} L_{2}$ and $f_{1} \circ g_{1}=$ $f_{2} \circ g_{2}$.

Theorem 1.4. Let (X, L) be a quasi-polarized 3-fold. Then there exists a quast-polarized variety $\left(X^{\prime}, L^{\prime}\right)$ which is birationally equivalent to (X, L) and satisfies one of the following conditions:
(1) $K_{X^{\prime}}+2 L^{\prime}$ is nef for the canonical Q-bundle $K_{X^{\prime}}$;
(2) $\Delta\left(L^{\prime}\right)=0$;
(3) $\left(X^{\prime}, L^{\prime}\right)$ is a scroll over a curve,
where X^{\prime} is a normal projective variety with only \boldsymbol{Q}-factorial terminal singularities.
Proof. See Theorem 4.2 in [Fj1].
Remark 1.5. Theorem 1.4 is true for $\operatorname{dim} X=n$ if the Flip Conjecture (see [KMM]) is true for $\operatorname{dim} X=n$.

Theorem 1.6. Let (f, X, C, L) be a quasi-polarized fiber space with $\operatorname{dim} X=$ 3 and $\operatorname{dim} C=1$. Then there exists a quasi-polarized fiber space ($f^{\prime}, X^{\prime}, C, L^{\prime}$) which is birationally equivalent to (f, X, C, L) such that $\left(f^{\prime}, X^{\prime}, C, L^{\prime}\right)$ satisfies one of the following conditions:
(1) $K_{X^{\prime} / C}+2 L^{\prime}$ is nef;
(2) $\left(f^{\prime}, X^{\prime}, C, L^{\prime}\right)$ is a scroll, where X^{\prime} is a normal projective variety with only \boldsymbol{Q}-factorial terminal singularities and $K_{X^{\prime} / C}=K_{X^{\prime}}-\left(f^{\prime}\right)^{*} K_{C}$.

Proof. See Lemma 0.2 and Theorem 1.3 in [Fk2]. Here we show the outline of proof. We can prove the following by a method similar to the proof of Theorem 4.2 in [Fj1]:

There exists a quasi-polarized fiber space $\left(f^{\prime}, X^{\prime}, C, L^{\prime}\right)$ which is birationally equivalent to (f, X, C, L) such that $\left(f^{\prime}, X^{\prime}, C, L^{\prime}\right)$ satisfies one of the following conditions:
(1) $K_{X^{\prime} / C}+2 L^{\prime}$ is f^{\prime}-nef;
(2) $\left(f^{\prime}, X^{\prime}, C, L^{\prime}\right)$ is a scroll,
where X^{\prime} is a normal projective variety with only \boldsymbol{Q}-factorial terminal singularities and $K_{X^{\prime} / C}=K_{X^{\prime}}-\left(f^{\prime}\right)^{*} K_{C}$. Next we can prove that $K_{X^{\prime} / C}+2 L^{\prime}$ is nef if $K_{X^{\prime} / C}+2 L^{\prime}$ is f^{\prime}-nef by the same argument as in the proof of Theorem 1.1.2 in [Fk1].

Theorem 1.7. Let (X, L) be a quasi-polarized manifold with $\operatorname{dim} X \geq 2$. Assume that L is spanned by global sections. Then $g(L) \geq q(X)$.

Proof. See Theorem 7.2.10 in [BS].
Theorem 1.8. Let (X, L) be a quasi-polarized manifold with $\operatorname{dim} X \geq 2$ and $\kappa(X) \geq 0$ such that L is spanned by global sections. Then $g(L) \geq 2 q(X)-1$.

Proof. See Corollary 3.2 and Corollary 3.3 in [Fk3].
Definition 1.9. Let (X, L) be a quasi-polarized manifold with $h^{0}(L) \geq 2$. Let X^{\prime} be a smooth projective manifold and let $\mu: X^{\prime} \rightarrow X$ be a birational morphism such that $\mathrm{Bs}\left|M^{\prime}\right|=\phi$, where $\left|M^{\prime}\right|$ is the movable part of $\left|\mu^{*}(L)\right|$. Then we define $\operatorname{dim} \varphi_{|L|}(X)$ as $\operatorname{dim} \varphi_{\left|M^{\prime}\right|}\left(X^{\prime}\right)$.

Definition 1.10. Let D_{1} and D_{2} be divisors on a smooth projective manifold X. We denote $D_{1} \geq D_{2}$ if $D_{1}-D_{2}$ is linearly equivalent to an effective divisor on X.

Definition 1.11 (See [Fk0] and [Fk3]). (1) Let (X, L) be a quasi-polarized surface. Then (X, L) is called L-minimal if $L E>0$ for any (-1)-curve E on X.
(2) For any quasi-polarized surface (X, L), there is a quasi-polarized surface $\left(X_{1}, L_{1}\right)$ and a birational morphism $\mu: X \rightarrow X_{1}$ such that $L=\mu^{*}\left(L_{1}\right)$ and $\left(X_{1}, L_{1}\right)$ is L_{1}-minimal. Then we call $\left(X_{1}, L_{1}\right)$ an L-minimalization of (X, L).
(3) Let (f, X, C, L) be a quasi-polarized fiber space with $\operatorname{dim} X=2$ and $\operatorname{dim} C=1$. Then (f, X, C, L) is said to be relatively L-minimal if $L E>0$ for any (-1)-curve E on X which is contained in a fiber of f.
(4) For any quasi-polarized fiber space (f, X, C, L) with $\operatorname{dim} X=2$ and $\operatorname{dim} C=1$, there exist a quasi-polarized fiber space $\left(f_{1}, X_{1}, C, L_{1}\right)$ and a birational morphism $\mu: X \rightarrow X_{1}$ such that $f=f_{1} \circ \mu, L=\mu^{*}\left(L_{1}\right)$, and (f_{1}, X_{1}, C, L_{1}) is relatively L_{1}-minimal. Then we call $\left(f_{1}, X_{1}, C, L_{1}\right)$ a relative L-minimalization of (f, X, C, L).

Lemma 1.12. Let (X, L) be an L-minimal quasi-polarized surface with $\kappa(X) \geq 0$. Then $K_{X}+L$ is nef.

Proof (See Lemma 2.4 in [Fk3]). If $K_{X}+L$ is not nef, then there is a (-1)-curve E on X such that $\left(K_{X}+L\right) E<0$ since $\kappa(X) \geq 0$. Because $K_{X} E=$ -1 , we have $L E=0$. But this contradicts assumption.

Lemma 1.13. Let (f, X, C, L) be a relatively L-minimal quasi-polarized fiber space with $\operatorname{dim} X=2$ and $\kappa(X) \geq 0$. Then $K_{X / C}+L$ is nef, where $K_{X / C}=$ $K_{X}-f^{*} K_{C}$: relative canonical divisor of f.

Proof (See Lemma 2.5 in [Fk3]). Let D be an irreducible reduced curve on X such that $f(D)$ is not a point. Let $\mu: X \rightarrow X^{\prime}$ be a relatively minimal model of $f: X \rightarrow C$ and $D^{\prime}=\mu(D)$. Then $K_{X / C} D \geq K_{X^{\prime} / C} D^{\prime}$. On the other hand $K_{X^{\prime} / C}$ is nef because $\kappa(X) \geq 0$. Hence $\left(K_{X / C}+L\right) D \geq 0$. Next we prove that $K_{X / C}+L$ is f-nef. If $K_{X / C}+L$ is not f-nef, then there is a (-1)-curve E on X such that $f(E)$ is a point and $\left(K_{X / C}+L\right) E<0$ because $\kappa(X) \geq 0$. Since $K_{X / C} E=-1$, we have $L E=0$. But this contradicts the assumption.

Lemma 1.14 (G. Xiao). Let (f, X, C) be a fiber space with $\operatorname{dim} X=2$, $\kappa(X) \geq 0$ and $g(C)=0$. Then $q(X) \leq(1 / 2)(g(F)+1)$, where F is a general fiber of f.

Proof. See [X].
Lemma 1.15. Let (X, L) be an L-minimal quasi-polarized surface. Assume that $|L|$ is spanned. Then $g(L) \geq 2 q(X)-1$ unless (X, L) is a scroll over a smooth curve.

Proof. If $\kappa(X) \geq 0$, then this is proved by Corollary 3.2 in [Fk3]. So we assume $\kappa(X)=-\infty$. If $q(X) \leq 1$, then this is true. Hence we may assume that $q(X) \geq 2$. Then $K_{X}^{2} \leq 8(1-q(X))$. So we obtain

$$
\begin{aligned}
\left(K_{X}+L\right)^{2} & =K_{X}^{2}+2\left(K_{X}+L\right) L-L^{2} \\
& \leq 8(1-q(X))+2(2 g(L)-2)-L^{2} \\
& =4(g(L)-2 q(X)+1)-L^{2}
\end{aligned}
$$

If $K_{X}+L$ is nef, then $\left(K_{X}+L\right)^{2} \geq 0$. Therefore $g(L) \geq 2 q(X)$. If $K_{X}+L$ is not nef, then (X, L) is a scroll over a smooth curve since (X, L) is L-minimal and $q(X) \geq 2$ (see the proof of Theorem 3.1 in [Fk0]).

2. Main result

Before we prove the main theorem, we fix the notation which are used later.

Notation 2.1. (1) Let (X, L) be a quasi-polarized manifold with $\operatorname{dim} X=$ $n, \kappa(X) \geq 0$, and $h^{0}(L) \geq 2$. We assume that the Flip Conjecture is true. Then by Theorem 1.4 and Remark 1.5, there exist a quasi-polarized variety (V_{1}, L_{1}), a
smooth projective variety Y, and birational morphisms $\eta: Y \rightarrow X$ and $\eta_{1}: Y \rightarrow$ V_{1} such that $\eta^{*} L=\eta_{1}^{*} L_{1}$ and $K_{V_{1}}+2 L_{1}$ is nef, where V_{1} is a normal projective variety with only \boldsymbol{Q}-factorial terminal singularities. Let $\theta: V_{2} \rightarrow V_{1}$ be a resolution of V_{1}, that is, θ is a birational morphism with $V_{2} \backslash \theta^{-1}\left(\operatorname{Sing} V_{1}\right) \cong$ $V_{1} \backslash \operatorname{Sing} V_{1}$, where $\operatorname{Sing} V_{1}$ denotes the singular locus of V_{1}. Let $L_{2}=\theta^{*}\left(L_{1}\right)$. Let $\left|M_{2}\right|$ be the movable part of $\left|L_{2}\right|$ and let Z_{2} be the fixed part of $\left|L_{2}\right|$. We put $V_{2,0}=V_{2}, L_{2,0}=L_{2}$, and $M_{2,0}=M_{2}$. By Hironaka Theory, there exist a sequence of blowing ups: $\mu_{k}: V_{2, k} \rightarrow V_{2, k-1}$ along a smooth center B_{k-1}, and a non-negative integer t such that $\mathrm{Bs}\left|M_{2, t}\right|=\emptyset$ and $\mathrm{Bs}\left|M_{2, t-1}\right| \neq \emptyset$, where $M_{2, k}$ is the movable part of $\left|\mu_{k}^{*}\left(M_{2, k-1}\right)\right|$. Let $\mu=\mu_{1} \circ \cdots \circ \mu_{t}, V_{3}=V_{2, t}, L_{3}=\mu^{*}\left(L_{2}\right)$, and $M_{3}=M_{2, t}$. Let E_{k} be the μ_{k}-exceptional effective divisor. Then there is a morphism $\varphi_{\left|M_{3}\right|}: V_{3} \rightarrow \boldsymbol{P}^{N}$ defined by $\left|M_{3}\right|$. Let $W=\varphi_{\left|M_{3}\right|}\left(\frac{V_{3}}{W}\right)$. Then, by taking Stein factorization, there exist a normal projective variety W, a morphism $\tilde{\varphi}: V_{3} \rightarrow \widetilde{W}$, and a finite morphism $\varepsilon: \widetilde{W} \rightarrow W$ such that $\varphi_{\left|M_{3}\right|}=\varepsilon \circ \tilde{\varphi}$.
(2) Assume that $2 \leq \operatorname{dim} W \leq n-1$ and $h^{0}(L) \geq n$. Then any general member S_{3} of $\left|M_{3}\right|$ is irreducible by Bertini Theorem. Then $h^{0}\left(\left.\mu^{*}\left(L_{2}\right)\right|_{S_{3}}\right) \geq$ $n-1$ and $\left(\varphi_{\left|M_{3}\right|}\right)_{S_{3}}: S_{3} \rightarrow \varphi_{\left|M_{3}\right|}\left(S_{3}\right)$ is the morphism defined by $\left|M_{3}\right|_{S_{3}}$. Let A be a hyperplane bundle $\mathcal{O}_{W}(1)$. Then $S_{3}=\varphi_{\left|M_{3}\right|}^{*}(A)$. Let W_{r} be a resolution $r: W_{r} \rightarrow \widetilde{W}$, and let $\tilde{A}=\varepsilon^{*} A$ and $A_{r}=r^{*} \tilde{A}$. Then there exist a smooth projective variety \tilde{V}_{3}, a birational morphism $v: \tilde{V}_{3} \rightarrow V_{3}$, and a fiber space $\psi: \tilde{V}_{3} \rightarrow$ W_{r} such that $\tilde{\varphi} \circ v=r \circ \psi$. Let F_{ψ} be a general fiber of ψ and $\tilde{L}_{3}=v^{*} L_{3}$.
(3) Assume that $\operatorname{dim} W=1$. Let $\rho: X_{\alpha} \rightarrow X$ be a birational morphism such that the movable part of $\left|\rho^{*} L\right|$ is base point free. Let $L_{\alpha}=\rho^{*} L$ and let M_{α} be the movable part of $\left|L_{\alpha}\right|$. Let $\varphi_{\alpha}: X_{\alpha} \rightarrow \boldsymbol{P}^{N}$ be the morphism defined by $\left|M_{\alpha}\right|$. Then $W=\varphi_{\alpha}\left(X_{\alpha}\right)$. By taking Stein factorization, there exists a smooth projective curve B_{α}, a finite morphism $\omega: B_{\alpha} \rightarrow W$, and a fiber space $\psi_{\alpha}: X_{\alpha} \rightarrow$ B_{α} such that $\varphi_{\alpha}=\omega \circ \psi_{\alpha}$. Let F_{α} be a general fiber of ψ_{α}.

Theorem 2.2. Let (X, L) be a quasi-polarized 3-fold with $\kappa(X) \geq 0$ and $h^{0}(L) \geq 3$. We use Notation 2.1. Then (X, L) satisfies one of the following:
(1) $g(L) \geq 2 q(X)-1$.
(2) $\operatorname{dim} W=2, M_{3}$ is not big, $g(L) \geq q\left(W_{r}\right)+2 g\left(F_{\psi}\right) \geq q(X)+g\left(F_{\psi}\right)$, and $\left(W_{r}, A_{r}\right)$ is a scroll over a curve with $q\left(W_{r}\right) \geq 2$, where we take W_{r} as a minimal resolution of \widetilde{W}.
(3) $\operatorname{dim} W=1, M_{3}$ is not big, $g\left(B_{\alpha}\right) \geq 3$, and $g(L) \geq g\left(B_{\alpha}\right)+2 q\left(F_{\alpha}\right)+1 \geq$ $q(X)+q\left(F_{\alpha}\right)+1$.

Proof. We use Notation 2.1.
(I) The case in which M_{3} is big.

Then we consider a quasi-polarized 3 -fold $\left(V_{3}, M_{3}\right)$. By Theorem 1.4, there exist a smooth projective variety U, a quasi-polarized 3 -fold $\left(V_{3}^{\prime}, M_{3}^{\prime}\right)$ and birational morphisms $\sigma_{1}: U \rightarrow V_{3}$ and $\sigma_{2}: U \rightarrow V_{3}^{\prime}$ such that $\sigma_{1}^{*} M_{3}=\sigma_{2}^{*} M_{3}^{\prime}$ and $K_{V_{3}^{\prime}}+2 M_{3}^{\prime}$ is nef, where V_{3}^{\prime} is a normal projective variety with $\operatorname{dim} V_{3}^{\prime}=3$ with only \boldsymbol{Q}-factorial terminal singularities. Then

$$
\begin{aligned}
g(L)=g\left(L_{3}\right) & =1+\frac{1}{2}\left(K_{V_{3}}+2 L_{3}\right) L_{3}^{2} \\
& \geq 1+\frac{1}{2}\left(K_{V_{3}}+2 M_{3}\right) L_{3}^{2} \\
& =1+\frac{1}{2} \sigma_{1}^{*}\left(K_{V_{3}}+2 M_{3}\right)\left(\sigma_{1}^{*} L_{3}\right)^{2} \\
& =1+\frac{1}{2}\left(K_{U}+2 \sigma_{1}^{*} M_{3}\right)\left(\sigma_{1}^{*} L_{3}\right)^{2}
\end{aligned}
$$

because L_{3} is nef. Since $\sigma_{1}^{*} M_{3}=\sigma_{2}^{*} M_{3}^{\prime}$ and V_{3}^{\prime} has only \boldsymbol{Q}-factorial terminal singularities, we obtain

$$
\begin{aligned}
g(L) & \geq 1+\frac{1}{2}\left(K_{U}+2 \sigma_{1}^{*} M_{3}\right)\left(\sigma_{1}^{*} L_{3}\right)^{2} \\
& =1+\frac{1}{2}\left(K_{U}+2 \sigma_{2}^{*} M_{3}^{\prime}\right)\left(\sigma_{1}^{*} L_{3}\right)^{2} \\
& \geq 1+\frac{1}{2} \sigma_{2}^{*}\left(K_{V_{3}^{\prime}}+2 M_{3}^{\prime}\right)\left(\sigma_{1}^{*} L_{3}\right)^{2}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\sigma_{2}^{*}\left(K_{V_{3}^{\prime}}\right. & \left.+2 M_{3}^{\prime}\right)\left(\sigma_{1}^{*}\left(L_{3}\right)\right)^{2} \\
= & \sigma_{2}^{*}\left(K_{V_{3}^{\prime}}+2 M_{3}^{\prime}\right)\left(\sigma_{1}^{*}\left(M_{3}\right)\right)^{2} \\
& +\sigma_{2}^{*}\left(K_{V_{3}^{\prime}}+2 M_{3}^{\prime}\right)\left(\left(\sigma_{1}^{*} L_{3}\right)+\left(\sigma_{1}^{*}\left(M_{3}\right)\right)\right)\left(\sigma_{1}^{*} Z_{3}\right) \\
\geq & \sigma_{2}^{*}\left(K_{V_{3}^{\prime}}+2 M_{3}^{\prime}\right)\left(\sigma_{1}^{*}\left(M_{3}\right)\right)^{2} \\
= & \sigma_{2}^{*}\left(K_{V_{3}^{\prime}}+2 M_{3}^{\prime}\right)\left(\sigma_{2}^{*}\left(M_{3}^{\prime}\right)\right)^{2} \\
= & \left(K_{V_{3}^{\prime}}+2 M_{3}^{\prime}\right)\left(M_{3}^{\prime}\right)^{2}
\end{aligned}
$$

because $\sigma_{1}^{*} L_{3}$ and $\sigma_{1}^{*} M_{3}$ are nef. Therefore $g(L) \geq 1+(1 / 2)\left(K_{V_{3}^{\prime}}+2 M_{3}^{\prime}\right)\left(M_{3}^{\prime}\right)^{2}=$ $g\left(M_{3}^{\prime}\right)$. Since $\mathrm{Bs}\left|M_{3}^{\prime}\right|=\phi$ and V_{3}^{\prime} has only \boldsymbol{Q}-factorial terminal singularities, any general section S_{3}^{\prime} of $\left|M_{3}^{\prime}\right|$ is smooth by Bertini's Theorem. Hence $g\left(M_{3}^{\prime}\right)=$ $g\left(\left.M_{3}^{\prime}\right|_{S_{3}^{\prime}}\right) \geq 2 q\left(S_{3}^{\prime}\right)-1$ by Theorem 1.8 since $\kappa\left(S_{3}^{\prime}\right) \geq 0$.

Claim 2.3. $q\left(S_{3}^{\prime}\right)=h^{1}\left(\mathcal{O}_{V_{3}^{\prime}}\right)=q(X)$.
Proof. Let $\lambda: V_{3}^{\prime \prime} \rightarrow V_{3}^{\prime}$ be a resolution of V_{3}^{\prime} and $M_{3}^{\prime \prime}=\lambda^{*}\left(M_{3}^{\prime}\right)$. Then $\mathrm{Bs}\left|M_{3}^{\prime \prime}\right|=\phi$. Since S_{3}^{\prime} is a general member of $\left|M_{3}^{\prime}\right|$, we may assume that $S_{3}^{\prime \prime}=$ $\lambda^{*}\left(S_{3}^{\prime}\right)$ is a smooth projective surface which is a member of $\left|M_{3}^{\prime \prime}\right|$. Then $S_{3}^{\prime \prime}$ is birationally equivalent to S_{3}^{\prime} and so $q\left(S_{3}^{\prime \prime}\right)=q\left(S_{3}^{\prime}\right)$. Since $S_{3}^{\prime \prime}$ is nef and big on $V_{3}^{\prime \prime}$, we obtain that $q\left(S_{3}^{\prime \prime}\right)=q\left(V_{3}^{\prime \prime}\right)$ by Kawamata-Viehweg Vanishing Theorem. Because V_{3}^{\prime} has only rational singularities, we have $h^{1}\left(\mathcal{O}_{V_{3}^{\prime}}\right)=q\left(V_{3}^{\prime \prime}\right)=q(X)$. This completes the proof of Claim 2.3.

Therefore by this Claim, we get $g(L) \geq 2 q(X)-1$.
(II) The case in which M_{3} is not big.

Then $\operatorname{dim} W \leq 2$.
(II-1) The case in which $\operatorname{dim} W=2$.
First we prove the following Claim.
CLaim 2.4. $q\left(S_{3}\right) \geq q\left(V_{3}\right)=q(X)$.
Proof. Let $\Lambda \subseteq\left|M_{3}\right|$ be a linear pencil such that $\mathrm{Bs} \Lambda \neq \emptyset$ and a general member of Λ is smooth and irreducible. (We can take this Λ since $\operatorname{dim} W=2$.) Then we make a fiber space defined by Λ. Let $\varphi_{\Lambda}: V_{3} \rightarrow \boldsymbol{P}^{1}$ be the rational map defined by Λ. Let $\tau: V_{4} \rightarrow V_{3}$ be an elimination of indeterminacy of φ_{Λ}. Then there exists a morphism $h: V_{4} \rightarrow \boldsymbol{P}^{1}$. We remark that h has connected fibers by the choice of Λ. Hence $q\left(F_{h}\right) \geq q\left(V_{4}\right)=q\left(V_{3}\right)$, where F_{h} is a general fiber of h. On the other hand, since S_{3} is a general member of $\left|M_{3}\right|$, we may assume that F_{h} is birationally equivalent to S_{3}. Hence $q\left(S_{3}\right)=q\left(F_{h}\right) \geq q\left(V_{3}\right)=$ $q(X)$. This completes the proof of Claim 2.4.

Since $K_{V_{1}}+2 L_{1}$ is nef, we obtain

$$
\begin{aligned}
g(L)=g\left(L_{3}\right) & =1+\frac{1}{2}\left(\mu^{*} \circ \theta^{*}\left(K_{V_{1}}+2 L_{1}\right)\right)\left(\mu^{*} \circ \theta^{*}\left(L_{1}\right)\right)^{2} \\
& \geq 1+\frac{1}{2}\left(\mu^{*} \circ \theta^{*}\left(K_{V_{1}}+2 L_{1}\right)\right)\left(\mu^{*} \circ \theta^{*}\left(L_{1}\right)\right) S_{3}
\end{aligned}
$$

On the other hand, let E be an effective θ-exceptional divisor on V_{2}, then $\mu^{*}(E)\left(\mu^{*} \circ \theta^{*}\left(L_{1}\right)\right) S_{3}=0$ since $\theta(E)$ is 0 -dimensional. Hence

$$
g(L) \geq 1+\frac{1}{2} \mu^{*}\left(K_{V_{2}}+2 \theta^{*} L_{1}\right)\left(\mu^{*} \circ \theta^{*}\left(L_{1}\right)\right) S_{3}
$$

By Claim 2.4 in [Fk4], we have

$$
\begin{aligned}
& \mu^{*}\left(K_{V_{2}}+2 \theta^{*} L_{1}\right)\left(\mu^{*} \circ \theta^{*}\left(L_{1}\right)\right) S_{3} \\
& \quad \geq\left(K_{V_{3}}+S_{3}+\left(\mu^{*} \circ \theta^{*}\left(L_{1}\right)\right)\right)\left(\mu^{*} \circ \theta^{*}\left(L_{1}\right)\right) S_{3} \\
& \quad=\left(K_{S_{3}}+\left.L_{3}\right|_{S_{3}}\right)\left(\left.L_{3}\right|_{S_{3}}\right) .
\end{aligned}
$$

Therefore $g(L) \geq g\left(L_{3} \mid S_{S_{3}}\right)$.
Let $\widetilde{S_{3}}$ be a general member of $\left|v^{*} M_{3}\right|$ such that $v\left(\widetilde{S_{3}}\right)=S_{3}$. We consider $\widetilde{\psi_{3}}=\left.\psi\right|_{\widetilde{S_{3}}}: \widetilde{S_{3}} \rightarrow A_{r}$. Then $\left(\widetilde{\psi_{3}}, \widetilde{S_{3}}, A_{r},\left.\widetilde{L_{3}}\right|_{\widetilde{S_{3}}}\right)$ is a quasi-polarized fiber space. We put $N_{3}=\left.\widetilde{L_{3}}\right|_{\widetilde{S_{3}}}$. We remark that $g\left(N_{3}\right)=g\left(\left.L_{3}\right|_{S_{3}}\right)$. So we obtain $g(L) \geq$ $g\left(N_{3}\right)$. By construction, $\left.v^{*} M_{3}\right|_{\widetilde{S_{3}}} \sim \sum_{t=1}^{a} \widetilde{F_{3, t}}$, where $\widetilde{F_{3, t}}$ is a general fiber of $\widetilde{\psi_{3}}$ and a is a positive integer. Hence $N_{3}-\sum_{l=1}^{a} \widehat{F_{3, l}} \geq 0$.
(II-1-1) The case in which $g\left(A_{r}\right)=0$.
Let $\widetilde{F_{3}}$ be a general fiber of $\widetilde{\psi}_{3}$.

CLAIM 2.5. $g\left(N_{3}\right) \geq g\left(\widetilde{F_{3}}\right)$.
Proof (See also Theorem 3.1 in [Fk3]). Let $\beta: \widetilde{S_{3}} \rightarrow T$ be an $N_{3}-$ minimalization of $\left(\widetilde{S_{3}}, N_{3}\right)$ and $N_{T}=\beta_{*}\left(N_{3}\right)$. Then $N_{3}=\beta^{*}\left(N_{T}\right)$ and $K_{T}+N_{T}$ is nef by Lemma 1.12. Let $\beta_{j}: T_{J} \rightarrow T_{J+1}$ be a blowing up at a point of T_{J+1}, $\beta=\beta_{t-1} \circ \cdots \circ \beta_{0}, T_{0}=S_{3}$, and $T_{t}=T$. Let $M_{T, J}=\left(\beta_{j-1}\right)_{*}\left(M_{T, j-1}\right)$ for $j=$ $1, \ldots, t, M_{T, 0}=\sum_{t=1}^{a} \widetilde{F_{3, t}}$, and $M_{T}=M_{T, t}$. Then M_{T} is nef. Let $M_{T, J}=$ $\left(\beta_{j}\right)^{*}\left(M_{T, J+1}\right)-n_{j} E_{J}$, where E_{J} is the (-1)-curve of β_{j} for $j=0, \ldots, t-1$. Then we remark that $n_{j} \geq 0$ for any j. Then

$$
\left(K_{\widetilde{S_{3}}}+N_{3}\right)\left(N_{3}-M_{T, 0}\right)=\left(K_{T}+N_{T}\right)\left(N_{T}-M_{T, t}\right)-\sum_{j=0}^{t-1} n_{j} .
$$

Since $\left(M_{T, 0}\right)^{2}=\left(\sum_{a=1}^{a} \widetilde{F_{3, l}}\right)^{2}=0$, we obtain that $M_{T}^{2}=\sum_{j=0}^{t-1} n_{j}^{2}$. Because $n_{j} \geq$ 0 , we obtain that $\sum_{j=0}^{t-1} n_{j} \leq \sum_{j=0}^{t-1} n_{j}^{2}$. Therefore

$$
\begin{aligned}
\left(K_{\widetilde{S_{3}}}+N_{3}\right) N_{3} & =\left(K_{\widetilde{S_{3}}}+N_{3}\right) M_{T, 0}+\left(K_{T}+N_{T}\right)\left(N_{T}-M_{T, t}\right)-\sum_{J=0}^{t-1} n_{j} \\
& \geq\left(K_{\widetilde{S_{3}}}+N_{3}\right) M_{T, 0}-\sum_{j=0}^{t-1} n_{J}^{2} \\
& =K_{\widetilde{S_{3}}} M_{T, 0}+N_{T} M_{T}-M_{T}^{2}
\end{aligned}
$$

Since $N_{T}-M_{T} \geq 0$ and M_{T} is nef, we obtain that $N_{T} M_{T}-M_{T}^{2} \geq 0$. Hence $\left(K_{\widetilde{S_{3}}}+N_{3}\right) N_{3} \geq K_{\widetilde{S_{3}}} M_{T, 0} \geq 2 g\left(\widetilde{F_{3}}\right)-2$ since $a \geq 1$. Hence $g\left(N_{3}\right) \geq g\left(\widetilde{F_{3}}\right)$. This completes the proof of Claim 2.5.

Hence $g\left(N_{3}\right) \geq g\left(\widetilde{F_{3}}\right)$. On the other hand, by Lemma $1.14 g\left(\widetilde{F_{3}}\right) \geq 2 q\left(\widetilde{S_{3}}\right)-$ 1. Therefore $g(L) \geq g\left(N_{3}\right) \geq g\left(\widetilde{F_{3}}\right) \geq 2 q\left(\widetilde{S_{3}}\right)-1=2 q\left(S_{3}\right)-1 \geq 2 q(X)-1$ by Claim 2.4.
(II-1-2) The case in which $g\left(A_{r}\right) \geq 1$.
Then $a \geq 2$. Indeed, if $a=1$, then $h^{0}\left(\left.v^{*} M_{3}\right|_{\widetilde{S}_{3}}\right)=1$ and $h^{0}\left(v^{*} M_{3}\right)=2$. But this is a contradiction because $h^{0}\left(L_{3}\right)=h^{0}\left(L_{2}\right) \stackrel{S_{3}}{=} h^{0}\left(L_{1}\right)=h^{0}(L) \geq 3$.

Claim 2.6.

$$
g\left(N_{3}\right) \geq \begin{cases}2 q\left(\widetilde{S_{3}}\right)-1, & \text { if } N_{3} \widetilde{F_{3}} \geq 2 \\ g\left(A_{r}\right)+2 g\left(\widetilde{F_{3}}\right), & \text { if } N_{3} \widetilde{F_{3}}=1,\end{cases}
$$

where $\widetilde{F_{3}}$ is a general fiber of $\widetilde{\psi_{3}}$.
Proof. By taking a relative N_{3}-minimalization of $\left(\widetilde{\psi_{3}}, \widetilde{S_{3}}, A_{r}, N_{3}\right)$, we may assume that $\left(\widetilde{\psi_{3}}, \widetilde{S_{3}}, A_{r}, N_{3}\right)$ is relatively N_{3}-minimal (see Definition 1.11). Hence by Lemma 1.13, $K_{\widetilde{S_{3}} / A_{r}}+N_{3}$ is nef. Since $N_{3}-\sum_{t=1}^{a} \widetilde{F_{3, l}} \geq 0$, we obtain

$$
\begin{aligned}
\left(K_{\widetilde{S_{3}} / A_{r}}+N_{3}\right) N_{3} & \geq \sum_{l=1}^{a} K_{\widetilde{S_{3}} / A_{r}} \widetilde{F_{3, l}}+N_{3}\left(\sum_{l=1}^{a} \widetilde{F_{3, l}}\right) \\
& =\sum_{l=1}^{a}\left(2 g\left(\widetilde{F_{3, l}}\right)-2\right)+\sum_{l=1}^{a} N_{3} \widetilde{F_{3, l}} \\
& =2 a\left(g\left(\widetilde{F_{3}}\right)-1\right)+\sum_{l=1}^{a} N_{3} \widetilde{F_{3, l}},
\end{aligned}
$$

where $\widetilde{F_{3}}$ is a general fiber of $\widetilde{\psi_{3}}$.
On the other hand

$$
g\left(N_{3}\right)=g\left(A_{r}\right)+\frac{1}{2}\left(K_{\widetilde{S_{3}} / A_{r}}+N_{3}\right) N_{3}+\left(N_{3} \widetilde{F_{3}}-1\right)\left(g\left(A_{r}\right)-1\right) .
$$

Hence

$$
g\left(N_{3}\right) \geq g\left(A_{r}\right)+a\left(g\left(\widetilde{F_{3}}\right)-1\right)+\frac{1}{2} \sum_{t=1}^{a} N_{3} \widetilde{F_{3, l}}+\left(N_{3} \widetilde{F_{3}}-1\right)\left(g\left(A_{r}\right)-1\right) .
$$

If $N_{3} \widetilde{F_{3}} \geq 2$, then $\sum_{t=1}^{a} N_{3} \widetilde{F_{3, l}} \geq 2 a \geq 4$ and we obtain

$$
\begin{aligned}
g\left(N_{3}\right) & \geq 2 g\left(A_{r}\right)-1+2 g\left(\widetilde{F_{3}}\right) \\
& =2\left(g\left(A_{r}\right)+g\left(\widetilde{F_{3}}\right)\right)-1 \\
& \geq 2 q\left(\widetilde{S_{3}}\right)-1
\end{aligned}
$$

since $a \geq 2$.
If $N_{3} \stackrel{\dot{F_{3}}}{ }=1$, then there exists a section $\widetilde{C_{3}}$ of $\widetilde{\psi_{3}}$ such that $N_{3}-\widetilde{C_{3}}-$ $\sum_{l=1}^{a} \widetilde{F_{3, l}} \geq 0$. Since $N_{3}-\widetilde{C_{3}}-\sum_{l=1}^{a} \widetilde{F_{3, l}}$ is contained in fibers of $\widetilde{\psi_{3}}$, we obtain $N_{3} \widetilde{C_{3}} \geq\left(\widetilde{C_{3}}+\sum_{l=1}^{a} \widetilde{F_{3,2}}\right) \widetilde{C_{3}}$. Hence

$$
\begin{aligned}
\left(K_{\widetilde{S_{3}} / A_{r}}+N_{3}\right) N_{3} & \geq \sum_{l=1}^{a}\left(K_{\widetilde{S_{3}} / A_{r}}+N_{3}\right) \widetilde{F_{3, l}}+\left(K_{\widetilde{S_{3}} / A_{r}}+N_{3}\right) \widetilde{C_{3}} \\
& \geq \sum_{i=1}^{a}\left(K_{\widetilde{S_{3}} / A_{r}}+N_{3}\right) \widetilde{F_{3, l}}+\left(K_{\widetilde{3_{3}} / A_{r}} \widetilde{C_{3}}+\left(\widetilde{C_{3}}\right)^{2}\right)+\sum_{l=1}^{a} \widetilde{F_{3, l}} \widetilde{C_{3}} \\
& =\sum_{t=1}^{a}\left(K_{\widetilde{S_{3}} / A_{r}}+N_{3}\right) \widetilde{F_{3, l}}+\sum_{i=1}^{a} \widetilde{F_{3, l}} \widetilde{C_{3}} \\
& =\left(2 a g\left(\widetilde{F_{3}}\right)-a\right)+a .
\end{aligned}
$$

Hence $\left(K_{\widetilde{S_{3}} / A_{r}}+N_{3}\right) N_{3} \geq 2 a\left(g\left(\widetilde{F_{3}}\right)\right) \geq 4 g\left(\widetilde{F_{3}}\right)$. This completes the proof of Claim 2.6.

If $N_{3} \widetilde{F_{3}} \geq 2$, then $g(L) \geq g\left(N_{3}\right) \geq 2 q\left(\widetilde{S_{3}}\right)-1 \equiv 2 q\left(S_{3}\right)-1 \geq 2 q(X)-1$ by Claim 2.4. So we consider the case in which $N_{3} \widetilde{F_{3}}=1$.

If $\left(W_{r}, A_{r}\right)$ is not a scroll over a curve, then $g\left(A_{r}\right) \geq 2 q\left(W_{r}\right)-1$ by Lemma 1.15. (We remark that $\left(W_{r}, A_{r}\right)$ is A_{r}-minimal because W_{r} is a minimal resolution of \widetilde{W}.) On the other hand $g\left(\widetilde{F_{3}}\right)=q\left(F_{\psi}\right)$. Hence

$$
\begin{aligned}
g\left(N_{3}\right) & \geq g\left(A_{r}\right)+2 g\left(\widetilde{F_{3}}\right) \\
& \geq 2 q\left(W_{r}\right)+2 g\left(F_{\psi}\right)-1 \\
& \geq 2 q(X)-1 .
\end{aligned}
$$

Hence $\left(W_{r}, A_{r}\right)$ is a scroll over a curve if $g(L)<2 q(X)-1$.
If $g\left(A_{r}\right)=1$, then $q\left(W_{r}\right) \leq 1$ and we obtain

$$
\begin{aligned}
g(L) & \geq 1+2 g\left(\widetilde{F_{3}}\right) \\
& \geq 2 q\left(W_{r}\right)-1+2 g\left(F_{\psi}\right) \\
& \geq 2 q(X)-1 .
\end{aligned}
$$

Hence $g\left(A_{r}\right) \geq 2$ if $g(L)<2 q(X)-1$.
(II-2) The case in which $\operatorname{dim} W=1$.
Here we use the notation in Notation 2.1 (3). We remark that $M_{\alpha} \sim$ $\sum_{l=1}^{b} F_{\alpha, l}$ for some positive integer b and a general fiber $F_{\alpha, l}$ of φ_{α}.
(II-2-1) The case in which $g\left(B_{\alpha}\right)=0$.
Then $b \geq 2$. Indeed if $b=1$, then $h^{0}\left(L_{\alpha}\right)=h^{0}\left(M_{\alpha}\right) \leq 2$. This is a contradiction since $h^{0}\left(L_{\alpha}\right)=h^{0}(L) \geq 3$.

By the same argument as the proof of the Case (2) of Theorem 2.1 in [Fk4],

$$
\begin{aligned}
g(L) & =g\left(L_{\alpha}\right) \\
& =1+\frac{1}{2}\left(K_{X_{\alpha}}+2 L_{\alpha}\right)\left(L_{\alpha}\right)^{2} \\
& \geq 1+\frac{1}{2}\left(K_{X_{\alpha}}+2 L_{\alpha}\right) L_{\alpha} M_{\alpha} \\
& \geq 1+\frac{1}{2}\left(K_{X_{\alpha}}+M_{\alpha}+L_{\alpha}\right) L_{\alpha} M_{\alpha} \\
& =1+\frac{b}{2}\left(K_{F_{\alpha}}+\left.L_{\alpha}\right|_{F_{\alpha}}\right)\left(\left.L_{\alpha}\right|_{F_{\alpha}}\right)
\end{aligned}
$$

where F_{α} is a general fiber of φ_{α}.
Since $\kappa\left(F_{\alpha}\right) \geq 0$ and $b \geq 2$, we have

$$
\begin{aligned}
g(L) & \geq 1+2 g\left(\left.L_{\alpha}\right|_{F_{\alpha}}\right)-2 \\
& =2 g\left(\left.L_{\alpha}\right|_{F_{\alpha}}\right)-1 .
\end{aligned}
$$

On the other hand, $q\left(F_{\alpha}\right) \geq q\left(V_{\alpha}\right)=q(X)$ and $g\left(\left.L_{\alpha}\right|_{F_{\alpha}}\right) \geq q\left(F_{\alpha}\right)$ since $h^{0}\left(\left.L_{\alpha}\right|_{F_{\alpha}}\right) \geq$ 1. Therefore

$$
\begin{aligned}
g(L) & \geq 2 g\left(\left.L_{\alpha}\right|_{F_{\alpha}}\right)-1 \\
& \geq 2 q\left(F_{\alpha}\right)-1 \\
& \geq 2 q(X)-1 .
\end{aligned}
$$

(II-2-2) The case in which $g\left(B_{\alpha}\right) \geq 1$.
Then we remark that $b \geq 3$. Indeed if $b \leq 2$, then $h^{0}(L)=h^{0}\left(L_{\alpha}\right)=$ $h^{0}\left(M_{\alpha}\right) \leq 2$ since $g\left(B_{\alpha}\right) \geq 1$. But this is a contradiction. We consider the quasipolarized fiber space $\left(\psi_{\alpha}, X_{\alpha}, B_{\alpha}, L_{\alpha}\right)$. By the same argument as the proof of the Case (1) of Theorem 2.1 in [Fk4], we can prove

$$
\begin{aligned}
g(L) & =g\left(L_{\alpha}\right) \\
& =g\left(B_{\alpha}\right)+\frac{1}{2}\left(K_{X_{\alpha} / B_{\alpha}}+2 L_{\alpha}\right)\left(L_{\alpha}\right)^{2}+\left(g\left(B_{\alpha}\right)-1\right)\left(L_{\alpha}^{2} F_{\alpha}-1\right) \\
& \geq g\left(B_{\alpha}\right)+\frac{1}{2}\left(K_{X_{\alpha} / B_{\alpha}}+2 L_{\alpha}\right) L_{\alpha} M_{\alpha} \\
& \geq g\left(B_{\alpha}\right)+\frac{b}{2}\left(K_{X_{\alpha} / B_{\alpha}}+2 L_{\alpha}\right) L_{\alpha} F_{\alpha},
\end{aligned}
$$

where F_{α} is a general fiber of φ_{α}.
Since $b \geq 3$ and $\kappa\left(F_{\alpha}\right) \geq 0$, we obtain that

$$
\begin{aligned}
g(L) & \geq g\left(B_{\alpha}\right)+\left.\frac{b}{2}\left(K_{F_{\alpha}}+\left.2 L_{\alpha}\right|_{F_{\alpha}}\right) L_{\alpha}\right|_{F_{\alpha}} \\
& \geq g\left(B_{\alpha}\right)+3 g\left(\left.L_{\alpha}\right|_{F_{\alpha}}\right)-3+\frac{3}{2}\left(\left.L_{\alpha}\right|_{F_{\alpha}}\right)^{2} .
\end{aligned}
$$

Since $g(L) \in \boldsymbol{Z}$, we obtain that

$$
\begin{aligned}
g(L) & \geq g\left(B_{\alpha}\right)+3 g\left(\left.L_{\alpha}\right|_{F_{\alpha}}\right)-3+2 \\
& =g\left(B_{\alpha}\right)+2 g\left(\left.L_{\alpha}\right|_{F_{\alpha}}\right)+g\left(\left.L_{\alpha}\right|_{F_{\alpha}}\right)-1 .
\end{aligned}
$$

Because $\kappa\left(F_{\alpha}\right) \geq 0$, we have $g\left(\left.L_{\alpha}\right|_{F_{\alpha}}\right) \geq 2$. Moreover $g\left(\left.L_{\alpha}\right|_{F_{\alpha}}\right) \geq q\left(F_{\alpha}\right)$ since $h^{0}\left(\left.L_{\alpha}\right|_{F_{\alpha}}\right)>0$. Hence

$$
\begin{aligned}
g(L) & \geq g\left(B_{\alpha}\right)+2 g\left(\left.L_{\alpha}\right|_{F_{\alpha}}\right)+1 \\
& \geq g\left(B_{\alpha}\right)+2 q\left(F_{\alpha}\right)+1 \\
& \geq q(X)+q\left(F_{\alpha}\right)+1 .
\end{aligned}
$$

If $g\left(B_{\alpha}\right)=1$ or 2 , then

$$
\begin{aligned}
g(L) & \geq 2 g\left(B_{\alpha}\right)-1+2 g\left(\left.L_{\alpha}\right|_{F_{\alpha}}\right) \\
& \geq 2 q\left(V_{\alpha}\right)-1 \\
& =2 q(X)-1
\end{aligned}
$$

This completes the proof of Theorem 2.2.

3. Conjecture

Before we propose the Conjecture, we give the notations used later.
Notation 3.1. Let (X, L) be a polarized n-fold with $h^{0}(L) \geq 2$. Let $|M|$ be the movable part of $|L|$, and let Z be the fixed part of $|L|$. We put $X_{0}=X$, $L_{0}=L$, and $M_{0}=M$. By Hironaka Theory, there exist a sequence of blowing ups: $\mu_{k}: V_{2, k} \rightarrow V_{2, k-1}$ along a smooth center B_{k-1}, and a non-negative integer t such that $\mathrm{Bs}\left|M_{2, t}\right|=\emptyset$ and $\mathrm{Bs}\left|M_{2, t-1}\right| \neq \emptyset$, where $M_{2, k}$ is the movable part of $\left|\mu_{k}^{*}\left(M_{2, k-1}\right)\right|$. Let $\mu=\mu_{1} \circ \cdots \circ \mu_{t}, X^{\prime}=X_{t}$, and $M^{\prime}=M_{t}$. Let E_{k} be the μ_{k}-exceptional effective divisor and $Z^{\prime}=\mu^{*} L-M^{\prime}$. Then there is a morphism $\varphi_{\left|M^{\prime}\right|}: X^{\prime} \rightarrow \boldsymbol{P}^{N}$ defined by $\left|M^{\prime}\right|$. Let $W=\varphi_{\left|M^{\prime}\right|}\left(X^{\prime}\right)$. Then there exist a normal projective variety \widetilde{W}, a morphism $\tilde{\varphi}: X^{\prime} \rightarrow \widetilde{W}$, and a finite morphism $\varepsilon: \widetilde{W} \rightarrow W$ such that $\varphi_{\left|M^{\prime}\right|}=\varepsilon \circ \tilde{\varphi}$. Let $r: W_{r} \rightarrow \widetilde{W}$ be a resolution of \widetilde{W}. Then there exist a smooth projective variety $X^{\prime \prime}$, a birational morphism $\theta^{\prime}: X^{\prime \prime} \rightarrow$ X^{\prime}, and a fiber space $f^{\prime \prime}: X^{\prime \prime} \rightarrow W_{r}$ such that $\tilde{\varphi} \circ \theta^{\prime}=r \circ f^{\prime \prime}$. By definition there exists an ample and spanned line bundle A on W such that $M^{\prime}=\varphi_{\left|M^{\prime}\right|}^{*}(A)$. Let $\tilde{A}=\varepsilon^{*}(A)$ and $A_{r}=r^{*}(\tilde{A})$. We remark that A_{r} is nef, big, and spanned. Let $L^{\prime \prime}=\left(\theta^{\prime}\right)^{*}\left(L^{\prime}\right)$ and let $F^{\prime \prime}$ be a general fiber of $f^{\prime \prime}$.

Conjecture 3.2. Let (X, L) be a quasi-polarized manifold with $\operatorname{dim} X=n$, $\kappa(X) \geq 0$, and $h^{0}(L) \geq n$. We use Notation 3.1. Then (X, L) satisfies one of the following:
(1) $g(L) \geq 2 q(X)-1$.
(2) $2 \leq m=\operatorname{dim} W \leq n-1, \quad M^{\prime}$ is not big, $g(L) \geq q\left(W_{r}\right)+2 q\left(F^{\prime \prime}\right)+$ $(n-m-1) \geq q(X)+q\left(F^{\prime \prime}\right)+(n-m-1)$, and $\left(W_{r}, A_{r}\right)$ is birationally equivalent to a scroll over a curve with $q\left(W_{r}\right) \geq n-m+1$.
(3) $\operatorname{dim} W=1, M^{\prime}$ is not big, $g(\widetilde{W}) \geq n$, and $g(L) \geq g\left(W_{r}\right)+2 q\left(F^{\prime \prime}\right)+$ $(n-2) \geq q(X)+q\left(F^{\prime \prime}\right)+(n-2)$.

References

[BS] Beltrametti, M. C. and Sommese, A. J., The Adjunction Theory of Complex Projective Varieties, de Gruyter Expo. Math., 16, Walter de Gruyter, Berlin, New York, 1995.
[Fj0] Fuirta, T., Classification Theorres of Polarızed Varreties, London Math. Soc. Lecture Note Ser., 155, Cambridge Univ. Press, 1990.
[Fj1] Fujita, T., Remarks on quası-polarized varieties, Nagoya Math. J., 115 (1989), 105-123.
[Fk0] Fukuma, Y., A lower bound for the sectional genus of quasi-polarized surfaces, Geom. Dedicata, 64 (1997), 229-251.
[Fk1] Fukuma, Y., A lower bound for sectional genus of quası-polarized manifolds, J. Math. Soc. Japan, 49 (1997), 339-362.
[Fk2] Fukuma, Y., A lower bound for sectional genus of quasi-polarized manifolds II, preprint.
[Fk3] Fukuma, Y., On sectional genus of quası-polarızed manifolds with non-negative Kodarra dimension, Math. Nachr., 180 (1996), 75-84.
[Fk4] Fukuma, Y., On sectional genus of quasi-polarized 3-folds, Trans. Amer. Math. Soc., 351 (1999), 363-377
[Fk5] Fukuma, Y., A lower bound for $K_{X} L$ of quası-polarized surfaces (X, L) with non-negative Kodarra dimension, Cand. J. Math., 50 (1998), 1209-1235.
[KMM] Kawamata, Y., Matsuda, K. and Matsuki, K., Introduction to the mınımal model problem, Adv. Stud. Pure Math., 10, Kinokuniya, Tokyo, 1987, 283-360.
[X] XIaO, G., Irregularity of surfaces with a linear pencil, Duke Math. J., 55 (1987), 597 602.

Department of Mathematics
College of Education
Naruto University of Education
Takashima, Naruto-cho
Naruto-shi 772-8502, Japan
E-mail: fukuma@naruto-u.ac.jp

[^0]: 1991 Mathematics Subject Classification. Prımary 14C20.
 Key words and phrases. Quası-polarized manifold, Kodara dimension, sectional genus.
 Received April 9, 1999; revised August 23, 1999.

