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UNIQUENESS OF ENTIRE FUNCTIONS THAT SHARE SOME
SMALL FUNCTIONS

GANGDI Qru

Abstract

In this paper we obtamn a unicity theorem of an entire function and its derivative
that share two small functions IM. So we generalize and improve some results given by
Rubel-Yang, Mues—Steinmetz and J. H. Zheng etc.

1. Introduction and main results

In this paper, we use the same signs as given in Nevanlinna theory of
meromorphic functions (see [1]). By S(r,f) we denote any quantity satisfying
S(r,f)=0{T(r,f)} as r— oo, possibly outside a set of r with finite linear
measure. Let f and g be two meromorphic functions. Then the meromorphic
function « is said a small function of f if and only if T'(r,a) = S(r, f). We say
that f and g share a value ¢ IM(CM) if f —a and g — a have the same zeros
ignoring multiplicities (with the same multiplicity). When « is a small function
of fand g, a is said a common small function of fand g IM(CM). In addition,
we introduce the following denotations:

S(m,n)(b) = {z|]z is a common zero of f —b and f' — b with multiplicities
m and n respectively}. N(m,n)(r,1/(f — b)) denotes the counting function of f
with respect to the set S(m,n)(b).

On the problems of uniqueness of an entire function and its derivative that
share some values, Rubel-Yang (see [2]) proved that if the entire function f and
f' share two distinct finite values CM then f = f’. Mues—Steinmetz (see [3])
improved this result to the case when f and f' share two values IM. In 1992,
J. H. Zheng and S. P. Wang (see [4]) generalized this result to the fand f' which
share two small functions CM. In this paper, we generalize and improve above
results to obtain the following result:

THEOREM 1. Let f be a nonconstant entire function, a and b two distinct small
functions of f with a # oo and b # co. If fand f' share a and b IM, then f = f".
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2. Some lemmas

LEMMA 1. Let f be a nonconstant entire function, a; and a, two distinct small
functions of f with a; # o and ay # . Set

f-—a a—a

_ | e a-a 1)
f'—a; aj-a

li ! / /N
—a4 a4 —a

Then
() A 20, )
) mr e L s, (=12 o)
(iii) m-r,%} =S(r, f), 4)
@) mn A0 s, 5)

where B is an arbitrary small function of f.

 2¥(rta)- N(”A_(lf"‘)>sgﬁ<”ﬁ)+5(nf)- ©

1=1
Proof. Suppose that A(f) =0, then from (1) we have

f'—ai:ai—aﬁ
f—a a—a

By integrating for above two side we get

f=a+c(ai —a), (c#0 is a constant)

which contradicts the fact that a; and a, are small functions of f. Hence

A(f) #0.
Again by (1) we have
m(r f(_f‘)li) <m(r,a; — ay) + m(r,a1 — a) +m<r,J;/: f) +log2
:S(r,f)’ (12172)

i.e., (3) holds.

Note that

1 1 1 1
(f—al)(f—az)_al—az[f—al_f—az]’ 0



UNIQUENESS OF ENTIRE FUNCTIONS 3

and

ANV =B _ A | (&= BAY) ()
(f-a)f-a) f-a (f-a)lf-a)
So (3) and (7) imply (4). (5) follows from (3), (4) and (8).

Next, it is easy to see from (1) if any zero of f —a; (i=1,2) with mul-
tiplicity p is not the pole of a; and a, as well as is not the zero of (a; — a;), then
it must be a zero of A(f) with multiplicity at least (p — 1). Thus (6) holds.

This completes the proof of Lemma 1.

LEMMA 2. Let f be a nonconstant entire function, a and b two distinct small
Sfunctions of f with a % o and b # . Again let

ck =a+k(a—b), (kis a positive integer). 9)

7=a) ¥ 75)
L

)< Nt
+Z;N'(r,f, Ck) + S(r, f). (10)

Then

n+1O)T(r,f") <

Proof. 1t is easy to see from (9) that ¢y £a and ¢, #b (k=1,2,...,n),
and they are distinct small function of f. Let

_a
F=t—2, (11)
then
T(r,F)=T(r f)+ S, f). (12)

By the second fundamental theorem

This and (12) imply (10).
This completes the proof of Lemma 2.

LEMMA 3. Let f be a nonconstant entire function, a and b two distinct samll
functions of f with a# oo and b # oo. If f and f' share a and b IM, and
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T(r,f)=T(r,f")+S(r, f), (13)
then f = f'.

Proof. Assume that f # f'. From the fact that f and f” share a and b IM
we know that

N(r,ﬁ) +]V(r,}%b> < N(r,ﬁ) <T(rf-f)+0Q1)

<m(r, f) +m(r, 1 —?) +S(r,f)
<T(r,f)+ S(r, f). (14)
Now by the second fudamental theorem
(r, f) s]\_/(r,fl_a> +J\_/(r,f1_b) + 50, /). (15)
Combining (14) and (15) we have
10.f) = N (ny) + 8 (rsg ) +50.0), (16)
Set
_ AN =S
PG —a7 b (7
and
_ AT
REDIGED) (%)

where A(f) and A(f') are defined by (1), @ =a and a, = b.

From (2) we know that A(f) # 0 and A(f’) #0. Therefore, it follows that
p#0and y#0. Itis easy to see from (6) that N(r,¢) = S(r, f) and N(r,x) =
S(r,f). Again by (5) we get

Thus
T(r,p) =S(r, f). (19)

Next, for any positive integer k, by (3), (4) and (5) we have
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e 2N
sm(r )+ ) (1) o
sm{nf=) +s)
=m( G e (G v (=) e
sn(nfmd) em(328) 0 (ert) + e a0

Thus

—) +50.). (20)

W) = T0S) + 560, e1)
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Combining (13), (20) and (21) we deduce that
T(r,x) = S(r, f). (22)
Again let
Hm,n =mp —ny. (m and n are positive integers). (23)

If there exist my and ny such that Hmgy,ng =0, i.e., myp = npy. Then from
(17) and (18) we have

o A(f) - A" |
(f=a)f-b) “(f'—a)(f -b)
By (1)
(;:z) - D<f,:b> , (D #0 is a constant).
According to the condition (13) we know that my =ny. Hence
%2 Dy (}f—::—Z), (Dy #0 is a constant). (24)

Since f # f', thus Dy # 1. So from (24) we have
SU(D1 = 1)f"+a~Dib| = (Dra~b)f'+ (1~ Di)ab.
By Clunie’s lemma (see [5]) we have
mlr,(Dy — 1)f' +a— Db] = S(r, f),

which results in m(r, f') = S(r, f), i.e., T(r,f') = S(r, f). This is impossible to
satisfy.

Hence, Hm,n =mgp —ny # 0 for all positive integers m and n. Now let
zo € S(n,m)(a) U S(n,m)(b), i.e, zo be a common zero of f —a (or f—b) and
f'—a (or f'— b) with multiplicities n and m respectively. From (17) and (18)
it follows that Hm,n(z) =0. So

N(n,m) (r, 71—_a> + N(n,m) (r, f—i—b)
< N(r, mi) +S(r,f) < T(r, Hm,n) + S(r, f)

<T(r,9) + T(r,x) + S(r, ) =S(r, f),
for all positive integers m and n. Again by (16) we have

=o)L s
;[ " ”)( f_l_a> +N(’”’”>(’»fl_b)] +8(r.)
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_ | [N(m’n)(r’fl—a) +N(m,n)<r,ﬁ)] +S8(r, f)

() ()] s
|

< ET(r,f) + S(r, f).

It is impossible for this to hold, thus f = f’.
This completes the proof of Lemma 3.

3. The proof of Theorem 1

Assume that f # f'. Let ¢ and y be defined by (17) and (18) respectively.
From (17) we have

o(f —a)(f —b) = AN - 1),

we rewrite this in the following form

o~ (@ =) fP=bif +bof +bsff +baf”+bs, (25)

where b) = ab’ — ba’ + (a+ b)p, by =ba’ —ab’, by=b+b' —a—a', by=a—-b,
bs = —aby are all small functions of f. We discuss the following two cases:
(I) Suppose that ¢ — (@’ —b’) #0. By (25) we have
2m(r, f) <m r~—1—— +m|r, f{ b1 +b f—l+bf'—i-b4f/-£i + m(r, bs)
3 = ’(0—a'+b’ ) 1 2f 3 f s US
!

<mf(r, f) +m[r,f’<b3 +b4-fj7)] +8(r, f)
<m(r,f) +m(r, f') + S(r, f),
which results in
m(r, f) <m(r, f') + S(r, f),
ie.,
T(r,f) <T(r,f') +S(r,f).
Noting that f is an entire function, we have obviously
T(r,f") < T(r, f) + S /).
Hence
T(r,f)=T(r,f')+S(rf).

So by Lemma 3, this contradicts the assumption of Theorem 1.
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(I1) Suppose that ¢ — (¢’ —b') =0, ie., p=a’' —b’. We again divide the
following three cases:

(IL.1) Suppose that a’ #a and b’ # b. Since fand f' share a and b IM, so
the zeros of f —a and f — b with multiplicities larger than one are the zeros of
a' —a and b’ — b respectively. It follows that

2 N (ns) + W om (rg )| = s 0

Now let z; € S(1, p)(a), i€, z; be a simple zero of f —a and a zero of f'—a
with multiplicity p. When p > 2, we get by (17)

p(z1) = a'(z1) —a(z1) = d'(z1) = b'(z1),
which results in a(z;) —b'(z;) =0. If a—b' =0, from (17) we get
f'—d a—b
f—a a-b’

This implies that T(r, f) = T(r, f') + S(r, f).
By Lemma 3 this is a contradiction again.
Thus a —b" #0. Hence

SN () = S0,

p=2
Similary, we have
SN (g ) = S0,
p=2 f-b
Therefore
T(r,f) :N<r’f1—a> +N<r’f1—b) + S(r, f)
=]V(1,1)(r,?—1_—;> —HV(I,I)(r,j%b)-I—S(r,f). (27)

Setting H = ¢ — x, we suppose that H = 0. It is easy to see from (17) and (18)
that

T(raf) = T(r>f/) +S(r7f)

This is also a contradiction.
Thus H #0. By (17) and (18) we know that H(z) =0 for any z €
S(1,1)(a) US(1,1)(b). Combining this, (20) and (27) we get

10.) < ¥(rg7) +50:0) < T + 50,

<T(r,f) —N(r,—i—ck) +S8(r, f),

fl
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which results in

Noﬁrga)zSMfL (k e N*).

This is also impossible.

(IL.2) Suppose that either @’ =a and b’ # b or @’ #a and b’ =b. Without
loss of generality, we can assume that a’ =a and b’ #b. According to the
discussion in (IL.1) we know that

F(r5) + 500 =N (rty ) 4 50,71 28)

Since the zeros of f —a are all the zeros of f' —a= f'—a’, it follows that

ann—§—=Smﬁ~
(=)

It is easy to see from (17) that the counting function corresponding to the zeros
of f —aand f' — a with multiplicities all larger than one equals to S(r, ). This
derives that

1) = N (rt ) 4+ 8 (ny ) +56.0)

:N(2,1)<r,f-—l_—a->+1\_/(l,l)(r, : >+S(r,f). (29)

Set

f// _ b/ f/ _ b/ al _ b/

b 2f—b+a—b' (30)

It is easy to see from (28) that 7'(r,G) = S(r, f). When G = 0, by (30) we have
T(r,f)=T(r,f")+S(r f)

This is also a contradiction. When G # 0, combining (17), we get

N(2, l)(r,};l_—a> < N<r,é> +S(r, f) = S(r, f).

G=2

Hence

T(r, ):N(l,l)(r, lb>+S(r,f)
1

< N(r,¢_x +8(r, f)
< T(r,p) + T(r,x) +S(r,f)

1
=)+ 50,

< Tl f) = N{r 7
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1.€.

1
N(nm) =8(r,f), (keNT).
This is also impossible.
(I1.3) Suppose that a’ =a and b’ = b. By the discussion in (II.2) we know
that

T(r,f)=N(2, 1)(r,f—1_;) +N(2, 1)<r,ﬁ) + S f). (31)

Now let z* be a simple zero of f' —a and a zero of f — a with multiplicity two
but not a pole of a and b, also not a zero of a—b. Set
f// _ b fl —b a —b'

f’—b’_f—b_za—b' (32)

G =2
If G =0, by (32)

(f' - b)? = Dy(a—b)*(f —b). (Dy#0 is a constant).

This implies that z* must be a zero of a—b— (1/D;). Since p=a’' —b' =
a—b#0, s0o a—b—(1/D;) #£0, which results in

N, 1)(r,713> =S(r, f).

If G; #0, from (17) and (32) it follows that G)(z*) =0, also we have that

N (ry) < N(ng )+ 500) < NG.G) +50.) = 5001
Thus, from (31) we get
T f) = N2, 1) ( ﬁ) S f) < 3T ) + S0 ).

This is also a contradiction.
According to above all discussion we obtain that f = f.
This completes the proof of Theorem 1.
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