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ON THE MONODROMY OF A FUNCTION GERM DEFINED ON

AN ARRANGEMENT OF HYPERPLANES

MARIA IOACHIM ZAHARIA

1. Introduction

Let si — {H\,... ,Hk) be an arrangement of hyperplanes in Cn+ι such
that 0 e H\ Π ••• Γ\Hk and let $£{stf) denote the intersection poset of sέ'. Let
/ : (H\ U U//&,0) —» C be a germ of a holomorphic function in the origin
with the property that the restriction of/to any X e &{st\ X Φ Cn+\ X φ {0},
has an isolated critical point in 0. It is known that / defines a Milnor fibration
(see [2]) and that the Milnor fiber of/, denoted by F, has the homotopy type of a
bouquet of spheres of (real) dimension n — 1.

Let h : Hn-\(F)—> Hn-\(F) be the (algebraic) monodromy and Δ(ή =
det(tl-h) be its characteristic polynomial. For X e &{s/\ X φ Cn+\ Xφ
{0}, let Δχ(t) denote the characteristic polynomial of the monodromy and μ(f\x)
denote the Milnor number of the restriction o f/ to X. If {0} e S£(si) we put
Δ{o}(ί) = ΐ-l and μ(f\{0}) = 1. Let μ : Sg(s/) -> Z be the Mόbius function of

In this article we shall prove the following theorem (we consider the reduced
homology with integer coefficients):

THEOREM 1.1. Under the above conditions, we have:

Δ(ί) =

In Section 3 we shall use Theorem 1.1 to obtain formulas for the ζ function
of the monodromy, the Lefschetz number of / and the Milnor number of /
depending on the similar objects of the restriction of / to the linear spaces
X e J?(J/) and on the values of the Mόbius function of S£(st).

These results answer question raised by Professor D. Siersma to whom I
would like to thank. I am also grateful to the referee for useful suggestions.

We shall remind some facts on arrangements of hyperplanes in a vector
space, which we shall need in the proof of Theorem 1.1. These facts can be
found in [4].
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Let stf = {H\,..., Hk} be an arrangement of hypeφlanes in a vector space V
such that 0 e T(s/) = H\Π f)Hk. Let Se = &(s/) be the intersection poset
of s/:

= {V}\J{W\3{iu...,ip}^{l,...,k} such that W = i/Zl Π •• J

On j£? a partial order is defined by reverse inclusion: X < Y <& Y c χ%

DEFINITION 1.2. The Mόbius function μ^ : if x if —• Z is defined by

μ(X,J0 = 1, if Xe&,

μ(X, Z) = 0, if X, Y, Z e £> and X < Y,
X<Z<Y

μ(Xt Y) = 0, otherwise.

DEFINITION 1.3. For Xe&, we define μ(X)=μ(V,X), stfx = {He^\
X <= H] and r(JT) = codim X = dim F - dimZ. We denote μ(s/) = μ(T(s/)).

Remark 1.4. It is well-known, see for instance [4], that
that for l e ^ w e have μ(X) = {-\γ{x)\μ(X)\ = μ{siχ).

2. Proof of Theorem 1.1

We prove Theorem 1.1 by double induction on the number of hypeφlanes in
the arrangement, k, and the dimension of the base space, n + 1.

For k — 1 and any n, we have one hyperplane H in Cn+ι so dim H = n and
we work in fact with f\H. We have A(ή = Δ#(f).

For n = 1 and any fc we have /c (complex) lines, H\,..., Hk in C 2 and
H\ Π ΠHk = {0}. The Milnor fiber F of / is a finite set of points and
consequently the only nonzero homology group is Ho(F). We have J£(s/) =
{C2,Hu...,Hk,{0}} with //(C2) = l, //(i/ί) = - l , V/e{l,...,fc}, //({0}) =
k — 1. The formula to prove is

l=\

For A: = 2: Let F\ = FΠ J î be the Milnor fiber of the restriction / | ^ and
let F2= FΠH2 be the Milnor fiber of the restriction f\Hi. Then F\ consists of
K/IHJ + ι points, say xo,^i, iXμ(f\Hι)> a n d F2 consists of μ{f\Hl) + 1 points,
say yo,yu ' >yμ(f\H2y

 s i n c e ^ iΠF 2 = 0, F = F{{JF2 consists of //(/l^) +
μ(f\Hl) + 2 points and dim/fo(^) = M/l#,) +^(/l//2) + !• L e t u s consider the
Mayer-Vietoris sequence for F — F\ UF2:

A basis in HQ(F\) is {x0 - x; \j = 1,2,... ,μ(f\Hι)}.
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A basis in H0(F2) is {y0 - yt \ i = 1,2,... ,μ(f\Hl)}.
A basis in Ho(F) is

j X

 a n d * = 1

J 2 , . . . , U

By [2], the monodromy respects the stratification. Thus, if h(x0) = Xj and

= yι f o r s o m e J e {°>*> ^(/l//,)} a n d s o m e * G {°> !> >M/I//2)L then

^o - y0-
m the above basis is

\
0

\

= Xj- yt = -xo + Xj + )

Thus, the matrix of the monodromy h : Ho(F) -

/Matrix of the

monodromy 0
of f\Hι

Matrix of the
0 monodromy 0

of f\ff2

* * 1/

Consequently, the characteristic polynomial of h is

A(t)=AHι(t) AHl(t) (t-\).

The induction step k ι-> k + 1: The induction hypothesis is: for k lines in
C2 the characteristic polynomial of the monodromy is

A(ή = AHι(ή .AHk(ή.(t-\)k-1.

Let Hi,..., Hk+ι be k + 1 lines in C2 such that H\Π Π ̂ + i = {0}. The
sets of points representing the Milnor fibres of the restrictions f\Hι do not
intersect, hence

k+\

l=\

We put Fx = FΠ (Hi U UHk) and F2 = FΠHk+ι and we note that

ι=l

If we fix basis in Ho(F\) and ^0(^2) we can get a basis in Ho(F) in the same
way we did in the case k = 2 and, like there, we get

A ( ή = A H k + ι ( ή ( / - 1 ) . ( t - l )k ~ ι

1=1

k+\

(t-l)kl[AHι(ή.
1=1

Let us consider now that Theorem 1.1 is true for any p hyperplanes in a
(m + 1) dimensional vector subspace of C" + 1 for p < k and m <n and let us
prove it for k+l hyperplanes in Cn+ι. So consider # 1 , . . . ,Hk+ι c C w + 1 ,
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/ : (Hi U U #*+i,0) -> C as before and let F be the Milnor fiber of/ We
put:

Fi = F Π ( J / i U ••• UJJ*) and F2 = Ff]Hk+ϊ.

Thus, Fi is the Milnor fiber of the restriction f\Hι\j...\jHk and Fi f)F2 is the Milnor
fiber of the restriction / I j / ^ n ^ u u//*)* ^et u s c o n s i d e r the following mono-
dromies:

A = the monodromy of /

Ai = the monodromy of />|//1u-- u//Λ:

A2 = the monodromy of f\Hk+ι

A12 = the monodromy of / l / ^ n ^ u u//,)-
Because the monodromy respects the stratification, the Mayer-Vietoris sequence
for F = F\ U F2 gives us the following commutative diagram:

Ul®/l2

V >

Because the homology groups are free Z-modules,

so there exists a basis in Hn-\(F) with respect to which the matrix of
the monodromy A consists of cells corresponding to the matrices of Ai, A2 and A12
on the diagonal and zeroes above them (like in the case Ic = 2 above).
Consequently,

(1) Δ(0 = Δ f f t+1(0 Δ2(0 Δ12(0,

where Δ2(t) and Δi2(/) are the characteristic polynomials of A2 and A12.

The induction hypothesis applies for /l/^u...ui/*' s o w e ^ a v e

(2) Δ2(ί)= Π Δ χ W ' ( 0 .
Xe%",XφCn+ι

where stf' is the arrangement {H\,...,Hk} in C" + 1 and μ' is the Mobius
function of <£' := ^(όtf'). Next, we can apply the induction hypothesis for
/Itf*+In(#in .rw*) because we have at most k hyperplanes, H\C)Hk+ι,...,

k+\, in a rc-dimensional subspace, Hk+\, of Cn+ι. So

(3) Δ 1 2 ( 0 =

where J / ; / is the arrangement {H\ ΠT/^+i, , ^ Π ^ + i } in #AH-I and ///; is the
Mobius function of ifr/ := i f (W"). By introducing the relations (2) and (3) in
(1), we easily see that the proof of Theorem 1.1 reduces to the proof of the
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following:

(4) For all l e ^ ί l ^ " , we have: \μ(X)\ = \μ'(X)\ + \μ"(X)\.

To prove (4), let l e ^ Π <£". Then X c Hk+ι and X = T(s/X) e
&{&tχ\{Hk+\}) = ^{^x). Thus, Hk+\ is not a separator, in the sense of [4],
Definition 2.58. And now, point (2) of Corollary 2.59 in [4] gives us that

(5)

By Remark 1.4, relation (5) implies (4). Thus, Theorem 1.1 is proved.

3. Consequences of Theorem 1.1

Because the degree of the characteristic polynomial is equal to dim//"„_! (F),
we have

PROPOSITION 3.1. Under the conditions in Theorem 1.1, we have

\μ(X)\-μ(f\χ).

Remark 3.2. For another proof of this Proposition, see [8]. In [5] it is
obtained a similar result for homogeneous /. Note also that the above formula
is used in [6].

Remark 3.3. In [7] and [8] we proved a formula to compute the algebraic
codimension (when finite) of a function germ / defined on an arrangement
jrf — {{χx = 0},..., {xp = 0}} of coordinate hyperplanes in C"+ 1, when we know
the Milnor numbers of its restrictions to the spaces X e ££{srf). It turns out that
in this case the algebraic codimension is equal to dim Hn-\(F). We do not know
if such a property holds for any arrangement s/.

For a function germ / defined on a central arrangement of hyperplanes and
having an isolated singularity in 0, as considered above, the ζ function of the
monodromy is

where Δ is the characteristic polynomial of the monodromy and v is the degree of
Δ. Using the formulas in Theorem 1.1 and Proposition 3.1, we obtain:

ί/W = ( ! -
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But, for any X e 2{sί\ X φ {0}, X Φ Cn+\ we have

so

If {0} e £C(s/) we put C/|{0)(0 = l Consequently, by Remark 1.4 we have:

(-lΓmχ-'-\μ(X)\

= ( i - 0

Π

Π
Xε&{stf),XφCn

= 0 - 0 Π [(i-O^jJ(O] W J r ) l ( - I ) f W r )

= (1-0 JJ
Xe&(s

- Π

Thus, we proved

PROPOSITION 3.4. Under the hypotheses of Theorem 1.1, the ζ function of the
monodromy off is

Π

For X e S£{sϊ)> let us denote by Λ^ the Lefschetz number of the mono-
dromy of f\x. If {0} e ££{stf) we put Λ(0} = 0. The Weil inversion formula
and Proposition 3.4 imply

PROPOSITION 3.5. Under the conditions in Theorem 1.1, the Lefschetz number
of the monodromy is

(6) Λ(Λ) = (l~Ax)μ(X) = -
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Let (X,0) be the germ of a smooth analytic space, ra^o the maximal ideal
of the local ring $jr,o a n d / a function germ defined on X. In [1] N. A'Campo
proves that for the monodromy h off we have Λ(A) = 0 if / e m\ 0 and Λ(A) =
1 if / e mx^\mx 0 . Because the subspaces X e ££($0) are smooth, the formula
(6) implies that to compute Λ(A) we need only the Lefschetz numbers of those
restrictions o f / to X e ££{srf) for which f\xemχ^. Proposition 3.5 and
A'Campo's result imply the following

COROLLARY 3.6. Let (X,0) be the germ in 0 of a central hyperplane ar-
rangement in C Λ + 1 , let m^,o be the maximal ideal of the local ring Θx^ and let f
be a germ of function defined on (X, 0). If f e mx 0 then Λ(A/) = 0 .

EXAMPLE 3.7. Let si be the arrangement of all coordinate hyperplanes in
C n + 1 . Its defining ideal is / = [x\ xn+\) and the maximal ideal m, of the local
ring of this germ of analytic space is the image of the ideal m = (x\,... ,x«+i)
in On+\/I. Let fem\m2 be a function germ defined on si. Then, by [7],
Proposition 4.1, we have: Ei ther/ i s ^-equivalent to x\Λ h % i , in which
case

or / is ^-equivalent to x\ -\ h Xk + h{xk+\, , xn+i) for some k e {1,...,«}
and h with jιh = 0. In this situation we identify {(x\,... ,xn+\) e Cn+ι) \
xλ = . . . = χk = 0} with C"" / : + 1 . The elements JT e J ^ ( J / ) which intervene in
the computation of the Lefschetz number of the monodromy o f / a r e in fact the
elements of the intersection poset of the arrangement of all coordinate hyper-
planes in Cn~k+ι. Let us denote the set of these elements by JS?*. For X e JS?*,
the value of μ(X) is equal to the value of the Mόbius function of the arrangement
of all coordinate hyperplanes in Cn~k+ι. Using [4], Proposition 2.44, we get

Λ(A/) = 1

Thus, in this example the Lefschetz number of the monodromy of/can take
the values 0, 1 or 2.
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