A HYPERSURFACE WHICH DETERMINES LINEARLY NON-DEGENERATE HOLOMORPHIC MAPPINGS

MANABU SHIROSAKI

§1. Introduction

In [S1] and [S2], the author gave hypersurfaces S in $P^n(C)$ with the property:

(UA) If two algebraically non-degenerate holomorphic mappings f and g of C into $P^n(C)$ have the same pull-back $f^*S = g^*S$ as a divisor, then f = g.

However, the minimal degree of S is of exponential order of n. In this paper, we give another hypersurface S of much lower degree with the stronger property:

(UL) If two linearly non-degenerate holomorphic mappings f and g of C into $P^n(C)$ have the same pull-back $f^*S = g^*S$ as a divisor, then f = g.

§2. Fundamental result

We mean by a nonzero entire function an entire function with a point whose value is not zero. For two nonzero entire functions f and g, we say that they are equivalent if the ratio f/g is constant. This introduces an equivalence relation in each set of nonzero entire functions. The following theorem was given by Green [G] and Fujimoto [F]:

THEOREM A. Let f_0, \ldots, f_n be nonzero entire functions such that $f_0^d + \cdots + f_n^d = 0$, where d is a positive integer. If $d \ge n^2$, then

$$\sum_{f_j \in I} f_j^d = 0$$

for each equivalence class I. Especially each class has at least two elements.

Now, we consider a homogeneous polynomial $P(w_0, w_1)$ of degree d with the following property:

(U1) Let f and g be nonconstant holomorphic mappings of C into $P^1(C)$ with representations $\tilde{f} = (f_0, f_1)$ and $\tilde{g} = (g_0, g_1)$, respectively. If $P(f_0, f_1) =$

Received April 8, 1999.

MANABU SHIROSAKI

 $h^d P(g_0, g_1)$ holds for some meromorphic function h, then $f_j = \omega h g_j$ $(0 \le j \le n)$, where $\omega^d = 1$.

The existence of such polynomial is shown in [S2], where the minimal degree is 13.

DEFINITION. A holomorphic mapping f of C into $P^n(C)$ is linearly nondegenerate if its image is not contained in any hyperplane of $P^n(C)$. This is equivalent to that f_0, \ldots, f_n are linearly independent over C, where (f_0, \ldots, f_n) is a representation of f in a homogeneous coorditate system of $P^n(C)$.

§3. Uniqueness of holomorphic mappings

For a given *n*, we take an integer *q* with $q \ge (2n-1)^2$ and define a homogeneous polynomial $P_n(w_0, \ldots, w_n)$ of degree dq by

$$P_n(w_0,\ldots,w_n) = P(w_0,w_1)^q + P(w_1,w_2)^q + \cdots + P(w_{n-1},w_n)^q,$$

and so, its minimal degree is $d(2n-1)^2$ which is much smaller than d^n of the minimal degree of the polynomials in [S1] and [S2].

Then, the hypersurface defined by the zero set of P_n has the property (UL):

THEOREM. Let f and g be linearly non-degenerate holomorphic mappings of C into $P^n(C)$ with representations $\tilde{f} = (f_0, \ldots, f_n)$ and $\tilde{g} = (g_0, \ldots, g_n)$, respectively. If

$$P_n(f_0,\ldots,f_n)=\alpha P_n(g_0,\ldots,g_n)$$

holds for an entire function α without zeros, then

$$f_i = \gamma g_j \quad (0 \le j \le n),$$

where $\gamma^{dq} = \alpha$.

Proof. By linear non-degeneracy, $P(f_j, f_{j+1}) \neq 0$ and $P(g_j, g_{j+1}) \neq 0$ and there are no equivalent pairs both in $\{P(f_j, f_{j+1}) : 0 \leq j \leq n-1\}$ and in $\{P(g_j, g_{j+1}) : 0 \leq j \leq n-1\}$. Hence, by Theorem A, there exist k_0 with $0 \leq k_0 < n$ and ω_0 with $\omega_0^q = 1$ such that

(1)
$$P(f_0, f_1) = \omega_0 \beta P(g_{k_0}, g_{k_0+1}),$$

where β is an entire function with $\beta^q = \alpha$. Also by Theorem A, we have

(2)
$$P(f_1, f_2) = \omega_1 \beta P(g_{k_1}, g_{k_1+1})$$

for a k_1 with $0 \le k_1 < n$, $k_1 \ne k_0$ and an ω_1 with $\omega_1^q = 1$. Fix an entire function γ with $\gamma^d = \beta$. Then, by applying (U1) to (1) and (2), there exist η_0 and η_1 with $\eta_0^d = \eta_1^d = \omega_0$ such that

(3)
$$f_0 = \eta_0 \gamma g_{k_0}, \quad f_1 = \eta_0 \gamma g_{k_0+1}$$

and

106

(4)
$$f_1 = \eta_1 \gamma g_{k_1}, \quad f_2 = \eta_1 \gamma g_{k_1+1}$$

Hence, $\eta_0 g_{k_0+1} = f_1/\gamma = \eta_1 g_{k_1}$. By linear non-degeneracy of g, we get $k_0 < n-1$, $k_1 = k_0 + 1$ and $\eta_0 = \eta_1$. Therefore,

$$P(f_1, f_2) = \omega_0 \beta P(g_{k_0+1}, g_{k_0+2}).$$

is obtained. Successively, we have

$$P(f_j, f_{j+1}) = \omega_0 \beta P(g_{k_0+j}, g_{k_0+j+1}) \quad (j = 0, \dots, n-k_0-1).$$

By applying (U1) to this, as above, there exist η_j with $\eta_j^q = \omega_0$ such that $f_j = \eta_j \gamma g_{k_0+j}, f_{j+1} = \eta_j \gamma g_{k_0+j+1}$ $(j = 0, ..., n - k_0 - 1)$. If $k_0 \neq 0$, then there exist m with $0 \le m \le k_0 - 1$ and ω' with $(\omega')^q = 1$ such that $P(f_{n-k_0}, f_{n-k_0+1}) = \omega' \beta P(g_m, g_{m+1})$, and there exists η' with $(\eta')^d = \omega'$ such that $f_{n-k_0} = \eta' \gamma g_m$, $f_{n-k_0+1} = \eta' \gamma g_{m+1}$. Hence, we get $\eta_{n-k_0-1} \gamma g_n = f_{n-k_0} = \eta' \gamma g_m$, which is a contradiction because of $n \neq m$. Therefore we conclude $k_0 = 0$ and that

$$f_j = \eta_j \gamma g_j, \quad f_{j+1} = \eta_j \gamma g_{j+1} \quad (j = 0, \dots, n-1).$$

These imply $\eta_0 = \cdots = \eta_{n-1}$.

Remark. The hypersurface given in [S2] has Kobayashi hyperbolicity. However, our hypersurface is no longer Kobayashi hyperbolic for any q if $n \ge 4$. In fact, a nonconstant holomorphic mapping $f = (\alpha : \zeta \alpha : 0 : \beta : \zeta \beta : 0 : \cdots : 0)$ satisfies $f(C) \subset S$, where α and β are entire functions linearly independent over C, and ζ and ζ are constants satisfying $P(1,\zeta)^q + P(\zeta,0)^q = 0$ and $P(0,1)^q + P(1,\zeta)^q = 0$, respectively. Also, it is not difficult to prove Kobayashi hyperbolicity of S for $q \ge (n-1)^2$ in the case of n = 2, 3.

REFERENCES

- [F] H. FUJIMOTO, On meromorphic maps into the complex projective space, J. Math. Soc. Japan, 26 (1974), 272–288.
- M. L. GREEN, Some Picard theorems for holomorphic maps to algebraic varieties, Amer. J. Math., 97 (1975), 43-75.
- [S1] M. SHIROSAKI, On polynomials which determine holomorphic mappings, J. Math. Soc. Japan, 49 (1997), 289–298.
- [S2] M. SHIROSAKI, On some hypersurfaces and holomorphic mappings, Kodai Math. J., 21 (1998), 29-34.

DEPARTMENT OF MATHMATICAL SCIENCES College of Engineering Osaka Prefecture University Sakai 599-8531, Japan 107

Q.E.D.