ON THE MONODROMY OF A FUNCTION GERM DEFINED ON AN ARRANGEMENT OF HYPERPLANES

MARIA IOACHIM ZAHARIA

1. Introduction

Let $\mathscr{A} = \{H_1, \ldots, H_k\}$ be an arrangement of hyperplanes in \mathbb{C}^{n+1} such that $0 \in H_1 \cap \cdots \cap H_k$ and let $\mathscr{L}(\mathscr{A})$ denote the intersection poset of \mathscr{A} . Let $f: (H_1 \cup \cdots \cup H_k, 0) \to \mathbb{C}$ be a germ of a holomorphic function in the origin with the property that the restriction of f to any $X \in \mathscr{L}(\mathscr{A}), X \neq \mathbb{C}^{n+1}, X \neq \{0\}$, has an isolated critical point in 0. It is known that f defines a Milnor fibration (see [2]) and that the Milnor fiber of f, denoted by F, has the homotopy type of a bouquet of spheres of (real) dimension n-1.

Let $h: H_{n-1}(F) \to H_{n-1}(F)$ be the (algebraic) monodromy and $\Delta(t) = \det(tI - h)$ be its characteristic polynomial. For $X \in \mathcal{L}(\mathcal{A}), X \neq C^{n+1}, X \neq \{0\}$, let $\Delta_X(t)$ denote the characteristic polynomial of the monodromy and $\mu(f|_X)$ denote the Milnor number of the restriction of f to X. If $\{0\} \in \mathcal{L}(\mathcal{A})$ we put $\Delta_{\{0\}}(t) = t - 1$ and $\mu(f|_{\{0\}}) = 1$. Let $\mu: \mathcal{L}(\mathcal{A}) \to Z$ be the Möbius function of $\mathcal{L}(\mathcal{A})$.

In this article we shall prove the following theorem (we consider the reduced homology with integer coefficients):

THEOREM 1.1. Under the above conditions, we have:

$$\Delta(t) = \prod_{X \in \mathscr{L}(\mathscr{A}), X \neq C^{n+1}} \Delta_X^{|\mu(X)|}(t).$$

In Section 3 we shall use Theorem 1.1 to obtain formulas for the ζ function of the monodromy, the Lefschetz number of f and the Milnor number of f, depending on the similar objects of the restriction of f to the linear spaces $X \in \mathscr{L}(\mathscr{A})$ and on the values of the Möbius function of $\mathscr{L}(\mathscr{A})$.

These results answer question raised by Professor D. Siersma to whom I would like to thank. I am also grateful to the referee for useful suggestions.

We shall remind some facts on arrangements of hyperplanes in a vector space, which we shall need in the proof of Theorem 1.1. These facts can be found in [4].

Received October 12, 1998; revised April 1, 1999

Let $\mathscr{A} = \{H_1, \ldots, H_k\}$ be an arrangement of hyperplanes in a vector space V such that $0 \in T(\mathscr{A}) = H_1 \cap \cdots \cap H_k$. Let $\mathscr{L} = \mathscr{L}(\mathscr{A})$ be the intersection poset of \mathscr{A} :

 $\mathscr{L}(\mathscr{A}) = \{V\} \cup \{W | \exists \{i_1, \dots, i_p\} \subseteq \{1, \dots, k\} \text{ such that } W = H_{i_1} \cap \dots \cap H_{i_p}\}.$

On \mathscr{L} a partial order is defined by reverse inclusion: $X \leq Y \Leftrightarrow Y \subseteq X$.

DEFINITION 1.2. The Möbius function $\mu_{\mathscr{A}}: \mathscr{L} \times \mathscr{L} \to Z$ is defined by

$$\begin{split} \mu(X,X) &= 1, \quad \text{if } \ X \in \mathscr{L}, \\ \sum_{X \leq Z \leq Y} \mu(X,Z) &= 0, \quad \text{if } \ X, Y, Z \in \mathscr{L} \quad \text{and} \quad X < Y, \\ \mu(X,Y) &= 0, \quad \text{otherwise.} \end{split}$$

DEFINITION 1.3. For $X \in \mathscr{L}$, we define $\mu(X) = \mu(V, X)$, $\mathscr{A}_X = \{H \in \mathscr{A} \mid X \subseteq H\}$ and $r(X) = \operatorname{codim} X = \dim V - \dim X$. We denote $\mu(\mathscr{A}) = \mu(T(\mathscr{A}))$.

Remark 1.4. It is well-known, see for instance [4], that $\sum_{X \in \mathscr{L}} \mu(X) = 0$ and that for $X \in \mathscr{L}$, we have $\mu(X) = (-1)^{r(X)} |\mu(X)| = \mu(\mathscr{A}_X)$.

2. Proof of Theorem 1.1

We prove Theorem 1.1 by double induction on the number of hyperplanes in the arrangement, k, and the dimension of the base space, n + 1.

For k = 1 and any *n*, we have one hyperplane *H* in C^{n+1} so dim H = n and we work in fact with $f|_{H}$. We have $\Delta(t) = \Delta_{H}(t)$.

For n = 1 and any k we have k (complex) lines, H_1, \ldots, H_k in \mathbb{C}^2 and $H_1 \cap \cdots \cap H_k = \{0\}$. The Milnor fiber F of f is a finite set of points and consequently the only nonzero homology group is $H_0(F)$. We have $\mathscr{L}(\mathscr{A}) = \{\mathbb{C}^2, H_1, \ldots, H_k, \{0\}\}$ with $\mu(\mathbb{C}^2) = 1$, $\mu(H_i) = -1$, $\forall i \in \{1, \ldots, k\}$, $\mu(\{0\}) = k - 1$. The formula to prove is

$$\Delta(t) = (t-1)^{k-1} \prod_{i=1}^{k} \Delta_{H_i}(t).$$

For k = 2: Let $F_1 = F \cap H_1$ be the Milnor fiber of the restriction $f|_{H_1}$ and let $F_2 = F \cap H_2$ be the Milnor fiber of the restriction $f|_{H_2}$. Then F_1 consists of $\mu(f|_{H_1}) + 1$ points, say $x_0, x_1, \ldots, x_{\mu(f|_{H_1})}$, and F_2 consists of $\mu(f|_{H_2}) + 1$ points, say $y_0, y_1, \ldots, y_{\mu(f|_{H_2})}$. Since $F_1 \cap F_2 = \emptyset$, $F = F_1 \cup F_2$ consists of $\mu(f|_{H_1}) + \mu(f|_{H_2}) + 2$ points and dim $H_0(F) = \mu(f|_{H_1}) + \mu(f|_{H_2}) + 1$. Let us consider the Mayer-Vietoris sequence for $F = F_1 \cup F_2$:

$$0 \to H_0(F_1) \oplus H_0(F_2) \to H_0(F).$$

A basis in $H_0(F_1)$ is $\{x_0 - x_j \mid j = 1, 2, \dots, \mu(f|_{H_1})\}$.

MARIA IOACHIM ZAHARIA

A basis in $H_0(F_2)$ is $\{y_0 - y_i | i = 1, 2, ..., \mu(f|_{H_2})\}$. A basis in $H_0(F)$ is

 $\{x_0 - x_j, y_0 - y_i, x_0 - y_0 \mid j = 1, 2, \dots, \mu(f|_{H_1}) \text{ and } i = 1, 2, \dots, \mu(f|_{H_2})\}.$

By [2], the monodromy respects the stratification. Thus, if $h(x_0) = x_j$ and $h(y_0) = y_i$ for some $j \in \{0, 1, \dots, \mu(f|_{H_1})\}$ and some $i \in \{0, 1, \dots, \mu(f|_{H_2})\}$, then

$$h(x_0 - y_0) = x_j - y_i = -x_0 + x_j + y_0 - y_i + x_0 - y_0.$$

Thus, the matrix of the monodromy $h: H_0(F) \to H_0(F)$ in the above basis is

/ Matrix of the		
monodromy	0	0
of $f _{H_1}$		
	Matrix of the	
0	monodromy	0.
	of $f _{H_2}$	
* /	*	1/

Consequently, the characteristic polynomial of h is

$$\Delta(t) = \Delta_{H_1}(t) \cdot \Delta_{H_2}(t) \cdot (t-1).$$

The induction step $k \mapsto k + 1$: The induction hypothesis is: for k lines in C^2 the characteristic polynomial of the monodromy is

$$\Delta(t) = \Delta_{H_1}(t) \cdots \Delta_{H_k}(t) \cdot (t-1)^{k-1}.$$

Let H_1, \ldots, H_{k+1} be k + 1 lines in \mathbb{C}^2 such that $H_1 \cap \cdots \cap H_{k+1} = \{0\}$. The sets of points representing the Milnor fibres of the restrictions $f|_{H_i}$ do not intersect, hence

$$\dim H_0(F) = \sum_{i=1}^{k+1} \mu(f|_{H_i}) + k$$

We put $F_1 = F \cap (H_1 \cup \cdots \cup H_k)$ and $F_2 = F \cap H_{k+1}$ and we note that

dim
$$H_0(F_1) = \sum_{i=1}^k \mu(f|_{H_i}) + (k-1).$$

If we fix basis in $H_0(F_1)$ and $H_0(F_2)$ we can get a basis in $H_0(F)$ in the same way we did in the case k = 2 and, like there, we get

$$\Delta(t) = \Delta_{H_{k+1}}(t) \cdot (t-1) \cdot (t-1)^{k-1} \prod_{i=1}^{k} \Delta_{H_i}(t) = (t-1)^k \prod_{i=1}^{k+1} \Delta_{H_i}(t).$$

Let us consider now that Theorem 1.1 is true for any p hyperplanes in a (m+1) dimensional vector subspace of C^{n+1} for $p \le k$ and $m \le n$ and let us prove it for k+1 hyperplanes in C^{n+1} . So consider $H_1, \ldots, H_{k+1} \subseteq C^{n+1}$,

440

 $f: (H_1 \cup \cdots \cup H_{k+1}, 0) \to C$ as before and let F be the Milnor fiber of f. We put:

$$F_1 = F \cap (H_1 \cup \cdots \cup H_k)$$
 and $F_2 = F \cap H_{k+1}$.

Thus, F_1 is the Milnor fiber of the restriction $f|_{H_1\cup\dots\cup H_k}$ and $F_1\cap F_2$ is the Milnor fiber of the restriction $f|_{H_{k+1}\cap(H_1\cup\dots\cup H_k)}$. Let us consider the following monodromies:

- h = the monodromy of f
- h_1 = the monodromy of $f|_{H_1\cup\dots\cup H_k}$
- h_2 = the monodromy of $f|_{H_{k+1}}$ h_{12} = the monodromy of $f|_{H_{k+1}\cap(H_1\cup\cdots\cup H_k)}$.

Because the monodromy respects the stratification, the Mayer-Vietoris sequence for $F = F_1 \cup F_2$ gives us the following commutative diagram:

Because the homology groups are free Z-modules,

$$H_{n-1}(F) \simeq H_{n-1}(F_1) \oplus H_{n-1}(F_2) \oplus H_{n-1}(F_1 \cap F_2)$$

so there exists a basis in $H_{n-1}(F)$ with respect to which the matrix of the monodromy h consists of cells corresponding to the matrices of h_1 , h_2 and h_{12} on the diagonal and zeroes above them (like in the case k = 2 above). Consequently,

(1)
$$\Delta(t) = \Delta_{H_{k+1}}(t) \cdot \Delta_2(t) \cdot \Delta_{12}(t),$$

where $\Delta_2(t)$ and $\Delta_{12}(t)$ are the characteristic polynomials of h_2 and h_{12} .

The induction hypothesis applies for $f|_{H_1\cup\dots\cup H_k}$, so we have

(2)
$$\Delta_2(t) = \prod_{X \in \mathscr{L}', X \neq C^{n+1}} \Delta_X^{|\mu'(X)|}(t),$$

where \mathscr{A}' is the arrangement $\{H_1, \ldots, H_k\}$ in \mathbb{C}^{n+1} and μ' is the Möbius function of $\mathscr{L}' := \mathscr{L}(\mathscr{A}')$. Next, we can apply the induction hypothesis for $f|_{H_{k+1}\cap(H_1\cap\cdots\cap H_k)}$ because we have at most k hyperplanes, $H_1\cap H_{k+1}, \ldots, H_k\cap H_{k+1}$, in a *n*-dimensional subspace, H_{k+1} , of C^{n+1} . So

(3)
$$\Delta_{12}(t) = \prod_{X \in \mathscr{L}'', X \neq C^{n+1}} \Delta_X^{|\mu''(X)|}(t),$$

where \mathscr{A}'' is the arrangement $\{H_1 \cap H_{k+1}, \ldots, H_k \cap H_{k+1}\}$ in H_{k+1} and μ'' is the Möbius function of $\mathscr{L}'' := \mathscr{L}(\mathscr{A}'')$. By introducing the relations (2) and (3) in (1), we easily see that the proof of Theorem 1.1 reduces to the proof of the

MARIA IOACHIM ZAHARIA

following:

(4) For all
$$X \in \mathscr{L}' \cap \mathscr{L}''$$
, we have: $|\mu(X)| = |\mu'(X)| + |\mu''(X)|$.

To prove (4), let $X \in \mathscr{L}' \cap \mathscr{L}''$. Then $X \subseteq H_{k+1}$ and $X = T(\mathscr{A}_X) \in \mathscr{L}(\mathscr{A}_X \setminus \{H_{k+1}\}) = \mathscr{L}(\mathscr{A}_X')$. Thus, H_{k+1} is not a separator, in the sense of [4], Definition 2.58. And now, point (2) of Corollary 2.59 in [4] gives us that

(5)
$$|\mu(\mathscr{A}_X)| = |\mu(\mathscr{A}'_X)| + |\mu(\mathscr{A}''_X)|.$$

By Remark 1.4, relation (5) implies (4). Thus, Theorem 1.1 is proved.

3. Consequences of Theorem 1.1

Because the degree of the characteristic polynomial is equal to dim $H_{n-1}(F)$, we have

PROPOSITION 3.1. Under the conditions in Theorem 1.1, we have

$$\dim H_{n-1}(F) = \sum_{X \in \mathscr{L}(\mathscr{A}), X \neq \mathbf{C}^{n+1}} |\mu(X)| \cdot \mu(f|_X).$$

Remark 3.2. For another proof of this Proposition, see [8]. In [5] it is obtained a similar result for homogeneous f. Note also that the above formula is used in [6].

Remark 3.3. In [7] and [8] we proved a formula to compute the algebraic codimension (when finite) of a function germ f defined on an arrangement $\mathscr{A} = \{\{x_1 = 0\}, \ldots, \{x_p = 0\}\}$ of coordinate hyperplanes in \mathbb{C}^{n+1} , when we know the Milnor numbers of its restrictions to the spaces $X \in \mathscr{L}(\mathscr{A})$. It turns out that in this case the algebraic codimension is equal to dim $H_{n-1}(F)$. We do not know if such a property holds for any arrangement \mathscr{A} .

For a function germ f defined on a central arrangement of hyperplanes and having an isolated singularity in 0, as considered above, the ζ function of the monodromy is

$$\zeta_f(t) = (1-t)[t^{\nu}\Delta(t^{-1})]^{(-1)^{n-1}}$$

where Δ is the characteristic polynomial of the monodromy and v is the degree of Δ . Using the formulas in Theorem 1.1 and Proposition 3.1, we obtain:

$$\zeta_f(t) = (1-t) \left[\prod_{X \in \mathscr{L}(\mathscr{A}), X \neq C^{n+1}} (t^{\mu(f|_X)} \Delta_X(t^{-1}))^{|\mu(X)|} \right]^{(-1)^{n-1}}$$

442

But, for any $X \in \mathscr{L}(\mathscr{A}), X \neq \{0\}, X \neq C^{n+1}$, we have

$$\zeta_{f|_X} = (1-t) [t^{\mu(f|_X)} \cdot \Delta_X(t^{-1})]^{(-1)^{\dim X - 1}}$$

so

$$t^{\mu(f|_{\chi})} \cdot \Delta_{\chi}(t^{-1}) = [(1-t)^{-1} \zeta_{f|_{\chi}}(t)]^{(-1)^{\dim \chi_{-1}}}$$

If $\{0\} \in \mathscr{L}(\mathscr{A})$ we put $\zeta_{f|_{\{0\}}}(t) = 1$. Consequently, by Remark 1.4 we have:

$$\begin{split} \zeta_{f}(t) &= (1-t) \left[\prod_{X \in \mathscr{L}(\mathscr{A}), X \neq C^{n+1}} ((1-t)^{-1} \zeta_{f|_{X}}(t))^{(-1)^{\dim X-1} \cdot |\mu(X)|} \right]^{(-1)^{n-1}} \\ &= (1-t) \prod_{X \in \mathscr{L}(\mathscr{A}), X \neq C^{n+1}} \left[((1-t)^{-1} \zeta_{f|_{X}}(t))^{|\mu(X)|} \right]^{(-1)^{\dim X-1-n+1}} \\ &= (1-t) \prod_{X \in \mathscr{L}(\mathscr{A}), X \neq C^{n+1}} [(1-t)^{-1} \zeta_{f|_{X}}]^{|\mu(X)|(-1)^{r(X)-1}} \\ &= (1-t) \prod_{X \in \mathscr{L}(\mathscr{A}), X \neq C^{n+1}} [(1-t) \zeta_{f|_{X}}^{-1}(t)]^{|\mu(X)|(-1)^{r(X)}} \\ &= (1-t) \prod_{X \in \mathscr{L}(\mathscr{A}), X \neq C^{n+1}} (1-t)^{\mu(X)} \zeta_{f|_{X}}^{-\mu(X)}(t) \\ &= \prod_{X \in \mathscr{L}(\mathscr{A}), X \neq C^{n+1}} \zeta_{f|_{X}}^{-\mu(X)}(t). \end{split}$$

Thus, we proved

PROPOSITION 3.4. Under the hypotheses of Theorem 1.1, the ζ function of the monodromy of f is

$$\zeta_f(t) = \prod_{X \in \mathscr{L}(\mathscr{A}), X \neq C^{n+1}} \zeta_{f|_X}^{-\mu(X)}(t).$$

For $X \in \mathscr{L}(\mathscr{A})$, let us denote by Λ_X the Lefschetz number of the monodromy of $f|_X$. If $\{0\} \in \mathscr{L}(\mathscr{A})$ we put $\Lambda_{\{0\}} = 0$. The Weil inversion formula and Proposition 3.4 imply

PROPOSITION 3.5. Under the conditions in Theorem 1.1, the Lefschetz number of the monodromy is

(6)
$$\Lambda(h) = 1 + \sum_{X \in \mathscr{L}(\mathscr{A}), X \neq C^{n+1}} (1 - \Lambda_X) \mu(X) = -\sum_{X \in \mathscr{L}(\mathscr{A}), X \neq C^{n+1}} \Lambda_X \cdot \mu(X).$$

443

MARIA IOACHIM ZAHARIA

Let (X, 0) be the germ of a smooth analytic space, $m_{X,0}$ the maximal ideal of the local ring $\mathcal{O}_{X,0}$ and f a function germ defined on X. In [1] N. A'Campo proves that for the monodromy h of f, we have $\Lambda(h) = 0$ if $f \in m_{X,0}^2$ and $\Lambda(h) =$ 1 if $f \in m_{X,0} \setminus m_{X,0}^2$. Because the subspaces $X \in \mathscr{L}(\mathscr{A})$ are smooth, the formula (6) implies that to compute $\Lambda(h)$ we need only the Lefschetz numbers of those restrictions of f to $X \in \mathscr{L}(\mathscr{A})$ for which $f|_X \in m_{X,0}$. Proposition 3.5 and A'Campo's result imply the following

COROLLARY 3.6. Let (X,0) be the germ in 0 of a central hyperplane arrangement in \mathbb{C}^{n+1} , let $m_{X,0}$ be the maximal ideal of the local ring $\mathcal{O}_{X,0}$ and let f be a germ of function defined on (X,0). If $f \in m_{X,0}^2$ then $\Lambda(h_f) = 0$.

EXAMPLE 3.7. Let \mathscr{A} be the arrangement of all coordinate hyperplanes in \mathbb{C}^{n+1} . Its defining ideal is $I = (x_1 \cdots x_{n+1})$ and the maximal ideal \overline{m} , of the local ring of this germ of analytic space is the image of the ideal $m = (x_1, \ldots, x_{n+1})$ in \mathcal{O}_{n+1}/I . Let $f \in \overline{m} \setminus \overline{m}^2$ be a function germ defined on \mathscr{A} . Then, by [7], Proposition 4.1, we have: Either f is \mathscr{R} -equivalent to $\overline{x_1 + \cdots + x_{n+1}}$, in which case

$$\Lambda(h_f) = 1 + \mu(\{0\}) = 1 + (-1)^{n+1},$$

or f is \mathscr{R} -equivalent to $x_1 + \cdots + x_k + h(x_{k+1}, \ldots, x_{n+1})$ for some $k \in \{1, \ldots, n\}$ and h with $j^1h = 0$. In this situation we identify $\{(x_1, \ldots, x_{n+1}) \in \mathbb{C}^{n+1}\}$ $x_1 = \cdots = x_k = 0\}$ with \mathbb{C}^{n-k+1} . The elements $X \in \mathscr{L}(\mathscr{A})$ which intervene in the computation of the Lefschetz number of the monodromy of f are in fact the elements of the intersection poset of the arrangement of all coordinate hyperplanes in \mathbb{C}^{n-k+1} . Let us denote the set of these elements by \mathscr{L}_k . For $X \in \mathscr{L}_k$, the value of $\mu(X)$ is equal to the value of the Möbius function of the arrangement of all coordinate hyperplanes in \mathbb{C}^{n-k+1} . Using [4], Proposition 2.44, we get

$$\Lambda(h_f) = 1 + \sum_{X \in \mathscr{L}_k} \mu(X) = 1.$$

Thus, in this example the Lefschetz number of the monodromy of f can take the values 0, 1 or 2.

References

- [1] N. A'CAMPO, Le nombre de Lefschetz d'une monodromie, Indag. Math., 35 (1973), 113-118.
- [2] LÊ, D. T., Complex analytic functions with isolated singularities, J. Algebraic Geom., 1 (1992), 83-100.
- [3] J. MILNOR, Singular points of complex hypersurfaces, Ann. Math. Stud., 61, Princeton, 1968.
- [4] P ORLIK, H. TERAO, Arrangements of hyperplanes, Grundelheren der Mathematischen Wissenschriften, 300, Springer-Verlag, 1992.
- [5] P. ORLIK, H. TERAO, Arrangements and Milnor fibers, Math. Ann., 301 (1995), 211-235.
- [6] A. ZAHARIA, On the bifurcation set of a polynomial function and Newton boundary, II, Kodai Math. J., 19 (1996), 218–233.

- [7] M. I. ZAHARIA, Function germs defined on the arrangement of coordinate hyperplanes, Stud. Cerc. Mat., 47 (1995), 271-282.
- [8] M. I. ZAHARIA, The homology of the Milnor fiber of a function germ defined on an arrangement of hyperplanes, Saitama Math. J., 15 (1997), 1-8.

Maria_Zaharia@manulife.com