G. QIU KODAI MATH. J. 23 (2000), 1–11

UNIQUENESS OF ENTIRE FUNCTIONS THAT SHARE SOME SMALL FUNCTIONS

GANGDI QIU

Abstract

In this paper we obtain a unicity theorem of an entire function and its derivative that share two small functions IM. So we generalize and improve some results given by Rubel-Yang, Mues-Steinmetz and J. H. Zheng etc.

1. Introduction and main results

In this paper, we use the same signs as given in Nevanlinna theory of meromorphic functions (see [1]). By S(r, f) we denote any quantity satisfying $S(r, f) = o\{T(r, f)\}$ as $r \to \infty$, possibly outside a set of r with finite linear measure. Let f and g be two meromorphic functions. Then the meromorphic function α is said a small function of f if and only if $T(r, \alpha) = S(r, f)$. We say that f and g share a value a IM(CM) if f - a and g - a have the same zeros ignoring multiplicities (with the same multiplicity). When a is a small function of f and g, a is said a common small function of f and g IM(CM). In addition, we introduce the following denotations:

 $S(m,n)(b) = \{z | z \text{ is a common zero of } f-b \text{ and } f'-b \text{ with multiplicities}$ m and n respectively}. $\overline{N}(m,n)(r,1/(f-b))$ denotes the counting function of f with respect to the set S(m,n)(b).

On the problems of uniqueness of an entire function and its derivative that share some values, Rubel-Yang (see [2]) proved that if the entire function f and f' share two distinct finite values CM then $f \equiv f'$. Mues-Steinmetz (see [3]) improved this result to the case when f and f' share two values IM. In 1992, J. H. Zheng and S. P. Wang (see [4]) generalized this result to the f and f' which share two small functions CM. In this paper, we generalize and improve above results to obtain the following result:

THEOREM 1. Let f be a nonconstant entire function, a and b two distinct small functions of f with $a \neq \infty$ and $b \neq \infty$. If f and f' share a and b IM, then $f \equiv f'$.

Supported by Fujian Provincal Science Foundation.

Keywords: Entire function, Meromorphic function, Small function, Uniqueness. Received August 24, 1998; revised July 5, 1999

2. Some lemmas

LEMMA 1. Let f be a nonconstant entire function, a_1 and a_2 two distinct small functions of f with $a_1 \neq \infty$ and $a_2 \neq \infty$. Set

$$\Delta(f) = \begin{vmatrix} f - a_1 & a_1 - a_2 \\ f' - a'_1 & a'_1 - a'_2 \end{vmatrix} = \begin{vmatrix} f - a_2 & a_1 - a_2 \\ f' - a'_2 & a'_1 - a'_2 \end{vmatrix}.$$
 (1)

Then

(i)
$$\Delta(f) \neq 0,$$
 (2)

(ii)
$$m\left[r, \frac{\Delta(f)}{f-a_i}\right] = S(r, f), \quad (i = 1, 2)$$
 (3)

(iii)
$$m\left[r, \frac{\Delta(f)}{(f-a_1)(f-a_2)}\right] = S(r, f),$$
 (4)

(iv)
$$m\left[r, \frac{\Delta(f)(f-\beta)}{(f-a_1)(f-a_2)}\right] = S(r, f),$$
 (5)

where β is an arbitrary small function of f.

$$(\mathbf{v}) \quad \sum_{i=1}^{2} N\left(r, \frac{1}{f-a_i}\right) - N\left(r, \frac{1}{\Delta(f)}\right) \le \sum_{i=1}^{2} \overline{N}\left(r, \frac{1}{f-a_i}\right) + S(r, f). \tag{6}$$

Proof. Suppose that $\Delta(f) \equiv 0$, then from (1) we have

$$\frac{f'-a_1'}{f-a_1} = \frac{a_1'-a_2'}{a_1-a_2}.$$

By integrating for above two side we get

 $f = a_1 + c(a_1 - a_2), \quad (c \neq 0 \text{ is a constant})$

which contradicts the fact that a_1 and a_2 are small functions of f. Hence

$$\Delta(f) \not\equiv 0.$$

Again by (1) we have

$$\begin{split} m\bigg(r, \frac{\Delta(f)}{f - a_i}\bigg) &\leq m(r, a_1' - a_2') + m(r, a_1 - a_2) + m\bigg(r, \frac{f' - a_i'}{f - a_i}\bigg) + \log 2 \\ &= S(r, f), \quad (i = 1, 2) \end{split}$$

i.e., (3) holds.

Note that

$$\frac{1}{(f-a_1)(f-a_2)} = \frac{1}{a_1 - a_2} \left[\frac{1}{f-a_1} - \frac{1}{f-a_2} \right],\tag{7}$$

and

$$\frac{\Delta(f)(f-\beta)}{(f-a_1)(f-a_2)} = \frac{\Delta(f)}{f-a_2} + \frac{(a_2-\beta)\Delta(f)}{(f-a_1)(f-a_2)}.$$
(8)

So (3) and (7) imply (4). (5) follows from (3), (4) and (8).

Next, it is easy to see from (1) if any zero of $f - a_i$ (i = 1, 2) with multiplicity p is not the pole of a_1 and a_2 , as well as is not the zero of $(a_1 - a_2)$, then it must be a zero of $\Delta(f)$ with multiplicity at least (p - 1). Thus (6) holds.

This completes the proof of Lemma 1.

LEMMA 2. Let f be a nonconstant entire function, a and b two distinct small functions of f with $a \neq \infty$ and $b \neq \infty$. Again let

$$c_k = a + k(a - b),$$
 (k is a positive integer). (9)

Then

$$(n+1)T(r,f') \leq \overline{N}\left(r,\frac{1}{f'-a}\right) + \overline{N}\left(r,\frac{1}{f'-b}\right) + \sum_{k=1}^{n} \overline{N}\left(r,\frac{1}{f'-c_k}\right) + S(r,f).$$
(10)

Proof. It is easy to see from (9) that $c_k \neq a$ and $c_k \neq b$ (k = 1, 2, ..., n), and they are distinct small function of f. Let

$$F = \frac{f'-a}{b-a},\tag{11}$$

then

$$T(r,F) = T(r,f') + S(r,f).$$
 (12)

By the second fundamental theorem

$$(n+1)T(r,F) < \overline{N}(r,F) + \overline{N}\left(r,\frac{1}{F}\right) + \overline{N}\left(r,\frac{1}{F-1}\right) + \sum_{k=1}^{n} \overline{N}\left(r,\frac{1}{F+k}\right) + S(r,f) \leq \overline{N}\left(r,\frac{1}{f'-a}\right) + \overline{N}\left(r,\frac{1}{f'-b}\right) + \sum_{k=1}^{n} \overline{N}\left(r,\frac{1}{f'-c_{k}}\right) + S(r,f).$$

This and (12) imply (10).

This completes the proof of Lemma 2.

LEMMA 3. Let f be a nonconstant entire function, a and b two distinct samll functions of f with $a \neq \infty$ and $b \neq \infty$. If f and f' share a and b IM, and

GANGDI QIU

$$T(r, f) = T(r, f') + S(r, f),$$
(13)

then $f \equiv f'$.

Proof. Assume that $f \neq f'$. From the fact that f and f' share a and b IM we know that

$$\overline{N}\left(r,\frac{1}{f-a}\right) + \overline{N}\left(r,\frac{1}{f-b}\right) \le N\left(r,\frac{1}{f-f'}\right) \le T(r,f-f') + O(1)$$
$$\le m(r,f) + m\left(r,1-\frac{f'}{f}\right) + S(r,f)$$
$$\le T(r,f) + S(r,f). \tag{14}$$

Now by the second fudamental theorem

$$T(r,f) \le \overline{N}\left(r,\frac{1}{f-a}\right) + \overline{N}\left(r,\frac{1}{f-b}\right) + S(r,f).$$
(15)

Combining (14) and (15) we have

$$T(r,f) = \overline{N}\left(r,\frac{1}{f-a}\right) + \overline{N}\left(r,\frac{1}{f-b}\right) + S(r,f).$$
(16)

Set

$$\varphi = \frac{\Delta(f)(f - f')}{(f - a)(f - b)},\tag{17}$$

and

$$\chi = \frac{\Delta(f')(f - f')}{(f' - a)(f' - b)},$$
(18)

where $\Delta(f)$ and $\Delta(f')$ are defined by (1), $a_1 = a$ and $a_2 = b$. From (2) we know that $\Delta(f) \neq 0$ and $\Delta(f') \neq 0$. Therefore, it follows that $\varphi \neq 0$ and $\chi \neq 0$. It is easy to see from (6) that $N(r, \varphi) = S(r, f)$ and $N(r, \chi) =$ S(r, f). Again by (5) we get

$$m(r,\varphi) \le m\left(r,\frac{\Delta(f)\cdot f}{(f-a)(f-b)}\right) + m\left(r,1-\frac{f'}{f}\right) = S(r,f).$$

Thus

$$T(r,\varphi) = S(r,f).$$
⁽¹⁹⁾

Next, for any positive integer k, by (3), (4) and (5) we have

4

$$\begin{split} m(r,\chi) &\leq m \left[r, \frac{\Delta(f')(f'-c_k)\left(\frac{f-c_k}{f'-c_k}-1\right)}{(f'-a)(f'-b)} \right] \\ &\leq m \left(r, \frac{\Delta(f')}{f'-b} \right) + m \left(r, \frac{\Delta(f')(a-c_k)}{(f'-a)(f'-b)} \right) + m \left(r, \frac{f-c_k}{f'-c_k}-1 \right) + \log 2 \\ &\leq m \left(r, \frac{f-c_k}{f'-c_k} \right) + S(r,f) \\ &= m \left(r, \frac{f'-c_k}{f-c_k} \right) + N \left(r, \frac{f'-c_k}{f-c_k} \right) - N \left(r, \frac{f-c_k}{f'-c_k} \right) + S(r,f) \\ &\leq m \left(r, \frac{f'-c_k}{f-c_k} \right) + m \left(r, \frac{c_k'-c_k}{f-c_k} \right) + N \left(r, \frac{1}{f-c_k} \right) + N(r,f'-c_k) \\ &- N \left(r, \frac{1}{f'-c_k} \right) - N(r,f-c_k) + S(r,f) \\ &\leq m \left(r, \frac{1}{f-c_k} \right) + N \left(r, \frac{1}{f-c_k} \right) - N \left(r, \frac{1}{f'-c_k} \right) + S(r,f) \\ &\leq T(r,f) - N \left(r, \frac{1}{f'-c_k} \right) + S(r,f). \end{split}$$

Thus

$$T(r,\chi) \le T(r,f) - N\left(r,\frac{1}{f'-c_k}\right) + S(r,f).$$
 (20)

On the other hand, combining (10), (13) and (14) we get

$$\begin{split} 2T(r,f') &\leq \overline{N}\left(r,\frac{1}{f'-a}\right) + \overline{N}\left(r,\frac{1}{f'-b}\right) + \overline{N}\left(r,\frac{1}{f'-c_k}\right) + S(r,f) \\ &\leq \overline{N}\left(r,\frac{1}{f-a}\right) + \overline{N}\left(r,\frac{1}{f-b}\right) + N\left(r,\frac{1}{f'-c_k}\right) + S(r,f) \\ &= T(r,f) + N\left(r,\frac{1}{f'-c_k}\right) + S(r,f) \\ &= T(r,f') + N\left(r,\frac{1}{f'-c_k}\right) + S(r,f), \end{split}$$

which results in

$$N\left(r,\frac{1}{f'-c_k}\right) = T(r,f') + S(r,f).$$
 (21)

Combining (13), (20) and (21) we deduce that

$$T(r,\chi) = S(r,f).$$
⁽²²⁾

Again let

 $Hm, n = m\varphi - n\chi.$ (*m* and *n* are positive integers). (23)

If there exist m_0 and n_0 such that $Hm_0, n_0 \equiv 0$, i.e., $m_0\varphi \equiv n_0\chi$. Then from (17) and (18) we have

$$m_0 \frac{\Delta(f)}{(f-a)(f-b)} = n_0 \frac{\Delta(f')}{(f'-a)(f'-b)}.$$

By (1)

$$\left(\frac{f-b}{f-a}\right)^{m_0} = D\left(\frac{f'-b}{f'-a}\right)^{n_0}, \quad (D \neq 0 \text{ is a constant}).$$

According to the condition (13) we know that $m_0 = n_0$. Hence

$$\frac{f-b}{f-a} = D_1 \left(\frac{f'-b}{f'-a} \right), \quad (D_1 \neq 0 \text{ is a constant}).$$
(24)

Since $f \neq f'$, thus $D_1 \neq 1$. So from (24) we have

$$f[(D_1 - 1)f' + a - D_1b] = (D_1a - b)f' + (1 - D_1)ab$$

By Clunie's lemma (see [5]) we have

$$m[r, (D_1 - 1)f' + a - D_1b] = S(r, f),$$

which results in m(r, f') = S(r, f), i.e., T(r, f') = S(r, f). This is impossible to satisfy.

Hence, $Hm, n = m\varphi - n\chi \neq 0$ for all positive integers *m* and *n*. Now let $z_0 \in S(n,m)(a) \cup S(n,m)(b)$, i.e, z_0 be a common zero of f - a (or f - b) and f' - a (or f' - b) with multiplicities *n* and *m* respectively. From (17) and (18) it follows that $Hm, n(z_0) = 0$. So

$$\begin{split} \overline{N}(n,m) & \left(r,\frac{1}{f-a}\right) + \overline{N}(n,m) \left(r,\frac{1}{f-b}\right) \\ & \leq N \left(r,\frac{1}{Hm,n}\right) + S(r,f) \leq T(r,Hm,n) + S(r,f) \\ & \leq T(r,\varphi) + T(r,\chi) + S(r,f) = S(r,f), \end{split}$$

for all positive integers m and n. Again by (16) we have

$$T(r,f) = \overline{N}\left(r,\frac{1}{f-a}\right) + \overline{N}\left(r,\frac{1}{f-b}\right) + S(r,f)$$
$$= \sum_{m,n} \left[\overline{N}(m,n)\left(r,\frac{1}{f-a}\right) + \overline{N}(m,n)\left(r,\frac{1}{f-b}\right)\right] + S(r,f)$$

6

UNIQUENESS OF ENTIRE FUNCTIONS

$$\begin{split} &= \sum_{m \ge 4, n \ge 4} \left[\overline{N}(m,n) \left(r, \frac{1}{f-a} \right) + \overline{N}(m,n) \left(r, \frac{1}{f-b} \right) \right] + S(r,f) \\ &\leq \frac{1}{4} \left[N \left(r, \frac{1}{f-a} \right) + N \left(r, \frac{1}{f-b} \right) \right] + S(r,f) \\ &\leq \frac{1}{2} T(r,f) + S(r,f). \end{split}$$

It is impossible for this to hold, thus $f \equiv f'$. This completes the proof of Lemma 3.

3. The proof of Theorem 1

Assume that $f \neq f'$. Let φ and χ be defined by (17) and (18) respectively. From (17) we have

$$\varphi(f-a)(f-b) = \Delta(f)(f-f'),$$

we rewrite this in the following form

$$[\varphi - (a' - b')]f^2 = b_1 f + b_2 f' + b_3 f f' + b_4 f'^2 + b_5,$$
(25)

where $b_1 = ab' - ba' + (a+b)\varphi$, $b_2 = ba' - ab'$, $b_3 = b + b' - a - a'$, $b_4 = a - b$, $b_5 = -ab\varphi$ are all small functions of f. We discuss the following two cases: (I) Suppose that $\varphi - (a' - b') \neq 0$. By (25) we have

$$\begin{aligned} 2m(r,f) &\leq m \left(r, \frac{1}{\varphi - a' + b'} \right) + m \left[r, f \left(b_1 + b_2 \frac{f'}{f} + b_3 f' + b_4 f' \cdot \frac{f'}{f} \right) \right] + m(r,b_5) \\ &\leq m(r,f) + m \left[r, f' \left(b_3 + b_4 \cdot \frac{f'}{f} \right) \right] + S(r,f) \\ &\leq m(r,f) + m(r,f') + S(r,f), \end{aligned}$$

which results in

$$m(r, f) \le m(r, f') + S(r, f),$$

i.e.,

$$T(r, f) \le T(r, f') + S(r, f).$$

Noting that f is an entire function, we have obviously

$$T(r, f') \le T(r, f) + S(r, f).$$

Hence

$$T(r, f) = T(r, f') + S(r, f).$$

So by Lemma 3, this contradicts the assumption of Theorem 1.

GANGDI QIU

(II) Suppose that $\varphi - (a' - b') \equiv 0$, i.e., $\varphi \equiv a' - b'$. We again divide the following three cases:

(II.1) Suppose that $a' \neq a$ and $b' \neq b$. Since f and f' share a and b IM, so the zeros of f - a and f - b with multiplicities larger than one are the zeros of a' - a and b' - b respectively. It follows that

$$\sum_{p \ge 2, m \ge 1} \overline{N}(p, m) \left(r, \frac{1}{f-a} \right) + \overline{N}(p, m) \left(r, \frac{1}{f-b} \right) = S(r, f).$$
(26)

Now let $z_1 \in S(1, p)(a)$, i.e, z_1 be a simple zero of f - a and a zero of f' - a with multiplicity p. When $p \ge 2$, we get by (17)

$$\varphi(z_1) = a'(z_1) - a(z_1) = a'(z_1) - b'(z_1),$$

which results in $a(z_1) - b'(z_1) = 0$. If $a - b' \equiv 0$, from (17) we get

$$\frac{f'-a'}{f-a}=\frac{a'-b}{a-b}.$$

This implies that T(r, f) = T(r, f') + S(r, f).

By Lemma 3 this is a contradiction again.

Thus $a - b' \neq 0$. Hence

$$\sum_{p\geq 2}\overline{N}(1,p)\left(r,\frac{1}{f-a}\right)=S(r,f).$$

Similary, we have

$$\sum_{p\geq 2} \overline{N}(r,p)\left(r,\frac{1}{f-b}\right) = S(r,f).$$

Therefore

$$T(r,f) = \overline{N}\left(r,\frac{1}{f-a}\right) + \overline{N}\left(r,\frac{1}{f-b}\right) + S(r,f)$$
$$= \overline{N}(1,1)\left(r,\frac{1}{f-a}\right) + \overline{N}(1,1)\left(r,\frac{1}{f-b}\right) + S(r,f).$$
(27)

Setting $H = \varphi - \chi$, we suppose that $H \equiv 0$. It is easy to see from (17) and (18) that

$$T(r,f) = T(r,f') + S(r,f).$$

This is also a contradiction.

Thus $H \neq 0$. By (17) and (18) we know that $H(z_2) = 0$ for any $z_2 \in S(1,1)(a) \cup S(1,1)(b)$. Combining this, (20) and (27) we get

$$\begin{split} T(r,f) &\leq N\left(r,\frac{1}{H}\right) + S(r,f) \leq T(r,\chi) + S(r,f) \\ &\leq T(r,f) - N\left(r,\frac{1}{f'-c_k}\right) + S(r,f), \end{split}$$

which results in

$$N\left(r,\frac{1}{f'-c_k}\right) = S(r,f), \quad (k \in N^+).$$

This is also impossible.

(II.2) Suppose that either $a' \equiv a$ and $b' \neq b$ or $a' \neq a$ and $b' \equiv b$. Without loss of generality, we can assume that $a' \equiv a$ and $b' \neq b$. According to the discussion in (II.1) we know that

$$\overline{N}\left(r,\frac{1}{f-b}\right) + S(r,f) = \overline{N}(1,1)\left(r,\frac{1}{f-b}\right) + S(r,f).$$
(28)

Since the zeros of f - a are all the zeros of f' - a = f' - a', it follows that

$$\overline{N}(1,1)\left(r,\frac{1}{f-a}\right) = S(r,f).$$

It is easy to see from (17) that the counting function corresponding to the zeros of f - a and f' - a with multiplicities all larger than one equals to S(r, f). This derives that

$$T(r,f) = \overline{N}\left(r,\frac{1}{f-a}\right) + \overline{N}\left(r,\frac{1}{f-b}\right) + S(r,f)$$
$$= \overline{N}(2,1)\left(r,\frac{1}{f-a}\right) + \overline{N}(1,1)\left(r,\frac{1}{f-b}\right) + S(r,f).$$
(29)

Set

$$G = 2\frac{f'' - b'}{f' - b} - 2\frac{f' - b'}{f - b} + \frac{a' - b'}{a - b}.$$
(30)

It is easy to see from (28) that T(r, G) = S(r, f). When $G \equiv 0$, by (30) we have

$$T(r,f) = T(r,f') + S(r,f).$$

This is also a contradiction. When $G \neq 0$, combining (17), we get

$$\overline{N}(2,1)\left(r,\frac{1}{f-a}\right) \le N\left(r,\frac{1}{G}\right) + S(r,f) = S(r,f).$$

Hence

$$\begin{split} T(r,f) &= \overline{N}(1,1)\left(r,\frac{1}{f-b}\right) + S(r,f) \\ &\leq N\left(r,\frac{1}{\varphi-\chi}\right) + S(r,f) \\ &\leq T(r,\varphi) + T(r,\chi) + S(r,f) \\ &\leq T(r,f) - N\left(r,\frac{1}{f'-c_k}\right) + S(r,f), \end{split}$$

i.e.,

$$N\left(r,\frac{1}{f'-c_k}\right) = S(r,f), \quad (k \in N^+).$$

This is also impossible.

(II.3) Suppose that $a' \equiv a$ and $b' \equiv b$. By the discussion in (II.2) we know that

$$T(r,f) = \overline{N}(2,1)\left(r,\frac{1}{f-a}\right) + \overline{N}(2,1)\left(r,\frac{1}{f-b}\right) + S(r,f).$$
 (31)

Now let z^* be a simple zero of f' - a and a zero of f - a with multiplicity two but not a pole of a and b, also not a zero of a - b. Set

$$G_1 = 2\frac{f'' - b''}{f' - b'} - \frac{f' - b'}{f - b} - 2\frac{a' - b'}{a - b}.$$
(32)

If $G_1 \equiv 0$, by (32)

$$(f'-b)^2 = D_2(a-b)^2(f-b).$$
 ($D_2 \neq 0$ is a constant).

This implies that z^* must be a zero of $a - b - (1/D_2)$. Since $\varphi = a' - b' = a - b \neq 0$, so $a - b - (1/D_2) \neq 0$, which results in

$$\overline{N}(2,1)\left(r,\frac{1}{f-a}\right) = S(r,f).$$

If $G_1 \neq 0$, from (17) and (32) it follows that $G_1(z^*) = 0$, also we have that

$$\overline{N}(2,1)\left(r,\frac{1}{f-a}\right) \le N\left(r,\frac{1}{G_1}\right) + S(r,f) \le N(r,G_1) + S(r,f) = S(r,f).$$

Thus, from (31) we get

$$T(r,f) = N(2,1)\left(r,\frac{1}{f-b}\right) + S(r,f) \le \frac{1}{2}T(r,f) + S(r,f).$$

This is also a contradiction.

According to above all discussion we obtain that $f \equiv f'$. This completes the proof of Theorem 1.

References

- [1] W K. HAYMAN, Meromorphic Functions, Clarendon Press, Oxford, 1964.
- [2] L. A. RUBEL AND C. C. YANG, Values shared by an entire function and its derivative, Lecture Notes in Math., 599, Springer, Berlin, 1977, 101–103.
- [3] E. MUES AND N. STEINMETZ, Meromorphe Funktionen, die mit ihrer Ableitung werte teilen, Manuscripta Math., 29 (1979), 195–206.

10

- [4] J. H. ZHENG AND S. P. WANG, On the unicity of meromorphic functions and their derivatives, Adv. in Math. (China), 21 (1992), 334-341.
- [5] J. CLUNIE, On integral and meromorphic functions, J. London Math. Soc., 37 (1962), 17-27

DEPARTMENT OF MATHEMATICS NINGDE TEACHERS COLLEGE NINGDE, FUJIAN 352100 P.R. CHINA