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COMPLEX CONTACT MANIFOLDS AND HYPERKAHLER

GEOMETRY*

BRENDAN FOREMAN^

Abstract

We investigate the properties of a certain class of hermitian metrics on com-

plex contact manifolds with global complex contact forms. These are called complex

Sasakian metrics. In the mam theorem, we prove a relationship between complex

Sasakian geometry and hyperkahler geometry. We then compare these complex contact

manifolds to the more famous twistor space examples.

1. Introduction

In times past, there have been many interesting and useful correspondences
proven between real contact and almost complex geometries. For example,
Hatakeyama proved in [12] that every Sasakian manifold locally fibres over a
Kahler manifold. Also, the Boothby-Wang Fibration gives a construction by
which an S] -bundle with a real contact structure is formed over a symplectic
manifold [5]. Furthermore, Hatakeyama's result can be generalized to make the
Boothby-Wang fibration a Riemannian submersion of associated metrics.

A great deal work has also been done to find similar correspondences dealing
with complex contact and quaternionic structures on manifolds. However, a
large obstacle has been finding a proper quaternionic context to work with. An
almost quaternionic structure is defined easily enough; it is simply a metric g
together with a three-dimensional bundle E of endomorphisms with local bases
{A,B,C = AB} of local anti-commuting almost complex structures such that g is
hermitian with respect to each endomorphism.

What is the analogue for g being Kahler? If we just insist that each almost
complex structure of E be parallel, then the quaternionic protective space HPn

would be excluded (see [3]). To remedy this, we define an almost quaternionic
manifold (M,g,E) to be quatemionic-Kάhler, if Vis c T*M®E. Under these
circumstances, g is Einstein, and so we can categorize these manifolds into three
categories by the sign of the scalar curvature: zero, positive, or negative.
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COMPLEX CONTACT MANIFOLDS 13

For any of these cases, we can create the twistor space Z of M by locally
setting

Salamon and Berard-Bergery ([22], [2]) both showed that, if the scalar curvature
of g is nonzero, then Z carries both a natural complex structure and complex
contact structure derived from a connection for the fibration E —> M. Thus, we
get a correspondence between certain classes of quaternionic and complex contact
manifolds.

When the scalar curvature is zero, however, this construction will not
produce a complex contact manifold. In fact, E will be trivial, and we will
have a global set of parallel complex structures {A,B, C}. Such an almost
quaternionic manifold is called hyperkάhler.

In this paper, we show that this class of quaternionic manifolds does
correspond with a certain class of complex contact manifolds, called strict normal
complex contact manifolds. These complex contact manifolds are very different
from twistor spaces, especially since they reside in the so-called "strict complex
contact" category of manifolds. This category of complex contact manifolds has
for the most part been ignored, even though a certain element of it, the complex
Heisenberg group, is very well known.

In the first section, we introduce and describe some properties of these types
of manifolds. Then we investigate their hermitian geometry. In the fourth
section, we introduce the notion of a complex Sasakian metric and prove the
main theorem which relates complex Sasakian metrics with hyperkahler geometry.
In the fifth section, we briefly describe some examples of complex Sasakian
manifolds. In the last section, we compare some aspects of complex Sasakian
manifolds with the much more famous examples of complex contact manifolds,
the twistor spaces of quaternionic Kahler manifolds with non-zero scalar cur-
vature; and we prove that, like complex Sasakian manifolds, we can think of
these twistor spaces as complex contact manifolds satisfying certain curvature
equations.

2. Strict complex contact manifolds

Recall that a complex contact manifold is a complex manifold (M,J) of
complex dimension 2n + 1 such that there is an open atlas °U = {Θ} of M for
which the following statements hold:

1. On each Θ e °U, there is a holomorphic 1-form η such η A (dη)n / 0
everywhere on Θ.

2. For Θ, Θ' e % with respective 1-forms η,ηf, there is holomorphic function
/ : 0 Π Θ' -> C* such that η' = fη.

If we define Jf1 '0 = ( ( J ^ k e r ^ ) ) Π Tι>°M, then jfι>° is a well-defined, holo-

morphic subbundle of Γ 1 0 M of maximal rank and complex dimension 2n, called
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the holomorphίc contact subbundle of M. Set 3tf = {X e TRM :X
Then Jf is a subbundle of TM with maximal rank, which is holomorphic in the
sense that there are local bases of Jf7 {X\,... ,X^n] such that LXjJ = 0 for
j — 1,... ,4«. We will call Jtif the holomorphic contact subbundle or simply the
contact subbundle.

Let (M, /) be a complex contact manifold with complex contact subbundle
J f. We say that a set of C-valued 1-forms {π} whose domains cover M i s a
normalized contact structure, if any two 1-forms π,πf in this set with respective
domains Θ, Θ1 satisfy:

1. Jf = ker(π) on Θ.

2. On G (Ί 0', π' = / π for some / : G Π 0 ' -> S 1.

Note that for any π in this set, π — u — iv where w and v are real 1-forms such
that v — u o /. By taking a hermitian metric on the complex line bundle L —
{ω eΛ ι ' °M : ω(jf) = 0}, it is fairly easy to construct a normalized contact
structure on M. This very construction shows that such structures are far from
unique. However, they are handy objects to use because of the next theorem
(see [8] for proof).

THEOREM 2.1. Given a normalized contact structure {π} on a complex contact
manifold M, there is a unique, two-dimensional, J-invariant subbundle i^ of TM
such that

l. TM ^je®f:

2. For any element π = u — w of the normalized contact structure, there is a
local basis of V, {C/, JU} defined by:

(a) u(U) = 1, v(U) = 0, u(JU) = 0, v(JU) = - 1 ,

(b) du(U,X) = 0, dv(JU,X) = 0 for any I e / .

Since there is a splitting TM ̂  J-f © % we have two natural projections
TM —» J»f and TM —> Y. We will denote these respective projections by the
same name as their corresponding subbundles, Jf and Ψ°.

We say M is a strict complex contact manifold, if there is a global holo-
morphic 1-form η such that 3tf — ker(//). With such a manifold, we let U be
the unique holomorphic vector field given by the equations η(U) = 1, and
ι(U)dη — 0. Also, the singleton set {η} is a normalized contact structure on M.
The resulting vertical subbundle 'V is given by Ψ* — span^jt/, JU} where U and
JU are given by U = (l/2)(U-iJU). Since U is holomorphic, both ί/ and
JU are infinitesimal automorphisms of /, i.e., hjjJ — hjjjJ — 0. In particular,
[U,JU] = 0 so that -V is a foliation on M.

Note that, under these circumstances, du(U,JU) = -(l/2)u([U,JU]) = 0.
Also, dv(U,JU) =0. This departs sharply from the general case of complex
contact manifolds (e.g., see [17]).
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3. Hermitian geometry on strict complex contact manifolds

We now examine some aspects of the hermitian geometry of strict complex
contact manifolds. To this end, we will restrict ourselves to hermitian metrics
which exploit the complex contact structure on the given manifold. From this
point on, we will assume that (M,J,η) is a compact strict complex contact
manifold with global complex contact structure η. We will use the same no-
tation as the previous section. In particular, U = (l/2)(U — UU) is the holo-
morphic vertical vector field defined as before by η.

A hermitian metric g on (M, /, η) is called associated to η, if it satisfies the
following statements:

1. The real endomorphisms G, H defined by

H(X) = skew(^ h-> Vχ{JU))

satisfy G2 = H2 = -id*, H = GJ = -JG, Gr = 0.

2. η(X) = g(X,U) + ig(X,JU).

Thus, the covariant derivatives VU and V(JU) of an associated metric induce
a quaternionic structure {G,//,/' = / o jf7} on Jf7. Associated metrics were
shown to exist in [17]. In fact, the family of associated metrics forms an infinite-
dimensional manifold (see [8]). Note that an associated metric on a general
complex contact manifold is simply defined by saying that the local endomor-
phisms G and H given above by a normalized contact structure {π} form a local
quaternionic structure on Jf!

If we set η = u - iv, then du{X, Y) = g(X, GY) and dυ(X, Y) = g(X,HY).
Also, u{X) = g{X, U) and υ(X) = -g(X,JU).

Since 'V is a foliation, we may locally fibre out the vertical leaves of M,
π(r:Θ^Θ = Θ/ir. We say that an associated metric g is projectable, if, for
each such fibration, there is a metric g on Θ such that g# — (π&)*g. It is known
([15]) that this is equivalent to the condition (Lw(go Jf))^> = 0 for any vertical
vector field W.

We define real endomorphisms h\j,hju by hu(X) = sym(X ι—> Vχlf) and
hju(X) = sym(^ H-> VXJU). Then VxU = -GX + hv(X), and Vχ(JU) =
HX + hjjjX. It can be shown that Gohu = —Ac/ o G and Hohju = —hju o H,
however the proof is far too complicated for this paper. See [8] for the full
proof.

These endormorphisms have a nice geometric interpretation. It is easily
seen that for any vertical vector field W = aU + bJU, X,Y e Jf, {Lwg)(X, Y) =
ag(hu(X), Y) +bg(hju(X), Y). So, we see that g is projectable if and only if
hu — hjjj = 0. This shows that W is Killing. Thus, a projectable associated
metric is the complex analogue of a ^Γ-contact metric on a real contact manifold.
To this effect and for future reference, we mention one more projectability
equivalence.
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PROPOSITION 3.1. An associated metric g on a strict complex contact
manifold is projectable if and only if the sectional curvature of any non-vertical
plane section containing an element of Y is equal to 1.

We now prove a few identities of associated metrics.

LEMMA 3.2. VVG = VJVH = 0.

Proof Since du(X, Y) = g(X, GY), we know 0 = g((VxG) 7, Z) +
g((yγG)Z,X) + g{(yzG)X, Y). Substituting 'U' for 'X9 and using the skew-
symmetry of VG, we see that g((VvG)Y,Z) = g((VγG)U,Z) - g{{VzG)U, Y).
However, (VγG)U = -G{VYU) = -3/eY + hvY. Since both j f and hυ are
symmetric operators, Vf/G = 0. The proof for VJUH = 0 is similar.

LEMMA 3.3. VVJ = -2H, hvoj = johu.

Proof Since U is an infinitesimal automorphism of /,

0 = [U,JX]-J[U,X]

= Vu(JX) -VjXU- JVVX + JVXU

+ 2HX - hΌJX + JhuX.

However, the operator (V(// + 2H) is skew-symmetric with respect to g, whereas
{-hvJ + Jhu) is symmetric. Thus, 0 = VVJ + 2H, and 0 = hυJX - JhvX.

LEMMA 3.4. g(RxγU,Z) = g((VzG)X, Y)+g((Vxhu)Y,Z)-g((Vγhu)X,Z).

Proof This follows from carrying Rχγlf out by using the definitions of G
and hv then using the fact that the 2-form G(X, Y) = g(X, GY) is closed.

4. Complex Sasakian metrics

For a nice exposition of the upcoming propositions, we need some notation.
Let V be a vector space over /?. For a 1-form α : V -+ R and endomorphism
β : F —> F, we let α Λ y5 be the rather obvious skew-symmeric, bilinear function
VxV^V given by (α Λ β)(X, Y) = (l/2)(oc(X)β(Y) - x(Y)β(X)).

PROPOSITION 4.1. Suppose that g is an associated metric for a strict complex
contact manifold (M,J,η). Then the following statements are equivalent.

1. RxγU=-2(uΛ jfT)(X, Y)+2{v Λj'){X,Y) + 2g{J'X,Y)V for any

2. (VxG)Y = g{jrX, Y)U+g{J'X, Y)V-u(Y)j^X-v{Y)J'X-2v{X)JΎ for
any X, Y.
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Proof. It is easily seen that, by Lemma (3.4), the statements are equivalent,
provided that hu = 0. Thus, we need only to show that for both statements
hv = 0.

If 1. is true, then, for X e Jf, RuxU = -X. By Proposition (3.1), we see
that g is projectable. For any associated metric g, (WχG)U = —JίfX — Gh\jX for
all X. If 2. is true, then we also have (VχG)U = -JVX. Thus, hυ = 0. This
proves the proposition.

There is an analogous proposition concerning JU and H which we now give.

PROPOSITION 4.2. Suppose that g is an associated metric for a strict complex
contact manifold (M,J,η). Then the following statements are equivalent.

1. RχYJU = 2{v A JtT)(X, Y) + 2(u A J'){X, Y) + 2g(J'X, Y)U for any
X,Y.

2. {VXH)Y = g(J'X, Y)U-g{Jt?X, Y)V+u{Y)J'X-v
for any X', Y.

An associated metric satisfying one statement from each of the two pro-
positions above is called complex Sasakian. This definition is a special case of
the so-called normal complex contact metrics which is due to B. Korkmaz (nee
Karaman) in [20]. The original definition involves associated metrics on any
complex contact manifold, not just strict ones. Thus, it is a great deal more
complicated. In particular, twistor spaces over quaternionic Kahler manifolds
with positive scalar curvature have normal complex contact metrics-namely the
so-called Salamon-Berard-Bergery metrics. Results about normality and twistor
spaces will be forthcoming in [10].

Going back to the strict category, the above proof and the analogous proof
for Proposition (4.2) gives us this proposition.

PROPOSITION 4.3. Every complex Sasakian metric is projectable.

We now go to the main theorem of this paper.

THEOREM 4.4. Let (M, /, η) be a complex contact manifold with global
structure. Let g be an associated metric with horizontal endomorphisms
{G,H,J'}. Then g is complex-Sasakian if and only if g is projectable and
"projects" locally to a hyperkάhler manifold with hypercomplex structure corre-
sponding to {G,H,J'}.

Proof We know that g is projectable (i.e., h — 0). Also, g satisfies:

(VZG)X = g{^X, Z)U - g{J'X, Z)V - u{X)^Z - υ(X)J'Z - 2υ(Z)J'X,

{VZH)X = g(J'X,Z)U - g(JPX,Z) V + u(X)J'Z - v(X)j^Z - 2u(Z)J'X,

{VZJ)X = -2u{Z)HX + 2υ(Z)GX.

In particular, J^(VXG) Y = JV(VXJ) Y = ^(VXH) 7 - 0 for any horizontal X, Y.
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Locally, since Ύ* is a foliation, we can fibre by vertical leaves: π : Θ —> Θ =
Θ/Ϋ~. Since g is projectable, there is a metric g on Θ/y such that g = π*(g) +
w (x) w + i; (g) v. Let V and V be the respective Levi-Civita connections of g and g.

We know U + iV is a holomoφhic vector field on M so that LuJ =
Lj// = 0. So / is also projectable. This means that there is an almost complex
structure / on Θ such that no J = J on. It is easily seen that / is integrable
(since / is), and so π is a holomorphic submersion of open complex manifolds.

Using the fact that VVG = VVH = 0, we see that LVG = LVH = 0. Also,
LuH = hu(GJ) = (LuG)J + G{hvJ) = 0. Similarly, LVG = 0. Hence, both G
and H are projectable endomorphisms, corresponding to endomorphisms G and
H on Θ/Yl Since (π)^ restricted to Jf is an isomoφhism onto TΘ/Yl we see
that G and H are almost complex structures on Θ/"K In particular, {G, /, H}
form an almost quaternionic structure on Θ/y.

Let me Θ with m = π(m). Also, X and Y be basic vector fields on Θ with
π*(X) — X and π*(F) = F. Note that since X and G are projectable tensors on
Θ, π*(GX) = G(π*\x)) = GX. Similar identities exist for H and /. We denote
by horm : TmΘ —> TmΘ the horizontal lift map on TyhΘ. Then we have

In particular, we find^ that {%G)Ϋ = π,((VxG)Y) = π*(Jf((VχG)Y))=0.
Similarly, we find that / and H are also parallel with respect to g. Thus,
{Θ/rr,g,{G,H,J}} is a hyperkahler manifold.

Conversely, let us now suppose that we have a local Riemannian submersion
(@,g) —• {Θ/i^.g) such that {G,H,J} on 0 projects to ^-parallel hypercomplex
structure {G,H,J}. Let me Θ with m = π(m), X, Y e Jf be basic vector fields
defined at m with corresponding vector fields X, Ϋ on ^/^7 Then

(GΫ)) + X-r([X, GY}) -

- -g(X, G2 Y) U - g(X, HGY) V

= g(X,Y)U-g(X,JfY)V.

Also (VχG)U = -G(VxU) = -X and (VXG)V=-J'X. It is known already
that WG = 0. Finally, using the fact that (VW) = -2H, we see that VVG =
-2/ ' . Thus,

- g(X, J'Y)V - u{Z)^X - v(Z)JfX

for any X, Y e TΘ. Similarly, we get the formulae for VH and W. Thus, g is
a complex Sasakian metric on M.
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5. Examples

The most famous complex Sasakian manifold is the complex Heisenberg
group defined by

r / i * z2

Hc=Uθ 1 Z3

He has a global right-invariant complex contact form given by η = dz\ — zidz^.
Furthermore, the map π : (zi,Z2,Z3) ι-» (z2,Z3) gives us a holomorphic

fibration

C^Hc^ C2

Set Ψ* = ker(π*), the vertical foliation of this fibration. Also, η defines a
connection on the resulting C-bundle, and we set J f = ker(^), the horizontal
subbundle of the connection η.

If we set Γ to be the subgroup of Hc consisting of all elements of He with
Gaussian integer entries, the 3-dimensional manifold Hc/Γ is called the Iwasawa
manifold. This manifold is often cited as a good example of a compact complex
manifold with no Kahler structure (see [11] or [7] for details).

Now, the Euclidean metric < , ) on C 2 is actually hyperkahler with a
quaternionic structure {/, G, H} given (as endomorphisms of R4) by:
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Then, on C 2 ,

-dzi A dz2(X, Ϋ) = (X, GΫ)> + KX.HΫ} for X,Y e TRC2.

We can then induce a metric g on He which projects down via π* to < , >
C 2 , i.e., g(X, Y) = <π*X, π* Y) for X, Y e THC. We do this by insisting

) = 0, setting g on 2/e to be the horizontal lift of < , > on C 2 , and finally
defining the real and complex components of the global vector field d/dz\ e THc
to be unit, orthogonal vectors. The metric g then is a hermitian metric on He.

Similarly, we induce endomorphisms G and H on He which satisfy

G o π* = π* o G, H o π* = π* o H,

Then, it is easily seen that the structure (#, /, G, 7/) is associated with respect to
the contact form r\ — dz\— zidz-s on He, i.e.,

dη{X, Y) = g(X, GY) + ig(X, HY).

By our main theorem, we know then that this associated metric is complex
Sasakian.
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To get a compact example, we set Γ' to be the additive subgroup of C 2

consisting of all elements with Gaussian integer entries. Then we get the fol-
lowing commutative diagram of hermitian manifolds:

C2 > C2/Γf

The metrics and forms of the left-hand side fibration are all left-invariant and
so project over to the right-hand side fibration. Thus, the resulting metrics on
Hc/T and C 2 /Γ / are complex Sasakian and hyperkahler, respectively.

It is shown in [9] that this example can be generalized to every possible
dimension in a way which we'll now briefly describe. Recall that a period matrix
of CN is an element W e MN^2N(C) consisting of n column vectors which are
linearly independent over R. Then WZ1N is an additive subgroup of CN, and
the complex manifold CN/WZ2N is an TV-dimensional complex torus.

W e s e t

 f fo -

We call a period matrix W of C2n (i.e., N = In) a hyperkahler Riemann matrix, if
there is a Hermitian matrix GeM2nχ2n{C) such that

1. G > 0 ,

2. J2G=GJ2,

3.

This definition is actually the quaternionic analogue of a Kahler Riemann matrix;
see [24] for details. We now give a hermitian version of Theorem 7.1 from [9].
This theorem gives us examples of complex Sasakian manifolds in every possible
dimension. The author is actually unaware of any other examples of compact,
complex Sasakian manifolds of any dimension.

THEOREM 5.1. Let {< , >, { 7i, J2, ̂ 3}} be the standard hypercomplex
structure on C2n ^ Hn, w = {wj,..., W4n} be a set of linearly independent periods
in C2n with period matrix W and Γ = <wi,..., W4«>. Let X = C2n/Γ with
hermitian projection /?:(C 2 w ,< , )) —> (X, h), and let ω' be the unique holo-
morphic 2-form on X such that ω = p*(ωf). Then there exists a hermitian
fibration π : (M,g) —> (X,h) with vertical fibers ^ Sι x Sι and such that (M,g) is
complex Sasakian, if and only if W is a hyperkahler Riemann matrix.

6. Twistor spaces and curvature equations

It should not be mistaken that every real Sasakian manifold can somehow be
"complexified" to create a complex Sasakian example. For instance, RP2n+ι has
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a Sasakian structure (as described in [4]), but it's "proper" complexiίication is
CP2n+ι, which has no global complex contact structure, since c\(CP2n+ι) > 0.
In fact, CP2n+x is the twistor space of the quaternionic-Kahler manifold HP2n+ι.

It is worthwhile to compare these two very contrasting types of complex
contact spaces: The twistor spaces of the quaternionic-Kahler manifold with non-
zero scalar curvature and complex Sasakian manifolds. Both are specific cases
of normal complex contact manifolds as defined in [20].

Suppose π : M —> M is twistorial fibration with (M, g) quaternionic-Kahler
with nonzero scalar curvature τ. Then M never has a strict complex contact
structure since c\(M) is necessarily nondegenerate (actually positive, if τ > 0).
Also, g lifts to an Einstein associated metric g on M (it's also Kahler, if again τ
is positive). Finally, the map π is never holomorphic, since M has no global
complex structure.

In complete contrast, suppose that (M, η, g) is a complex Sasakian manifold.
Then, by definition, M has global complex contact form. Also, g is never
Einstein, since, in particular, the sectional curvature of the vertical subbundle is
flat, whereas the sectional curvature of a vertical vector and a horizontal vector is
nonzero. Also, if M is compact, then we know that it has no Kahler metrics
with respect to its complex structure, since it has a global holomorphic non-closed
1-form.

We end this paper with a discussion of how we can view the twistor space
examples of complex contact manifolds with c\ > 0 as those satisfying a certain
associated metric curvature condition. Before we can get to this result, though,
we need to describe the situation for general complex contact manifolds, which
can vary in structure much more than those complex contact manifolds with a
global contact form.

Let (M,J) be a In -f 1-dimensional complex manifold with complex contact
structure given by a 2«-dimensional holomorphic subbundle Jf. Let {π = u — iv}
be a normalized contact structure on M with resulting splitting TM ̂  J f © Ψ* as
given by Theorem 2.1. Let U and V be the vertical vector fields corresponding
to u and v, respectively.

Recall that an associated metric g is a hermitian metric on M, which satisfies
the following local conditions:

1. The local real endomorphisms G and H defined by:

GX = -skew(JT

HX = skew(Z h-

satisfy G2 = H2 - -id^ H=GoJ = -JoG.

2. u(X) =g(U,X), υ(X) =g{V,X) for any vector X.

In [8], it is proven that an associated metric g satisfies the following conditions:

1. f is a totally geodesic subbundle of TM.

2. If we set G(X, Y) = g(X, GY) and H(X, Y) = g(X,HY), then
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G = du — σ A f,

H = dv + σ Λ w,

where σ(x) = g(¥χU, V) is a 1-form representing a connection on f as a complex
line bundle over M. This connection is called the Ishihara-Konishi Connection
with respect to {π}.

3. VxU = -GX + huX-σ(X)JU, VXV = -HX + hvX + σ(X)U, for any
X e TM, where, for any W e ^ λ ^ is the real endomorphism given by

hw(X) =

4. VuG = σ(U)H, VJVH = σ(JU)G.

Using this terminology and machinery, we will prove the following theorem.

THEOREM 6.1. Let M be a complex contact manifold with contact subbundle
2f? and normalized contact structure {π = u — iv}. Let TM — 2tf 0 Ψ* be the
corresponding splitting with local vertical vector fields {U, V} corresponding to the
real forms u and v. Suppose g is an associated metric on M. Then (M, g) is
isometric to a twistor space for a quaternionic-Kάhler manifold with positive scalar
curvature if and only if

Rxγ U = u( Y)X - u{X) Y + v{ Y)JX - v{X)JY + 2g{JX, Y) V,

Rxγ V = -v( Y)X + υ(X) Y -u{ Y)JX + u{X)JY - 2g(JX, Y) U.

The proof for this theorem will actually be nothing more than pulling
together various previously-known facts regarding complex contact manifolds.
So, before we continue with the proof, we will now describe some of these results.

In [16], Ishihara and Konishi generated their notion of normality of complex
contact manifolds. They defined local tensors

S(X, Y) = [G, G] (X, Y) + 2G(X, Y)U - 2H(X, Y) V + 2{v( Y)HX - v(X)HY)

+ σ(GY)HX - σ{GX)HY + σ(X)GHY - σ(Y)GHX,

T{X, Y) = [H,H]{X, Y)-2G{X, Y)U + 2H(X, Y)V+ 2{u{Y)GX - u(X)GY)

+ σ(HX)GY - σ(HY)GX + σ(X)GHY - σ( Y)GHX.

Then they called an associated metric g normal if S = T = 0. (In this paper, we
call such a metric IK-normal).

This concept was meant to be a complex analogue of normal real contact
manifolds, and in some sense that is true. The most well-known complex
contact manifold CP2n+ι is indeed IK-normal, and it is very much the complex
analogue of the equally as famous Sasakian manifold RPln+ι. However, this
definition of normality also leaves out the complex Heisenberg group, whose real
analogue (the real Heisenberg group) is also a well-known normal real contact
manifold. It is for this reason that Korkmaz in [20] expanded the definition of
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normality by calling an associated metric normal, if it only satisfied the con-
ditions:

Returning to IK-normality, we have the following proposition from [16].

PROPOSITION 6.2. An associated metric g is HL-normal if and only if for local
G,H,U,V, as described above,

= σ(X)HY - u{Y)X - v( Y)JX + g(X9 Y)U + g{JX, Y) V,

(yxH) Y = -σ(X)GY + u(X)JY - v( Y)X + g(X, JY) U + g(X, Y) V.

This next proposition reworks the above conditions into those dealing with
the curvature.

PROPOSITION 6.3. An associated metric g is IK-normal if and only if

RχY U = u( Y)X - u(X) Y + v( Y)JX - v(X)JY + 2g(JX, Y) V,

Rxγ V = -υ( Y)X + v(X) Y-u( Y)JX + u(X)JY - 2g(JX, Y) U.

Proof It is already proven in the first part of section 4 of [16] that any IK-
normal metric satisfies these curvature conditions. Conversely, we suppose that
g satisfies the curvature conditions. We will show that the equation of G is true;
the proof of the second will be completely analogous.

First, Proposition 3.1 tells us that g is projectable. Thus, we have VXU =
-GX - σ(X)JU for any vector X.

Direct calculation then tells us that

RxγU = -(VXG) Y + (VYG)X + 2dσ(X, Y) V - σ( Y)HX + σ(X)HY.

Since Y is totally geodesic, this equation can be specialized as such:

G) Y + σ(JU)HY + (/ o

Also, it is easily seen that 3V(VJUG) = (VJUG), again by the fact that Ψ* is totally
geodesic. Comparing this result to the given curvature condition, we have that

Y = σ(JU)HY for any Y e TM.
However, we also have

+ σ{JU)H.

Thus, VCΛ/ = 0.
Using the Bianchi identity and a comparable expression for ^RJJYJΌ as

above, we get that, for I J e / ,

g(RuvX, Y) = 2g((VuJ)GX, Y) + 2g(JX, 7),
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i.e., g{RuvX, Y) = 2g(JX, Y) whenever X and Y are horizontal. From the
assumed curvature condition, we also have g(RuγV, U) = 2, i.e., g(RjjγX, Y) —
2g(JX, Y) whenever X and Y are vertical. Thus, combining these results and
using the total geodesic property of Yl we get g(RuvX, Y) = 2g(JX, Y) for any
vectors X and Y.

Recalling the formula 2dσ{X, Y) = Xσ(Y) - Yσ(X) - σ([X, Y}), we also
can directly calculate dσ to get:

2dσ(X, Y) = g(RuvX, Y) + 2g(JX, Γ),

i.e., dσ(X, Y) = 2g(JX, Y) for any vectors X and Y.
Finally, since G = du — σ A V, we have that dG = —dσ A V + σ A H, i.e., in

terms of the associated metric g,

g{ Y, (VχG)Z) + g(Z, (VYG)X) + g(X, (VZG) Y)

= -dσ(X, Y)v(Z) - dσ(Z,X)v(Y) - dσ(Y,Z)υ{X)

4- σ(X)g( 7, HZ) + σ(Z)g(X, HY) + σ( Y)g(Z, HX)

Combining this equation with those for dσ and RχγlJ gives the result.

Ishihara and Konishi in the same paper also prove the following important
theorem.

THEOREM 6.4 (Ishihara-Konishi). If g is an IK-normal associated metric on
M, then g is Kάhler-Einstein and c\ (M) > 0.

More recently, LeBrun in [21] proved the following theorem.

THEOREM 6.5 (LeBrun). Let M be a complex contact manifold with
c\ (M) > 0. Then M is the twistor space for a quaternionic-Kάhler manifold with
positive scalar curvature if and only if M has a Kάhler-Einstein metric.

Conversely, in the ground-breaking paper [19] of 1975, M. Konishi proved
the following theorem.

THEOREM 6.6. Let M be a quatemionic-Kahler manifold of dimension Am and
positive scalar curvature. Then there exists a canonically associated RP3-bundle P
over M admitting a Sasakian 3-structure, in such a way that P —> M is a Rie-
mannian submersion.

We call this bundle the Konishi bundle of the quaternionic-Kahler manifold
M. Recall that we call a Riemannian manifold (P, H) a 3-Sasakian manifold, if
the holonomy group of the metric cone on P, defined by (C(P),h) = (R+ x P,
dr + r2h), is a hyperkahler manifold. In particular, it is known that this
condition is equivalent to there being three unit, Killing vector fields on P
ξuξ2,ξ3 such that:
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1. For each j = 1,2,3, the endomorphism φj defined by φj(X) = Vxζj sat-
isfies:

(Vxφj) Y = h(ξj, Y)X - h(X, Y)xij for all X, Y e TP,

i.e., each ξj defines a Sasakian structure on (P,h),

2. h(^k)=Sjk.

3. [ξJ,ζk]=2εJklζh

See either [19] or [6] for details about 3-Sasakian manifolds. It is well-
known that at least one of the characteristic vector fields, say ξ{, of the Konishi
bundle P over M, a quaternionic-Kahler manifold with positive scalar curvature,
is regular, i.e., M — P/ξ\ is a manifold. In fact, M is the twistor space over M.
Additionally, in [14], Ishihara and Konishi proved the following theorem.

THEOREM 6.7. Let (P,h,ξ\,ξ2,ζτ>) be a 3-Sasakian manifold If ξγ is
regular, then the fibration M = P/ξ\ —> P is a Rίemannian submersion, and M has
an IK-normal complex contact structure.

Proof of Theorem 5.1. This proof now is just a matter of combining all of
these results. Clearly, Proposition 5.3 and Theorem 5.7 tell us that every twistor
space of a quaternionic-Kahler manifold with positive scalar curvature has an
associated metric satisfying the desired curvature condition.

Conversely, if the given complex contact manifold has an associated metric
satisfying the curvature condition, then this metric is IK-normal by Proposition
5.3. So, by Theorem 5.4, the metric is Kahler-Einstein, and the first Chern class
of the manifold is positive. Finally, by LeBrun's result, Theorem 5.5, the
complex contact manifold is the twistor space of a quaternionic-Kahler manifold
with positive scalar curvature. This proves the theorem.
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