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COMPACT EINSTEIN-WEYL FOUR-MANIFOLDS WITH

COMPATIBLE ALMOST COMPLEX STRUCTURES

HIROYUKI KAMADA

1. Introduction

A Weyl manifold is a smooth conformal manifold (M, C) equipped with a
torsion-free affine connection D preserving the conformal structure C A Weyl
manifold (M, C, D) is said to be Einstein-Weyl if its symmetrized Ricci tensor

r£(sym) j s proportional to a metric representative of C. The Levi-Civita con-
nection V of an Einstein manifold (M,g) gives an Einstein-Weyl structure ([#], V)
on M, where [g] denotes the conformal structure determined by g. Thus the
notion of Einstein-Weyl structures is a generalization of Einstein metrics, so there
are many studies in this topic (see Pedersen-Swann [9], [10], Itoh [4], and their
references).

An almost complex structure / on a conformal manifold (M, C) is said to
be compatible if / preserves C. Let (M, C, /) be a conformal manifold with a
compatible almost complex structure /. By making use of the Lee form βg of
each metric g in C, we can naturally define a unique Weyl connection D on
(M,C,J), which is called the canonical Weyl connection associated with (C,/) .
In the 4-dimensional case, we shall call such a quadruple (M, C, Z>, /) an almost
Hermitian-Weyl 4-manifold. It is known that for an almost Hermitian-Weyl 4-
manifold (Af, C, Z>, / ) , / is integrable if and only if / is parallel with respect to D.
When / is Z)-parallel, (M, C, Z), /) is called a Hermitian-Weyl manifold. Note
that the definition of (almost) Hermitian-Weyl manifolds is very similar to that
of (almost) Kahler manifolds. An almost Hermitian-Einstein-Weyl 4-manifold
means an almost Hermitian-Weyl 4-manifold whose Weyl structure is Einstein-
Weyl.

Sekigawa [6] showed that any compact almost Kahler-Einstein manifold with
nonnegative scalar curvature must be Kahler-Einstein. Motivated by his result,
we shall consider the integrability problem for almost Hermitian-Einstein-Weyl
4-manifolds. Our main result is as follows:
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THEOREM 1.1. A compact almost Hermitian-Einstein-Weyl 4-manifold with
nonnegatiυe conformal scalar curvature must be Hermitian-Einstein-Weyl.

2. Almost Hermitian-Einstein-Weyl structures

Let (M, C, D) be a 4-dimensional Weyl manifold. Then for any metric g
in C, there exists a 1-form ωg such that Dg = ωg® g. We note that dωg is
independent of the choice of g e C. Indeed, for another metric g' = e^g in C,
the corresponding 1-forms ωg and ωg> satisfy the following:

(2.1) ωg> =ωg + df, dωg = dωg>(=: dω).

Denote respectively by RD, rD and s% the curvature tensor, the Ricci
curvature and the conformal scalar curvature of D with respect to g in C:

RD(X, Y)Z := DX(DYZ) - DY{DXZ) - D[x, r ] Z ,

rD{X, Y) := tr(F » RD(V, Y)X), j f := trg(rD), sD := sD

gg.

Note that the Ricci tensor rD is not necessarily symmetric. We then denote by

rD{sym) a n ( j rz>(skew) ^ S y m m e t r i c and skewsymmetric parts of rD, respectively:

( ) ^ γ ) : = l ( Γ ^ ( Λ r > Y) + rD(Y,X)),

γ ) :=X-(rD(X, Y) - rD(Y,X)).

It is known that the skewsymmetric part rD^skβ^ is given by rD^kQW^ = -dω.
The curvature tensor RD decomposes as

(2.2) RD = W+ ® W- ® r0

Z)(sym) Θ rf s k e w ) Θ rf ( s k e w ) θ ^ ,

where PF+ are the self-dual and anti-self-dual parts of the Weyl conformal
curvature tensor, Γ(f

(sym) is the traceless part of rD^m\ and r ^ s k e w ) are the self-
dual and anti-self-dual parts of rD(skev/) (see Pedersen-Swann [9]).

A Weyl manifold (M, C, D) is said to be Einstein- Weyl if the symmetric
part r^ s y m ) of the Ricci tensor is proportional to a metric g in C:

sD

rD(sym) =J_Q

4 u'
Unlike the Einstein case, the conformal scalar curvature sf is not constant in
general; however, the sign of s£ is well-defined for compact Einstein-Weyl 4-
manifolds (cf. Pedersen-Swann [10], Itoh [4]).

We next consider almost complex structures on Weyl manifolds. Let
(M, C, D) be a 4-dimensional Weyl manifold and / an almost complex structure
on M. Suppose that / preserves C, i.e., g(JX,JY) = g(X, Y) for any metric g in
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C. The fundamental form Ωg of (g,J) is now defined by Ωg(X, Y) := g(JX, Y).
It follows from the peculiarity of the 4-dimensional case that there exists a 1-form
βg, called the Lee form of (M,g,J), satisfying

(2.3) dΩg=βgΛΩg.

In particular, the exterior derivative dβg of the Lee form is orthogonal to the
fundamental form Ω^:

(2.4) dg

For another metric g' = e^g in C, the Lee forms βg and βg, satisfy the following:

(2.5) βg,=βg + df, dβg,=dβg.

Comparing (2.1) with (2.5), we see that βg — ωg is independent of the choice of g.
If D is the canonical Weyl connection, i.e., βg = ωg, then (Λf, C,Z), /) is

called an almost Hermitian-Weyl manifold. Furthermore, (Λf, C, D,J) is said to
be almost Hermitίan-Einsteίn-Weyl if (C,D) is also Einstein-Weyl. An almost
Hermitian-Weyl manifold (Λf, C,D,J) is said to be Hermitian-Weyl if DJ = 0.

PROPOSITION 2.1. (M, C, Z>, /) w an almost Hermitian- Weyl 4-manifold if and
only if (g,D,J) satisfies

(2.6) g((DxJ) Y, Z) + g((DYJ)Z, X) + g((DzJ)X, Y) = 0,

where g is a metric in C. Furthermore, if (Λf, C, Z>, /) is an almost Hermitian-
Weyl manifold, then the following holds

(2.7) {D

In particular, the g-trace tvg(DJ) of (X, Y) H-> (DχJ)Y is identically zero:

(2.8) trg(DJ) = 0.

/ By definition, the covariant derivative DΩg of the fundamental form
Ω^ satisfies

(DχΩg)(Y,Z)=g((DχJ)Y,Z)+ωβ(X)g(JY,Z).

Since D is torsion-free, we have

dΩg(X, Y,Z) = S*,r,zODAA,)(r,Z)

= <3χ,r,z{g((DχJ)Y,Z) +ωg(X)Ωg(Y,Z)}

= (ωg Λ Ωg)(X, Y, Z) + <SX, γ,zg{{DxJ) Y, Z),

where S^, r,z denotes the cyclic summation with respect to X, Y,Z. It then
follows that (M, C, Z), J) is an almost Hermitian-Weyl manifold if and only if
(g,D,J) satisfies (2.6).



COMPACT EINSTEIN-WEYL FOUR-MANIFOLDS 4 2 7

In order to show (2.7), we note that

(2.9) (DXJ)JY = -J(DXJ) Y, g((DxJ) Y, Z) = -g{ Y, (DXJ)Z).

By using (2.6) and (2.9), we have

g((DxJ) Y, Z) + g((DγJ)Z, X) + g((DzJ)X, Y) = 0

g((DxJ) Y, Z) - g((DJYJ)JZ, X) - g((DJZJ)X, JY) = 0

g((DJXJ) Y,JZ) - g((DrJ)Z, X) + g((DJZJ)JX, Y) = 0

g((DJXJ)JY,Z) + g((DJYJ)Z,JX) - g((DzJ)X, Y) = 0.

Taking summation of these, we have

2g((DxJ) Y + (DJXJ)JY, Z) = 0.

This shows (2.7). By taking g-trace of (2.7), we immediately obtain (2.8). •

From Proposition 2.1, we may regard an almost Hermitian-Weyl manifold as
a conformal geometric analogue to almost Kahler one. Indeed, our results for
almost Hermitian-Weyl 4-manifolds can be proved by making use of arguments
similar to those in almost Kahler geometry (cf. Sekigawa [6], Draghici [1]).

As in almost Hermitian geometry, we introduce the notion of the *-Rίccί
tensor rD* and the *-scalar curvature sD* of (C,D,J):

rD*(X, Y) := tr(K K* RD{Y,JV)JX), s* := t r^r**) ,

where g is a metric representative of C.
For a (0,2)-tensor field t on (M,C,/),/) , we denote respectively by t^ym^

and ί(skew) the symmetric and skewsymmetric parts of t, and also denote by ί(inv)

and r(antl) the /-invariant and /-anti-invariant parts of t:

,Y):=±(t(X,Y) +

; γ ) ._ l_{ί{Xj γ ) _ t{JX,JY)).

On the space of 2-forms, we obtain the following orthogonal decomposition:

Λ- = Λ(inv)

0 '

where /\+,/?Ω^,/\( |)

nv) and /\ ( a n t i ) denote respectively self-dual and anti-self-dual
2-forms, multiples of the fundamental form Ω^, the traceless /-invariant 2-forms
and the /-anti-invariant 2-forms.

For simplicity, we set
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Y) + ,( y, JQ + t{JX,JY)

Γ) + /( 7, Jf) - t{JX,JY) - t(JY,JX)),

7) - t(Y,X) + t(JX,JY) - t(JY,JX)),

r) -

If we define a tensor field τ associated with a given (0,2)-tensor field t by
τ(Z, F) := t(JX, Y), then the following hold:

j ^ τ(sym.anti) ̂  ^ =

^ τ(skew.anti) ̂ ? y j = ^skew.anti) ^ ^

The /-invariant parts r^*(syminv) a n d (̂sym.mv) o f t h e s y m m e t r i z e d *-Ricci

and Ricci tensors of D satisfy the following relation:

PROPOSITION 2.2. For an almost Hermitian-Weyl A-manifold (M, C,Z>,/), we
have the following formulae:

( 2 . 1 0 ) r £ * ( s y m . i n v ) ^ y ) = ^ ^ ^ y j +

(2.H) s ^ = s ^ l

where B is defined by B(X, Y) := \xgg((DJ)X, (DJ)Y).

Proof. We first recall the definition of the second covariant derivative of /:

(DXDYJ)Z := DX((DYJ)Z) - (DDχYJ)Z - (DYJ)DXZ.

By definition, we have the following formulae:

LEMMA 2.3. Let (M,C,D) be a Weyl manifold with a compatible almost
complex structure J and g a metric representative of C. Then (g,D,J) satisfies

(2.12) g((DxDYJ)U, V) + g(U,(DxDγJ)V) = 0,

(2.13) (DXDYJ)JV + J(DXDYJ)V = -(DXJ)(DYJ)V- (DYJ)(DXJ)V.

Furthermore, if (M, C, D, J) is almost Hermitian- Weyl, then we have

(2.14) g((DvDxJ) Y - (DvDrJ)X, U) = -g((DvDuJ)X, Y).

We next recall the following curvature identity, so-called the Ricci identity:

(2.15) RD(X, Y)JV - JRD(X, Y)V= (DXDYJ)V - (DYDXJ)V.
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By the definitions of rD and rD* and the Ricci identity (2.15), we have the
following:

(2.16) rD\X, Y) = rD{X, Y) -J2g((DADγJ - DγDAJ)eA,JX),
A

where {eA} is a g-orthonormal frame field and where DA denotes the covariant
derivative by eA.

Notice that the g-trace of a (l,2)-tensor field T and the covariant derivative
DT of T satisfy

D trgT = t r ^ Γ + ωg <g> \xgT.

By (2.8), we thus obtain

(2.17) Σg{(DγDAJ)eA,JX)=O.
A

Applying (2.14) to the term ΣAg((DADγJ)eA,JX), we see that

(2.18) rD\X, Y) = rD(X, Y) + Y^g((DADAJ)JX - (DADJXJ)eA, Y).
A

On the other hand, it follows from (2.16) and (2.17) that

(2.19) r*(JY,JX) = rD{JY,JX) + Σ9({DADjXJ)eA, Y).
A

From (2.18) and (2.19), we obtain the following:

rD\X, Y) + rD*{JY,JX) = rD(X, Y) + rD{JY,JX) + ̂ g((DADAJ)JX, Y).
A

By using (2.13), we obtain (2.10) as follows:

^/rZ)*(sym.inv)/j^ γ\ _ rZ>(sym.inv) / χ γ\\

) + g((DADAJ)JY,X)}

= Σ g(J(DADAJ) Y + (DADAJ)JY, X)
A

= -2Σg{{DAJ){DAJ)Y,X)

A

= 2 tig g((DJ)X, (DJ) Y) = 2B(X, Y).

Taking gf-trace of (2.10), we immediately obtain (2.11). •

In the rest of this section, we always assume that (Λf, C, Z), /) is a compact
almost Hermitian-Weyl 4-manifold.
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We now consider the first Chern class c\ (M) of such a manifold (M, C, D, / ) .
We first define an affine connection D' by

(2.20) D'XY~DXY- \j(DxJ) Y.

Then D1 preserves / and C, i.e., D'J = 0,D'g = ωg (x) g. The curvature tensors
iΐ' = RD> and i ^ satisfy the following relation:

PROPOSITION 2.4.

(2.21) R'(X, Y)V = ]-(RD(X, Y)V - JRD(X, Y)JV)

- X- ((DXJ)(DYJ) - (DYJ)(DXJ)) V.

Let Γ 1 0 M denote the \/—T-eigenspace of / in the complexified tangent
bundle TM®C. Then we can identify TM with Γ 1 0 M J as complex vector
bundle over M. The cohomology class of a closed 2-form / := Re(>/—Ίtτc(R'))
determines the first Chern class c\{M) of (M,J), namely, 2πc\(M) = [y'\ in
H2(M;R), the second cohomology group with real coefficient. By (2.21), we can
rewrite / as

γ(X, Y ) p \ X , Y)

where pD* and Q) are defined respectively by

p°*{X, Y) := rD\JX, 7), 9{X, Y) := tr(F h-> (DXJ)(DYJ)JV).

From (2.7) in Proposition 2.1, ̂  is a /-invariant 2-form on M satisfying

(2.22) ^ Λ Ω , = 9 9

By making use of (2.10), we can express γ' as

yi — D(skew.mv) + _ gfl _ _ g, + Z)*(skew.anti)̂

where J* is defined by &{X, Y) := B(JX, Y). Note that ^ is a /-invariant 2-
form satisfying

In our 4-dimensional case, we can verify the following:

LEMMA 2.5.

D*(skew.inv) _ Z)(skew.inv) / _ }_ ̂  \ _ }_ / D* _ 1

P P l - 2 " " 7 ~ 4 ( * Λ»
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From Proposition 2.2 and the lemma above, we can also rewrite / as

/ = ̂ ( S k e W m V ) + \ (s° + \

where /><f(skew i n v ) and ^ 0 denote the components of p

D(&™™) and 2 orthogonal
to Ω^, respectively.

The squared first Chern class c\(M) is given by Aπ2c\(M) = [ / Λ / ] in
H4(M:R). Identifying H4(M;R) with R via the integration, we obtain the
following formula:

PROPOSITION 2.6.

J { \ f \) ̂(2.23) 4π2,?(M) = J { \ {$Ϋ + f6 \DJ\

where σg denotes the volume form of (M,g) (i.e., σg =

3. Main result

In this section, we prove the following result, which is a conformal analogue
to the result due to Sekigawa [6]:

THEOREM 3.1. Let (M, C, Z>, J) be a compact almost Hermίtίan-Einsteίn-
Weyl A-manifold. If the conformal scalar curvature sD is nonnegative, then J must
be ίntegrable, i.e., (Λf, C,D, J) is a Hermίtian-Eίnstein-Weyl manifold.

We first recall the following (see Pedersen-Poon-Swann [8]):

PROPOSITION 3.2. Let (M,C,D) be a compact oriented Einstein-Weyl 4-
manifold. Then the Euler characteristic χ(M) and the signature τ(M) satisfy the
following:

(3.1)

Notice that for a compact almost complex 4-manifold M, the squared first
Chern class c\(M) coincides with the characteristic number 2χ(M) + 3τ(M).

Let (M, C, D, J) be an almost Hermitian-Weyl 4-manifold. If it is also
Einstein-Weyl, then

(3.2) ^(skew.mv) ^
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Hence the formula (2.23) leads us to another expression of c\{M)\

(3.3) \

7ZMskew.anti)|2l

The squared norm of ^o can be calculated as follows. At each point p
on M, we define a subspace JTP of TPM by JVP := {X e TPM \ DXJ = 0}. It
is immediate from Proposition 2.7 that Jίp is /-invariant and hence has even
real dimension. Note that g((DχJ)Y, V) is /-anti-invariant and skewsymmetric
with respect to Γ, V. Since the real dimension of /γ a n t 1 ' is two, we can write
g({DχJ)Y,V)y at least locally, as

g((DxJ)Y, V) = oc2(X)Φ2(Y, V) + α 3 ( Z ) Φ 3 ( F , K),

where α2,α3 are local 1-forms and {Φ2,Φ3} is a local basis for y^ant l ). Then
X e Jίp if and only if &\{X) = u.i{X) = 0. Counting the dimensions, we see
that the real dimension of Jίp is not less than two. Take a g-orthonormal
basis {ei,£2 = Λi,^3,^4 = Je{\ for TPM satisfying g i , ^ e Jίp. We then obtain
2{eueΛ) = 0 (/= 1,2; A = 1,2,3,4). From Λinvariance of ^ and (2.22), the
squared norm of Θ$ is given by |^o |^ = (l/8)|/λ/|^. Summarizing these, we
obtain the following:

(3.4) cf (M) = 4̂ 2 } U (^f)2 + ̂  l^l j + anti) 2

We can simplify the term ^^Hskew.anti)^ a s f o l l o w s L e t (RD^ d e n o t e t h e

curvature operator on /\ Γ*M. Namely, it is defined by raising indices of the
curvature tensor RD with respect to g:

(RD)g(u)(X, Y):=\ Σ «ABg
AIgBJg(RD(X, Y)ej,e,),

A,B,I,J

where OLAB are the components of a 2-form α with respect to a local frame field
{^} and where (gAB) denotes the inverse matrix of g = (gAβ) = {Q^A^B))- It
should be noted that the 2-form (RD) (Ωg) is independent of the choice of g in
C (i.e., (RD)β(Og) = (RD)gf(ng>) for ^ , ^ G C). Setting Λ"(Ω) := (^ D ),(Ω,), we
can show the following:

PROPOSITION 3.3. Let (M, C, D) be a Weyl manifold with a compatible almost
complex structure J. Then we have

nZ)/Q\(inv) _ D*(skew.inv) RD(
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If (Λf, C, D, J) is an almost Hermίtian-Einstein- Weyl 4-manifold, then we obtain

(3.5) tfWv) =

(3.6) ^(skew.an

The formulae (3.5) and (3.6) can be seen from (3.2), Proposition 2.2 and Lemma
2.5.

Suppose that (M, C, Z), /) is an almost Hermitian-Einstein-Weyl 4-man-
ifold. Taking account of (3.6), we have

If M is compact, we can then rewrite (2.23) as follows:

(3.7)

Comparing (3.7) with (3.1), we therefore obtain the following integral formula:

( 3 8 )

^

The following is sufficient to prove our main theorem:

PROPOSITION 3.4. For any compact almost HermitίanΈinstein-Weyl 4-
manifold (M,C,/) ,/) , the following inequality holds:

If the conformal scalar curvature s£ is nonnegative, then the left hand side of
(3.8) is nonpositive; however, from Proposition 3.4, the right hand side of (3.8) is
nonnegative. It therefore follows that \DJ\2

g = 0, i.e., / is integrable.
Before proving Proposition 3.4, we first recall that the decomposition (2.2) of

RD for an Einstein-Weyl 4-manifold (M, C, D) is given explicitly by

(3.9) g(RD(X, Y)V,U) = g(W(X, Y)V,U) +^g © g(X,Y,V,U)

+ l-dω © g(X, Γ, K, U) - l-dω ® g(X, Y, V, U),
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where © denotes the Kulkarni-Nomizu product:

(t © g)(X, y, V,U): = t{X, U)g(Y, V) - t(Y, U)g(X, V)

+ t(Y,V)g(X,U)-t(X,V)g(Y,U),

for any (0,2)-tensor field t. By (3.9), we can show the following:

LEMMA 3.5. Let (M, C,Z>,/) be an almost Hermitian-Einstein-Weyl 4-
manifold. Then

(3.10) RD(Ω) = W(Ω) + ^ Ω , - i / ( r f ω ) ( a n t i \

where J(dω){*ntϊ)(X, Y) := {dω)[™ύ)(X,JY) and W{Ω) is defined by replacing RD

of RD(Ω) with W.

Proof of Proposition 3.4. Let {Φi,Φ2,Φ3J be a local orthonormal frame

field for f\+, the space of self-dual 2-forms, such that Φi := Ωg/V2 and that

{ φ 2 ) φ 3 } forms an orthonormal basis for /γ a n t l \ We may express the self-dual

Weyl tensor W+ as

By definition, the trace of W+ vanishes:

(3.11) tr W+ = w\\ 4- w22 + W33 = 0.

The squared norm \W+\jj of W+ is given by

I W+\] = w2

n + w\2 + w2

33 + 2(w2

u + wf3 + w2

2

3).

Noting that »Γ(Ω) - W+(Ω) and g(/(ί/ω) (ant i ),Ω^) = 0, we can rewrite (3.10) as

sD 1
RD(Ω) = W(Ω) + ̂ Ω , - ^

From (3.11), we have
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= 2(w2

n + w\2 + wf3) + 4(w?2 + wf3 + wj3) + — ( ^ ) 2 - 2( H>n + — ^
ZH \ 1 Z

Here we notice that the last equality can be seen by using (2.4): dω AΩLQ = 0.
Thus we obtain

= -\\ {\{dω)+\2

g-\{dω)_\2

g}σg

= — dω A dω — — d(ω A dω) = 0.
4 J M 4 j M

This shows the proposition. Π

4. Remarks

It is well-known that for a compact Einstein-Weyl manifold (M, C,Z>), there
exists a metric g in C such that the dual vector field ω* of ωg is a Killing vector
field on (M,g). Such a metric g is unique up to homothety and hence called the
standard metric (see Gauduchon [2], Pedersen-Swann [9]). It is also well-known
that for a compact Einstein-Weyl manifold (AT, C,Z>), the 1-form ωg of the
standard metric g must vanish if sD < 0. Thus any compact almost Hermitian-
Einstein-Weyl 4-manifold with negative conformal scalar curvature is determined
by an almost Kahler-Einstein structure.
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By virtue of Theorem 3.1, any compact almost Hermitian-Einstein-Weyl
4-manifold with nonnegative conformal scalar curvature must be Hermitian-
Einstein-Weyl (i.e., the almost complex structure is integrable). Gauduchon-
Ivanov [3] studied such manifolds and obtained the following:

PROPOSITION 4.1. Let g be the standard metric for a compact Hermitian-
Einstein-Weyl 4-manifold (M,C,D,J). Then the following two cases occur:

(i) (M,g,J) is Kahler-Einstein, or
(ii) (M,g) is locally isometric to Rx S3, the Lee form βg is V-parallel, the

Weyl structure D is flat, and (M, /) is a Hopf surface, where V denotes
the Levi-Civita connection of (M,g).

From Theorem 3.1 and Proposition 4.1, we obtain

COROLLARY 4.2. A compact almost Hermitian-Einstein-Weyl 4-manifold,
which is not determined by any almost Kάhler-Einstein structure, must be a
Hermitian-Einstein-Weyl manifold of type (ii) in Proposition 4.1.

We finally remark on higher dimensional cases. Let (M, C) be a compact
conformal manifold of real dimension 2n{>4) with a compatible almost complex
structure /, and D the canonical Weyl connection of (M,C,J). Suppose that
the condition (2.3) is satisfied (i.e., dΩg = βg A Ωg). Then the Lee form βg is
automatically closed, and hence (M, C, D, J) is determined by a locally conformal
almost Kahler (l.c.a.K.) structure, and vice versa (see Vaisman [11]).

If (M, C, D) is also Einstein-Weyl, then (M, C, Z>, /) is determined by a
locally conformal almost Kahler-Einstein structure. Let g be the standard metric
for (M, C,D,J). By the closedness of the Lee form βg, the dual vector field β*
of βg is parallel with respect to the Levi-Civita connection V of (M,g). Then the
conformal scalar curvature s% is constant, since s% is a harmonic function on
(M,g). In particular, the sign of sD is well-defined (see Pedersen-Swann [10]).
We further suppose that sD is nonnegative. If βg = 0, then (M, g, J) is an almost
Kahler-Einstein manifold with nonnegative scalar curvature. From Sekigawa's
result [7], (M,g,J) is in fact Kahler-Einstein.

In the case where sD > 0, the Ricci curvature of (Λf, g) is strictly positive.
From Myers' theorem, the fundamental group π\(M) is finite, and hence the
first Betti number b\(M) vanishes. We therefore obtain βg = 0, since βg is a
harmonic 1-form on (M,g). In the case where sD = 0, we may assume that
β 7*0. Then the standard argument tells us b\(M) = 1 (see Pedersen-Swann
[10]).

On the other hand, Kashiwada [5] studied the integrability problem for
an almost generalized Hopf manifold, which means a locally conformal almost
Kahler manifold (M,g,J) with parallel Lee form βg satisfying that Jβ* is a
Killing vector field on (M,g). If / is also integrable, then (M,g,J) is called a
generalized Hopf manifold. Notice that for a locally conformal Kahler manifold
(M,g,J), the vector field Jβ* is automatically a Killing vector field on (M,g) if
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βg is parallel. For convenience, we regard (almost) Kahler-Einstein manifolds as
(almost) generalized Hopf manifolds with vanishing Lee forms.

The following is an immediate consequence from a result due to Kashiwada
[5]:

PROPOSITION 4.3. Let (M,g,J) be a compact almost generalized Hopf
manifold of dimension grater than four. Suppose that its canonical Weyl structure
(C,D) is Einstein-Weyl. If the conformal scalar curvature sD is nonnegative, then
J must be integrable, i.e., (M,g,J) is a generalized Hopf manifold.
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