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A NEW INTERPRETATION OF THE BACKLUND

TRANSFORMATION OF THE SINE-GORDON EQUATION

ZE-JUN H U AND ZHEN-ZU SUN*

Abstract

Using special geodesic orthogonal coordinates on surfaces of constant Gauss

curvature —1 in R3, a new interpretation of the Backlund transformation of the sine-

Gordon equation is given by elementary geometric procedure.

1. Introduction

Let φ = φ(u,v) be a solution of the sine-Gordon equation

(1) φuu-φvv = -sinφcosφ.

Then for any constant τ (with s i n 2 τ ^ 0 ) , the following system of equations

sin τ(αM — φΌ) = cos τ cos α cos φ + sin α sin φ,

sin τ(ocv — φu) = —cos τ sin α sin φ — cos α cos φ,

is solvable with integrability condition being given by (1). It is easily seen that
every solution α = α(w, v) of (2) satisfies

<Xuu - otvv = sin α cos α,

and hence the solutions of (2) produce new-solutions of the sine-Gordon
equation. This fact is just the so-called classical Backlund transformation.

It is well-known that there is a correspondence between nontrivial solutions
of the sine-Gordon equation (1) and the surfaces of constant Gauss curvature —1
in R3 (see e.g., [4] and [7]). In particular, solution φ(u,v) of (1) with sin 2φ Φ 0
corresponds to a local surface of constant Gauss curvature —1 in R3 with the first
and second fundamental forms being given by

I = sin2 φ du2 + cos2 φ dv2,

II = sinφ cos φ(du2 — dv2).
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In this note, we emphasize the existence of special geodesic orthogonal
coordinates on surfaces of constant Gauss curvature - 1 in R3 and applying these
coordinates we then get our main result which provides a new interpretation for
the Backlund transformation of the sine-Gordon equation.

THEOREM. Let φ = φ(u,v) be a solution of (I) with sin2ι^ φθ. φ deter-
mines a surface Σ of constant Gauss curvature — 1 in R3 with the first and second
fundamental forms being given by (3) in coordinates (w, v). Let (x, y) be geodesic
orthogonal coordinates on Σ such that all the x-curves are geodesies and all the
y-curves are of constant geodesic curvature 1. Then the angle a = a(u,v) that y-
curves makes with the u-curves, is also a solution of the sine-Gordon equation (1).

Remark 1. The classical Backlund transformation (2) is geometrically
derived from the pseudosphere line congruence and the fact that on surfaces of
constant Gauss curvature - 1 in R3 there exist the so-called Tschebyscheίf co-
ordinates (see [1] and [4] for the details). Our theorem depends heavily on the
special geodesic orthogonal coordinates as stated in the theorem. An advantage
of our proof for the theorem is the fact that the new solution α(w, v) is achieved
by solving two correlated initial value ODE problems.

Remark 2. For more information about the geometric sine-Gordon
equation and the similar sinh-Gordon or sinh-Laplace equations, one may consult
[3], [5], [7] and [8].

2. Proof of the theorem

Let φ = φ(u,v) be a solution of (1) with s i n 2 ^ / 0 , i.e., without loss of
generality, 0 < φ < π/2. Then φ corresponds to a local surface Σ of constant
Gauss curvature - 1 in R3 with the first and second fundamental forms being
given by (3) in coordinates (u,v) and the integrability condition being given by

(i)
For any fixed point p0 e Σ with coordinate (UQ,VO) and any constant αo, let

Fo = cosαo?«+ sinαo?t, e 7),0Σ be a unit tangent vector. Then there exists a
unique curve Γ passing through p0 along the direction Vo and possessing constant
geodesic curvature kg = 1.

We can choose a geodesic orthogonal coordinates (x, y) on Σ such that Γ is
a j-curve with x = 0 and p0 corresponding to y — 0, and with respect to (x, y)
the first fundamental form of Σ takes the form (compare with, e.g., pp. 80-81 of
[6])

(4) I = dx2 + e2xdy2.

Suppose, in the coordinates (u,v), Γ is parametrized by u = u\(y), v — υ\{y)
with y being the arc length of Γ, and let a\{y) be the angle that Γ makes with the
w-curves. Then u = u\(y), v = v\(y) and <x = ocι(y) satisfy the following equa-
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tions (cf. p. 254 of [2]):

( du cosα dv sinα

(5)

d^_

dy sinφ' dy cosφ'

doc „ cosα , sinα ,

I "(0) -

"~—TΨv ' TΎW>

smφ cosφ
), v(0) = vo, α(0) = α 0.

For any /? e Γ with coordinate («i(.y),ι;i(>>)), l e t the geodesic which
meets T at p orthogonally, i.e., Cy is an x-curve with y = constant and Cy is
parametrized by arc length x. Let θ(x, y) be the angle that Cy makes with the
w-curves. Then according to LiouviUe's formula (cf. p. 253, Proposition 4 of [2]),
the coordinates (u(x,y),v(x,y)) of Cy and θ(x, y) satisfy the following equations

(6)

du

δx'

dv_

sin φ' dx COSl/''

dx sinφ v cosφ w '

«(0j)=«iW, v(0,y) = Όl(y), θ(0, y) = αj(y) - π/2.

Thus we get functions u = u(x, y)9 v = v(x, y) and θ = θ(x, y) which are defined
on Σ and satisfy, for all the c-curves,

(7)

dυ

dx'

dθ

sinφ'

COS0 ,

x cos φ'

sin# ,

and for all the ^-curves that are parametrized by arc length exy with x
constant,

(8)

raw

dθ

. sin0 . COS0

sin ι/f' 5jμ cos ι/̂ '

s in# ,

Hence, for the coordinates transformation

(9)

we have
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fdu du\

dx dy

dv dv

\ώc dy/

—e
sinφ

, cosθ

cosφ .

Then for the inverse coordinates transformation of (9)

(11)

we get from (10)

x = x(u,v),

y = y(u,v),

(12)
cos θ sin φ sin θ cos φ \

—e~x sin θ sin φ e~x cos θ cos φ J

fdu du

dx dy

dv dv

x dy

Now, from (6), (7), (11) and (12) we see that

θ = θ(x, y) = θ(x(u, v), y(u, υ)) = : θ{u, υ),

and

dθ_dθ_dx ^

du dx du dy du

/cosθ sinθ

\sin φ v cos φ

smφ cosφ

= ψυ — sin ̂  sin ι/̂ ,

dθ__dθdxL dθdi

dv dx dv dy dv

fcosθ

= H~T

— φu

cos φ u

smθ . cosθ
•- γφv H γ\

sin φ cos ψ

that is,

(13)

— = φv - sin θ sin ι/ί,

dθ
COS# COS 1/Λ
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Hence

θUu — θvv = sin θ cos θ,

and α(w, υ) = θ(u, v) + π/2 is a new solution of the sine-Gordon equation (1),
which is the angle that j -curves makes with the w-curves on Σ. This completes
the proof of the theorem.
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