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A CLASSIFICATION OF TRIGONAL RIEMANN SURFACES

ROBERT D. M. ACCOLA

Abstract

Necessary and sufficient conditions are given for the existence of a trigonal Rie-

mann surface with given genus and types of ramification points.

A compact Riemann surface Wp of genus p (p > 3) is said to be trigonal
if it admits a three sheeted covering of the Riemann sphere. The fibers of this
map form a linear series g\. All non-hyperelliptic Riemann surfaces of genus
4 are trigonal and generically admit two distinct g^'s. Exceptionally, a non-
hyperelliptic W4 admits a unique g\ which is half-canonical. For p > 4 the locus
of trigonal Riemann surfaces in moduli space has codimension p — 4. Also for
p > 4 a trigonal Riemann surface has a unique g\.

For a trigonal Riemann surface Wp, there is a unique integer / so that
the complete linear series \{l)g\\ and | (/+1)#3 | have dimensions / and l + ε
respectively where ε > 1. We shall call / the trigonal index of Wp and denote it
ti. (Then ti < p/2.)

Now we consider the ramification points of the three sheeted cover using
the terminology introduced by Coppens. Ramification points of multiplicity
two will be called ordinary, and those of multiplicity three will be called total.
Ramification points occurring in the residual divisor (defined below), when ti <
p/2, will be said to be of Type II, and otherwise of Type I. If ti = p/2 then all
ramification points are of Type I. Thus there are four kinds of ramification
points.

Recently trigonal Riemann surfaces have been studied extensively in the
context of the trigonal-tetragonal relation, but from the viewpoint of this paper
the literature in more sparse. Despite the work of Hensel-Landsberg [4] con-
cerning the dimension in moduli space of the loci of trigonal surfaces with given
trigonal index, very little seems to have occurred until Coppens distinguished the
four kinds of ramification points [2], [3]. Then Kato and Horiuchi [6], [5] derived
a canonical algebraic equation of degree three defining a trigonal Riemann
surface. This derivation for trigonal surfaces occurred more than a century after
the corresponding derivation for hyperelliptic surfaces. It appears that the work
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of Coppens was necessary for this derivation to be done. In this paper we build
upon the work of Coppens, Kato, and Horiuchi.

Now we quote without proof some results concerning the trigonal index.
The proofs follow from the Riemann-Roch theorem. Also see [2], [3]. (Kp is the
canonical divisor.)

LEMMA 1. Suppose that Wp is a trigonal Rίemann surface. Then

1) (p - 1 - tί)g\ is the largest multiple of g\ that is special.
2) Kp = (p- 1 -tί)g\ +R, where \R\ = gε

p, ε = 0 or 1, and p = 3ti-
(/?— 1). (R will be called the residual divisor)

i) s = 0 if and only if ti < p/2.
ii) ε = 1 if and only if ti — p/2. In this case: p — (p/2) + 1.

3) (p - l)/3 < ti < p/2

LEMMA 2. Suppose that Wp is a trigonal Riemann surface. If ti <
(p — l)/2, then ti is the unique integer so that \(tί)g\\ and \Kp — (tΐ)g\\ are both
compounded of g\.

If the trigonal index and genus are given then the Weierstrass weight of each
of the four kinds of ramification points is easily computed. (See [6] or [2], [3].)
The only ramification points which are not Weierstrass points occur when the trigonal
index is maximum and the ramification points are ordinary and of Type I.

Now we outline some of the work of Kato-Horiuchi [6] and Kato [5]. Let
Wp be a trigonal Riemann surface of genus p and trigonal index /. Then Wp

admits a meromorphic function y of degree 3/ + 3 satisfying

(1) yi + Q(x)y + R(x) = 0

where Q and R are polynomials, degree Q = 21 + 2, degree R = 3/ -f 3, and
degree (4Q3 + 21R2) = 6/ + 6. The poles of y all occur in the divisor of g\
above oo. To describe Q and R more precisely we have seven monic polynomials:

Πi, Π2, Π3, Π4 all with simple roots, with degrees s, t, n, m and Γi, Γ2, Γ3 (not
necessarily with simple roots) with degrees σ,μ, v.

We also have a non-zero constant λ. Then Q and R are as follows:

(2) Q = λΓxUiiΠzΫTU R = (22)/(3v / 3)Γ 2 Π 1 (Π 2 ) 2 (Π 4 ) 2

Then 4 β 3 +27R2 = 4 2 2 ( n ! ) 2 ( n 2 ) 4 ( n 4 ) W i ) 3 Π i ( Π 2 ) 2 + (Γ 2 ) 2 Π 4 ]
Now define three monic polynomials P i , P 2 , and P3 as follows:

Pi = ( Γ 2 ) 2 Π 4

P 3 = (Γ i ) 3 Πi(Π 2 ) 2
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Then Pi is the monic polynomial so that

and

Λ = (Γ 3 ) 2 Π 3 .

By considering the degrees of the various polynomials we have the following:

6/ + 6 = 3m + 2s + At + n + 2v.

By algebra it follows that: l+l =m + μ-σ and

Λ + 2v = m + 2// = j + 2/ + 3σ

DegΛ = Degi>2 = DegP 3 .

P\,Pι, and P 3 are coprime in pairs as are Πi and Π 2 .

n is the number of ordinary Type I ramification points.

m is the number of ordinary Type II ramification points.

s is the number of total Type I ramification points.

t is the number of total Type II ramification points.

These ideas of Kato and Horiuchi are the starting point for the following
discussion.

Suppose that we have the equation

(3) (l

where P\,P2, and P 3 are monic polynomials, coprime in pairs, and each of
the same degree d. A is a non-zero constant. Then we can find seven monic
polynomials Π i , Π 2 , Π 3 , Π 4 all with simple roots, with degrees s,t,n,rn, and
Γi,Γ2,Γ 3 (not necessarily with simple roots) with degrees σ,μ,v, so that

Pi = (Γ 3 ) 2 Π 3

Pi = (Γ 2 ) 2 Π 4

P 3 = (Γ i ) 3 Πi(Π 2 ) 2 .

Then

(4) d = n + 2v = m + 2μ = s + 2t + 3σ

Define / by the equation

/ + 1 — m + μ — o



84 ROBERT D. M. ACCOLA

Then

(5) 3/ + 3 = 2m + s + It + μ

6/ + 6 = 3m + 2s + 4ί + « + 2v.

We now obtain a trigonal Riemann surface defined by the equation

by first going to the Galois closure of the three sheeted covering of Pι as follows:
(Q and R are defined by equations (2))

i) Define a rational function Y by

(6) Y=(l+λ)Pi/P2

Y is of degree d with branching over 0, oo, and 1 described by equations (4)
ii) \[Ϋ defines a hyperelliptic Riemann surface Wq. (1 — VY)/(1 + \/Ύ) is

a meromoφhic function, Z, on ̂ .

iii) Z ! / 3 ( = U) defines a cyclic 3-sheeted cover Wr —> W .̂

- 7)

iv) Let Z>3 be the dihedral group of order 6. Then Wr is a Dτ> cover of Z*1.

D3 = (U-> e{2πι/3)U, U-+U-1}

v) Let T= U+U-K Then:

Γ 3 - 3Γ - C/3 + t/"3 = (2 + 2F)/(1 - Y).

T is invariant under the involution φ on WΓ, where φU — U~ι. Thus T is a
function on the trigonal Riemann surface Wp = Wr/(φ} where 2p — 2 = n +
2s + 2t-6

vi) Let y = 3R/(T- \)Q (Kato's transformation [5]). The equation

y3 + Qy + Λ - o
now follows by computation.

vii) If / < (/?/2) then / is the trigonal index. (See [5], notice that this is not
required in the above discussion.)

Following Kato [5] we make the following definition.

DEFINITION. Given six non-negative integers, l,n,m,s,t,p, where 2/7 — 2 =
n -f m + 2s + 2t - 6, and / < (p/2), let Trig/7(/,«, m, s, t) be the locus in moduli
space of trigonal Riemann surfaces of genus p with trigonal index /, and

n: ordinary ramification points of Type I.

m: ordinary ramification points of Type II.

s: total ramification points of Type I.

t: total ramification points of Type II.
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THEOREM. Necessary and sufficient conditions on the non-negative integers
l,n,m,s,t,p, in order that Tύgp(l,n,m,s,t) be non-empty are:

1) 2/7 - 2 = n + m + 2s + It - 6.
2) There exist non-negative integers v, μ, σ, so that equations (5) are satisfied.
3) / < (p/2).

Remark. Note that equations (4) follow and that l+l=m + μ — σ.

Proof. The necessity is due to Kato and Horiuchi [6], and Kato [5].
Sufficiency of the conditions: The existence of polynomials Pi, P2, and P3 whose
zeros are described by equations (4) is equivalent to the existence of a rational
function Y: P 1 —> P 1 with ramification over 0, oo, and 1 determined by
equations (4). To find such a Y we must find a homomorphism from the
fundamental group of

P 1 - {0, oo, 1} - {p + σ other points}

into Sd, the symmetric group on {1,2,...,*/} where the permutations for 0, oo,
and 1 are chosen to have cycle structure according to equations (4), the per-
mutations for the other points are 2-cycles (transpositions), and the image of
the homomorphism is a transitive subgroup of Sd. This will insure that the
corresponding covering of P 1 is connected and has genus 0 (by the Riemann
Hurwitz formula.) The covering map of degree d with this monodromy group
will be the desired rational function, Y. ([8], [1])

To do this we first observe in Sd the following.
If d is even let α = (1,2)(3,4) (d - l,rf), and let β = (2,3)(4,5)

(</-2,</- l ) .
If d is odd let α - (1,2)(3,4) (d - 2, d - 1), and let β = (2,3)(4, 5)

In both cases ocβ is a J-cycle and the number of 2-cycles in both α and β is
d-\.

We shall consider in detail the case where d is even. The case where d is
odd is handled in an analogous manner.

Let X = Pι - {0,oo,l, βi,Λ2,...,Λp+α}. Let yo>y«>yi>αi>α2» >α/>+σ b e

paths "circling" the punctures in P 1 . Their homotopy classes generate π\(X, )
with one relation. We choose to write this relation

γ0CC\CC2 0C«/2yooα(«/2)+l ' ' ' (X{{n+m)/2)-\y\^{n+m)/2 ' ' ' Up+σ = e.

(Remember p-\-σ = 2d-2-v — μ — t — 2σ

= (n/2) + ((m/2) - 1) + (s + t + σ - 1).

For the homomorphism from π\(X, ) —> Sd, proceed as follows:
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y o ->( l ,2) (3 ,4)- . . (2v- l ,2v)

αi -» (2v+ l,2v + 2)

α2 -> (2v + 3,2v + 4)

α«/2 -> (2v + Λ - 1,2v + Λ) (2v + Λ = </)

y o o - . (2,3)(4,5)... ( 2 Λ 2/i + 1)

α(»/2)+i -> (2μ + 2,2μ + 3)

α(Λ/2)+2 -> (2// + 4,2μ + 5)

α((«+m)/2)-i -> (2μ + ra - 2,2μ -f m - 1).

Then the product of these permutations is a cycle of length d. For convenience
assume this d-cycle is (d,d - \,d —'2,. . . , 3,2,1) := <5. Finally, let yt —> (1,2,3)
(4,5,6) ••• (3σ-2,3σ-l,3σ)(3σ+l,3σ+2)(3σ+3,3σ+4) ••• (3σ+2t-l,3σ+2t).
Then δγx —> a cycle of length rf - t — 2σ (= s + / + σ). <fyj can be written as a
product of s -f / + σ — 1 2-cycles. The images of the remaining α's are chosen to
give the inverse of δyx. This completes the proof when d is even.

Remarks. 1) One sees that p + σ gives the dimension for Trig (/, n, m, s, ί) if
Kp/2.

2) One can have fewer "other points" with more complicated ramification
above them. Also one could have more complicated ramification points above
0, oo, and 1. For example, over 1 a ramification point of multiplicity four
would correspond to a factor common to Γi and Πi. But the resulting surfaces
would lie on subvarieties of Trig/7(/,«,m,5i, t).

3) If / = p/2 there will be, presumably, a one dimensional family of such
models for each trigonal surface, corresponding, in some manner, to the fact that
the residual divisor in this case moves in a pencil.

4) By letting two of the transpositions above the "other points" run
together and cancel, the cover Y : Pι —> Pι becomes disconnected, so that one
can see rather easily the reducible stable boundary points in the closure of
Tήgp(l,n,m,s,t). If one of the transpositions runs into two points above, say, 0
then we obtain a connected stable boundary point.

5) If two components belong to a boundary point of Tήgp(l,n,m,s, t) then
the condition / < p/2 need no longer hold for both components. Thus one
cannot avoid the problem of considering surfaces that result from the con-
struction of Y in the proof of the theorem where hypothesis 3) need not hold.
By naive dimension considerations one sees that generically such surfaces will
have maximum trigonal index and all ramification points will be of Type I.
(s+t will still count the number of total ramification points [4].)
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6) The problem still remains of analyzing trigonal surfaces arising from the
construction in the theorem when / > p/2. This appears to be a difficult
problem requiring a much closer look at the polynomials P\,Pi, and P3.

Note on terminology. The author has used the term trigonal index for what
is sometimes referred to as the Maroni index (if it is one more than the index that
Maroni in fact used). The reason for this is that an analysis deeper than that
of Maroni (1946) [7] occurs in the book by Hensel-Landsberg (1902) [4, Chapter
31]. They compute the dimension in moduli space of trigonal surfaces with
arbitrary trigonal index, and in doing so put their finger on a key parameter,
which is here called v. At this point it appears futile to name the index after all
three authors, so the neutral term is preferred.
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