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ENTIRE FUNCTIONS THAT SHARE ONE VALUE WITH

THEIR LINEAR DIFFERENTIAL POLYNOMIALS

PING LI*

Abstract

This paper study the problem on entire functions sharing one value with their

certain type of linear differential polynomials. The results here improved and gener-

alized some results obtained by L. Z. Yang [9] and H. Zhong [10].

1. Introduction

Let/and g be two nonconstant meromorphic functions in the complex plane
C and a be a value in the extended complex plane C. We say that / and g share
the value a CM (IM) provided that / — a and g — a (1// and l/g, resp.) have
the same zeros counting multiplicities (ignoring multiplicities) in the case of a e C
[a = oo, resp.). Rubel and Yang proved [8] that if an entire function /share two
finite values CM with its derivative, then / = / ' . This result has been gen-
eralized to sharing values IM by G. Gundersen (see [3]) and by Mues-Steinmetz
(see [7]) independently. In 1986, Jank, Mues and Volkmann [5] proved the
following.

THEOREM A. Let f(z) be a nonconstant entire function. If f and f' share
the value a (a φ 0) IM, and f"{z) = a when f{z) = a, then f = / ' .

The function (see [10]) f(z) = eaz + a - 1, where a e C and a φ 1, ak~ι = 1,
k > 3, shows that /, / ' and f{k) share the value a CM, but fψf and
f ψ f^k\ Hence the f" in Theorem A can not be simply replaced by / w

(k>3). In [10] Zhong gave a generalization of Theorem A in the following
way.

THEOREM B. Let f(z) be a nonconstant entire function. If f and f ' share

the value a (a Φ 0) CM, and f{n\z) = f{n+ι\z) =a (n>\) when f(z) = a, then
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Related to Zhong's result, L.-Z. Yang [9] gave another generalization of
Theorem A.

THEOREM C. Let f be a nonconstant entire function. Iff and / ^ share the
finite value a ( ^ 0 ) IM, and f\z) = f{n+ι)(z) = a when f(z) = a, then f = f{n).

In this paper, we improve and generalize above results to the case that /
and its linear differential polynomials share one value. We prove the following
theorems.

THEOREM 1. Let f be a nonconstant entire function, and

(1) L (\

where a\,a2,...,an Φ0 are constants. Iff and f' share the finite and non-zero
value a IM, and if L(z) = L'(z) = a when f(z) = a, then f = f = L.

THEOREM 2. Let f be a nonconstant entire function, and L be the differential
polynomial in f defined in (1) whose coefficients satisfy Σ^ = 1 2 k ak Φ 0 or
Σk=iak Φ —1 V f and L share the finite and non-zero value a IM, and if

f'\z) = L\z) = a when f(z) = a, then f = f = L.

We will give an example to show that the condition Σk=\ ^k(1k Φ 0 or
ΣlUi ak Φ — 1 in Theorem 2 is necessary.

We assume that the reader is familiar with the basic notations and results
about Nevanlinna's value distribution theory (see [4] or [6]).

2. Lemmas

LEMMA 1 (see [10]). Let f be a nonconstant entire function. If f and f share
the finite and non-zero value a IM, then

where and in the sequel the notation S(r, f) is defined to be any quantity satisfying
S(r,f) = o{T(r,f)), as r —> oo possibly outside a set of finite linear measure.

LEMMA 2 (Clunie [1], Doeringer [2]). Let f be a nonconstant meromorphic
function and Q[f], Q*[f] be differential polynomials in f with Q[f] # 0 . Let
n e N and

f"Q*[f] = β[/]

If the degree of Q[f] is not great than n, then m(r,Q*[f]) = S(r,f).
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LEMMA 3. Let φ(ψθ) be an entire function. If φn + P[φ] = 0, where P[φ] is
a differential polynomial in φ with constant coefficients, and the degree of P[φ] is at
most n — 1, then φ is a constant.

Proof. Suppose φ is not a constant. We write φn + P[φ] = 0 as φn~ι φ =
—P[φ]. Then by Lemma 2, we have m{r,φ) = S(r,φ). Note that φ is an entire
function. We get T(r,φ) = S(r,φ), a contradiction. Hence φ is a constant.

D

LEMMA 4. Let f be a meromorphic function, L be the differential polynomial
in f defined in (1), and a be a finite non-zero value. Then

m

By the lemma of logarithmic derivative, we have m(r,L/(f — a)) =
S(r,f) and m(r,Lf/(L(L — a))) = S'(r,/). In terms of Nevanlinna first funda-
mental theorem and the properties of the counting functions, we have

Hence

) + ( ) (m(r,-—-) +m(r,- -) =m(r,
f-aj ' \'L-aJ V'/-β L) \'L-a

D

LEMMA 5. Let f be a nonconstant entire function, L be the differential
polynomial in f defined in (1), and f φ L. If f and L share the finite and non-zero
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value a IM, and if f'(z) = L'(z) = a when f(z) = a, then

Proof Since /'(z) = L(z) = L'(z) = a when f(z) = a and / φ L, we can
derive that

<X-T{rJ-L)+S{r,f)

<\m{rJ-L) + S{rJ)

<l-T(rJ)+S(r,f).

On the other hand, by Lemma 4, we have

T(r, f) + T(r, L)<N (r, j ^ j + N (r, -^—^ + m (r, ̂  + S(r, f)

which leads to

Hence T(r,f) = 2N(r, l/(/ - a)) + S(r,f). D

LEMMA 6. Let f be a nonconstant entire function, L be the differential
polynomial in f defined in (1), and a be a finite non-zero value satisfying
m(r, l/(/ - a)) = S(rJ). If f'(z) = L(z) = L\z) - a when f(z) = a, then f =

Proof Set

Since a is a non-zero value and f'(z) = a when f(z) = a, all α-points off are
simple, and thus α is an entire function. By the lemma of logarithmic derivative
and the condition m(r,l/(f - a)) = S(r,f), we deduce that m(r,α) = 5(r,/).
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Hence

(3) T(r,a) = S(r,f).

The equation (2) can be rewritten as

(4) f' = a + atf-a)=βι

where βx = a — aot and oc\ — α are entire functions. From (4), we deduce that

(5) f{k)=βk + «kf,

where βk and ak are entire functions satisfying the following recurrence formulas

(6) '

(7)

for k = 1,2, Hence we have

(8) L =
k=\

where

n n

(9) ξ = ^2akβk and η = Y^
k=\ k=\

From the recurrence formulas (6) and (7), we can easily see that ξ and η are
entire functions, and

By taking the derivative in equation (8), we get

(10) L' = ξ' + η'f + ηf.

Suppose z is an α-point of /. Then by the assumption of Lemma 6 and
equations (8), (10), we have

(11) ζ(z)+η(z)a-a = 0,

(12) ξ'(z)+η'(z)a + η(z)a-a = 0.

Let 7! = ξ + ηa — a and y2 = ξ' + η'a + ηa — a. We have γx (z) = 0, γ2(z) = 0,
and T(r,yx) = S(r,f), T(r,y2) = S(r,f). lΐYιφ0 or y2 # 0, say, y, # 0, then
we get

This and the condition m(r,\/(f - a)) = S{rJ) lead to Γ(r,/) = S(r,/), a
contradiction. Hence we have ^ = 0 and ̂ 2 = 0, which imply ξ = 0 and η = 1
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or

(13)
k=\

Hence from (8) we get L = / . By recurrence formula (7), equation (13) can be
expressed as

ana
n + P[α] = 0,

where P[a] is a differential polynomial in α with degree less than or equal to
n— 1. From this and by using Lemma 3, we can conclude that α is a con-
stant. Therefore from recurrence formula (7), we get ock = ock. From (4), we
deduce that

α

f{k) = <xkAe«z = akAeaz, k = 1 , 2 , . . . ,/i,

where ^ is a non-zero constant. Note Σ ^ = 1 ^ α ^ = l. From the above
equation, we have

\k=\ J

Let z be an β-point of/ We get α = f'(z)/L(z) = 1, and thus L = / ' . Hence
/ = / ' = L, which completes the proof of Lemma 6. •

LEMMA 7. Lei f be a nonconstant entire function, L be the differential
polynomial in f defined in (1), and a be a finite non-zero value satisfying
N(r, l / (/ - a)) Φ S(rJ). If f\z) = L(z) = L\z) = a when f(z) = a, then f #

Proof Suppose

(14) f' = L-f + a.

Then we have f" = L' — ff. Therefore according to the assumption we have
f\z) = 0 when f(z) = a. Set

f"
(15) h= J

f-a

We see that h is an entire function and T(r,h) = S(r,f). Rewrite (15) as f" =
h(f — a) and taking the derivatives, we can get

(16) / ( * + 2 ) = 4 ( / - α ) +μkf\ A: = 0,1, . . . ,
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where λo — h,μ0 = 0, and λk,μk are entire functions satisfying the following
recurrence formulas

(17) 4 = 4-1

(18) μk = λk-ι

for k = 1,2, Hence by (16) we have

(19) L
k=2

-2 (/ - a) + Ui + Σakμk_2 / '

J )
Note that f'{z) = L(z) = a when f(z) = a. We have a\ + Σn

k=1akμk_2(z) = 1
for all α-points of /. From the recurrence formulas (17) and (18), we see
that T(r,λk) = S(r,f), T(r,μk) = S(r,f), k= 1,2,.... Since N(r,l/(f-a)) Φ
S(r,f), we can conclude that

(20) a ι +

k=2

and thus by (19) and (14), we have

(21)
k=2

From the recurrence formulas (17) and (18), by mathematical induction in the
number k, we can conclude that λk and μk+ι are differential polynomials in h
with degree less than or equal to (k+l)/2 when k is odd; and λk and μk+ι have
the forms λ(*+2)/2 + Pfc[λ] and A^+2)/2 + β^[A], respectively, when fc is even, where
Pfc[λ] and βλ:[A] are differential polynomials in h with degree less than or equal to
k/2. Hence for even number n > 2 equation (21) can be expressed as

(22) hn/2 + P[h] = 0,

and for odd number n > 3 equation (20) can be expressed as

(23) Λ("-1)/2 + Q[h] = 0,

where P[h] and Q[h] are differential polynomials in h with degP[A] < (n/2) — 1
and degg[λ] < ((«—l)/2) — 1. In both cases, by using Lemma 3, we can
conclude that h is a constant. Hence by (15), we get (f')2 = h(f-a)2 + C\,
where Q is a constant. By assumptions of Lemma 7, the constant C\ should be
a1. Therefore we have

(24) (f'-a)(f' + a)=h(f-a)2.
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By assumptions of Lemma 7 again, we see that — a is an exceptional value of
/ ' . Hence there exists an entire function ζ such that /'' = —α + eζ, and thus
/ " = ζ'eζ. Combining this and (15), we see that ζ'{z) = 0 when f(z) = a. Note
that N(rM{f-a))ΦS(rJ) and Γ(r,£) = S(r,/). If £' ψ 0, then we get
N(r, l/(/ - Λ)) < 7V(r, I/O = % , / ) , a contradiction. Therefore we have £' =
0. Hence we see that / ' is a constant, and thus by (24) / is a constant, which
contradicts the assumption and completes the proof of Lemma 7. •

3. The proofs of theorems

Proof of Theorem 1. Set

It is easily seen that φ, φx are entire functions and T(r,φ) = S(r,f), T{r,φx) =
S(r,f).

If ^ φ 0, then we have

) m{rj') + 5(r,/) < m{rj) + 5(r,/),

and thus T{rJ) = T{rJ') + S{r,f). From (25), we have f = a+(l/φ)
(Lf — ff). By taking the derivative, we get

which leads to

Since φ is an entire function, we can easily see that 1 + {l/φ)f Φ 0. Therefore

L> +\_L"-f"

\φ)
f'-a i , (l\'\\Φ) f'-a' φ f'-a

Hence from the above equation and by using the lemma of logarithmic de-
rivative, we can deduce that rn(r,f'/(ff-ά)) = S(r,f), and thus

m

Since L' = Σ L i akf{k+X) and L'(z) = a when f'(z) - a, we see that the
multiplicity of any α-point of / ; is at most n. Hence we have
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where N(2(r, l / (/ ' — a)) and 7V(2(r, l /(/ '— <z)) a r e defined to be the counting
function and reduced counting function of l/ (/ ' — a) related to the multiple
^-points of / ' , respectively. Suppose z is a multiple α-point of / ' . Then by
calculation we have φ\(z) = 1. By Lemma 1, we have N(r, l/_(f — a)) φ S(r,f).
Therefore from Lemma 7, we see that φx φ 1. Hence 7V(2(r, l / (/ ' — a)) <
N(r, \/{φι - 1)) < S(rJ), and thus N{2(r, \/{f -a))< S{rJ), which implies
that

Therefore

= S(r,f).

Hence by Lemma 6, we obtain / = / ' = L, which leads to φ = 0, a contra-
diction.

If φ = 0, then L — f is a constant. By Lemma 1, we see that the value a is
not an exceptional value of/ Hence we must have L — f = 0. From this we
can get

and thus by Lemma 6, we conclude that / = / ' = L, which completes the proof
of Theorem 1. •

Proof of Theorem 2. Let φ be the function defined in (25) and

L' L' L'(L-f)
(26) ψ =

/ - * L-α (f-a)(L-a)'

It is obvious that m(r,φ) = S(r,f) and m(r,ψ) = 5 ( r , / ) . Since α # 0 and
/ ( z ) = α implies / ; ( z ) = L(z) = Z/(z) = α, we see that all α-points o f / a r e simple
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and these points are double zeros of L — f. Therefore φ and φ are entire
functions. Hence

T(r,φ) = S(rJ), T(r,ψ)=S(r,f).

Suppose z is an α-point of/. Then by calculation, we have

and thus φ{z) - 2ψ(z) = 0. If φ-2ψφθ, then we obtain N(r,\/(f - a)) =
S(r,f). From this and Lemma 5, we get T{r,f) = S(r,f), a contradiction.
Hence we have ^ = 2ψ, which leads to L — f = c(L — a)2 or

(27) / - α = ( L - α ) ( l + α z - c L ) ,

where c is a constant. If c = 0, then we have / = L, and thus

Hence by Lemma 6, we obtain the conclusion / = / ' = L.
Suppose now that c φ 0. If a + (1/c) is not an exceptional value of L, then

there exists a z such that

1+ αz - cL{z) = 0.

Therefore from equation (27), we have f(z) — a = 0, and thus by assumption
L(z) = a, which contradicts the above equation. Hence a+(\/c) is an excep-
tional value of L. This means that there exists an entire function γ such that

(28) L = a + - + eγ.
c

Obviously, we have T(r,γ) < S(r,L) < S(rJ).
If a + (1/c) / 0, then we have

From this and by using Lemma 5, we have

T(r, f) = 2m U j^A + S(r, /) < 2m ̂ r,

a contradiction. Hence α+(l/c) = 0 . This, (27) and (28) give



456 PING LI

and thus L' = γ'L. Note that N(r, l/(/ - a)) φ S{rJ) and f(z)=a implies
L(z) = V(z) = a. We must have / = 1 or V = L. From the above equation,
we get f{k) = (2k/a)L2 - L, ifc = 1,2,...,«. Therefore

Note that L is not a constant. Hence we have

A:=l Λ:=l

which contradict the assumption, and completes the proof of Theorem 2. •

The following example shows that the condition Σ£= 12 ka^ φθ or
ΣAUI

 ak Φ — 1 i n Theorem 2 in necessary.

EXAMPLE 1. Suppose a\,ai,...,an are constants satisfying

it=l k=\

Let /(z) = α + (l/a)e2z — ez, where α is a finite non-zero constant. Then
f{k)(z) = (2k/a)e2z - ez, and L{z) := Σ L i «ik/W W = ^z H e n c e / , i share α
CM, and f\z) = L{z) = L;(z) = α when f(z) - ^5 but / Φ f .
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