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SOME FURTHER RESULTS ON THE ZEROS AND GROWTHS OF

ENTIRE SOLUTIONS OF SECOND ORDER LINEAR DIFFERENTIAL

EQUATIONS*

ZONG-XUAN CHEN AND CHUNG-CHUN YANG

Abstract

In this paper, we define the hyper-exponent of convergence of zeros of an entire

solution f(z) of a second order linear differential equation, and use it to obtain some

further estimates on the zeros, growth, and fixed points of f(z).

1. Introduction and results

In this paper, we shall assume that the reader is familiar with the funda-
mental results and the standard notations of the Nevanlinna's value distribution
theory of meromorphic functions (e.g. see [8, or 10]). In addition, we will use
the same notations as in [1], such as λ(f) and λ(f) to denote respectively the
exponents of convergence of the zero-sequence and the sequence of distinct zeros
of meromorphic function /(z), σ(f) and μ(f) to denote respectively the order
and the lower order of growth of f(z).

We recall the following definition.

DEFINITION 1 ([16]). Let / be a meromorphic function. Then the hyper-
order σ"2(/) of f(z) is defined by

(i.i) σ 2 ( / ) = i 5 Γ l o g l ( ; g Γ ( r ' / ) .
v } KJ J r̂ oo logr

NOTE. Clearly, if f(z) is entire, then

(12) σ (f) = Ίϊΐή l θ g l θ g l θ g M{j' ^ = Tϊΐή l θ g l θ g T(j' ^
2 ^ r->α> logr t~^oo logr

We define:
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DEFINITION 2. Let/be a entire function. Then λι{f)y the hyper-exponent
of convergence of zeros of f(z), is defined by

and λι(f), hyper-exponent of convergence of distinct zeros of f(z), is defined by

(1.4) λ2(f)=Ί^loglof{rΛ/f).
v J KJ J r-oo l o g r

For almost two decades, the Nevanlinna's value distribution theory has been
a useful tool in investigating the complex oscillation of differential equations.
Recently, in [4, 12, 13], the concepts of hyper-order [4, 16] and iterated order [13]
were used to further investigate the growth of infinite order solutions of complex
differential equations. The following results have been obtaind.

THEOREM A ([12]). Let A} B be two entire functions such that σ{Λ) < σ(B) or
σ{B) < σ(A) < 1/2. Then every entire solution f ψ 0 of

(1.5) f" + Af' + Bf = ^

satisfies

σ2(f)>mnx{σ{A),σ(B)}.

THEOREM B ([12]). Let H be a set of complex numbers satisfying

dens{\z\ : z e H} > 0, and let A(z) and B(z) be entire functions such that for real

constants α(>0),/?(>0),

(1.6) \A(z)\<exp{o(l)\z\β}

and

(1.7) \B(z)\ > ^

as z —> oo for z e H. Then every entire solution f of the equation (1.5) satisfies

σi{f)>β-

Hence, the upper and the lower densities of H are defined by

= lim —

r—>oo

and

mdensH= hm

where m{H) is the linear measure of a set H.
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THEOREM C ([15]). Let «o,.. , ^ - i be polynomials. If f(z) is an entire
solution of the equation

then
degα.

σ(f) < 1 + max
<7<A:-1 k — j

The main purposes of this paper are to improve results of Theorems A, B,
and C (when k = 2) and to investigate the hyper-exponent of convergence
of zeros and hyper-order of solutions of non-homogeneous linear differential
equations. As an application, we give the estimate of fixed points of solutions of
some class of differential equations.

THEOREM 1. Let ao, a\ be nonconstant polynomials with degrees degα/ = rij
(j = 1,2). Let f(z) be an entire solution of the differential equation

(1.8) f" + aι(z)

Then
(i) If no > 2«i, then any entire solution f φ 0 of the equation (1.8) satisfies

σ(f) = (no + 2)/2; if no < n\ — 1, then any entire solution f φθ of (1.8) satisfies
σ(f) = n\ + 1; if n\ — 1 < no < 2n\, then any entire solution f ψ 0 of(l.S) satisfies
either σ(f) = n\ + 1, or σ(f) = no — n\ + 1.

(ii) In (i), if no = n\ — 1, then the equation (1.8) possibly has polynomial
solutions, and any two polynomial solutions f of '(1.8) are linearly dependent, all the
polynomial solutions have the form fc(z) — cp(z), where p is some polynomial, c is
an arbitrary constant.

Example of polynomial solutions in case (ii). The equation

/ " _ (Z3 + Z 2 + z + ί ) f , + (z2 + ! ) / = 0

has polynomial solutions fc = c (z+ 1).

THEOREM 2. Let ao, a\ and b be nonconstant polynomials with degrees'.
degβy = rij (j = 1,2). Let f ψ 0 be an entire solution of the differential equation

(1.9) f" + aι(z)f + ao(z)f = b(z).

Then
(i) // no > 2nu then λ(f) = σ(f) = (n0 + 2)/2; if n0 < nx - \L then λ(f) =

*(/) = n\ + 1; if n\ ~ 1 < no < 2wi, /Aew λ(/) = σ(/) = Λi + 1 or λ(/) = σ(f) =
no — n\ + I, with at most one exceptional polynomial solution f0 for three cases
above.

(ii) If no — n\ — 1, then every transcendental entire solution f satisfies λ(f) =
σ{f) = /ii + 1 (or 0).
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Remarks. If the corresponding homogeneous equation of (1.9) has a
polynomial solution p(z), then (1.9) may have a family of polynomial solutions
{cp(z) + /0} (/0 is a polynomial solution of (1.9), c is a constant). If the
corresponding homogeneous equation of (1.9) has no polynomial solution, then
(1.9) has at most one polynomial solution.

Example of a family of polynomial solutions in case (ii). The equation

/ " - (z3 + z2 + z + 1)/' + (z2 + 1)/ = z2 + 1

has a family of polynomial solutions {c(z + 1) + l,c is a constant}.

THEOREM 3. Let H be a set of complex numbers satisfying dens{\z\ : z e H}
> 0, and let Ao,A\ be entire functions, with σ(A\) < σ(Ao) = σ < +oo such that
for real constant C(>0) and for any given ε > 0,

(1.10) M,(

and

(1.11) μt0ωi
as z —> oo /or z e H. Then every entire solution f φ 0 of the equation

(1.12) / " + Λi/' + Λ0/ = 0

satisfies σ(f) = +oo #ra/ σi(f) = o{Ao).

THEOREM 4. Let H,A\ and Ao satisfy the hypothesis of Theorem 3, and let
F φθ be an entire function with σ(F) < -boo. Then every entire solution f(z) of
the equation

(1.13) f"

satisfies h(f) = σ2(/) = tf? Wίλ αί moΛ ί one exceptional f0 satisfying σ(f0) < σ.

THEOREM 5. Let A\,Ao ψ 0 be entire functions such that σ(Ao) < σ(A\) <
1/2 (or A\ is transcendental\ o(A\) — 0, A§ is a polynomial). Then every entire
solution f φO of the equation (1.12) satisfies σ(f) = oo, O2(f) = <τ(^i).

NOTE. A relatively simplier case when σ(A$) > σ(A\), was discussed by L.
Kinnunen in [13] and the conclusion: σ(f) = oo was derived earlier in [7].

THEOREM 6. Let A\,Ao satisfy the hypothesis of Theorem 5, and let F φθ
be an entire function. Conside a solution f of the equation (1.13), we have

(i) If σ(F) < cr(A\) (or F is a polynomial when A\ is transcendental\ σ(A\) =
0, Ao is a polynomial), then every solution f(z) 0/(1.13) satisfies ̂ i(f) — σi(f) —
σ{Aλ).

(ii) If σ(A\) <σ(F) < oo, then every entire solution f(z) 0/(1.13) satisfies
λι(f) = σi(f) = σ(A\), with at most one exceptional solution f0 satisfying σ(f0) <
σ(Ax).
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Set g(z) = f(z) - z. Then clearly λ2(f - z) = λ2(g), σ2(g) = σ2(f). By
Theorems 1-6, we can get the following corollaries.

COROLLARY 1. Under the hypothesis of Theorem 1, if no Φ n\ — 1, or no —
n\ — 1 and a\ + zao ψ 0, then every transcendental entire solution f(z) of (1.8)
satisfies λ(f — z) = σ(f).

COROLLARY 2. Under the hypothesis of Theorem 2, if b - a\ - zao Ψ 0, then
every transcendental entire solution f[z) of (1.9) satisfies λ(f — z) = σ(f).

COROLLARY 3. In Theorem 3, every entire solution f(z) of (1.12) satisfies
M

COROLLARY 4. In Theorem 4, if F — A\ — zAo Φ 0, then every entire solution
f(z) with λ2(f) = σ2(f) = σ of (1.13) satisfies λ2(f - z) = σ2(f).

COROLLARY 5. In Theorem 5, every entire solution f(z) 0/(1.12) satisfies
Mf - z) = σ2{f).

COROLLARY 6. In Theorem 6, in case (i), every entire solution f(z) 0/(1.13)
satisfies λι(f — z) — σι(f)\ in case (ii), if F — A\— zAo ψ 0, then every entire
solution f(z) with h(f) = σ2(/) = σ 0/(1.13) satisfies λ2(f - z) = σ2(/).

2. Preliminary lemmas

We need following lemmas for the proofs of our theorems.

LEMMA 1 ([10, Theorems 1.9 and 1.10, or 11, Satz 4.3 and 4.4]). Let g{z) =
Σ^Lo β « z " be a entire function, μ(r) be the maximum term, i.e. μ(r) =
ma.x{\an\rn;n = 0,1,...}, v(r) (we simplify vg(r) by v(r) if no confusion may arise)
be the central index, i.e. v(r) =max{m,μ(r) = |α m | r m } . Then

(i)

here we assume that ao Φ 0.
(ii) For r < R,

M(r,g)<μ(r)

LEMMA 2. Let g(z) be an entire function of infinite order with the hyper-order
σι(g) = o, and let v(r) be the central index of g. Then

-—loglogv(r)
lim — = σ.
r̂ oo logr
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Proof Set g{z) = Y^=^cιnz
n. Without loss of generality, we may assume

Iαo I Φ 0. By (i) of Lemma 1, the maximum term μ(r) of g satisfies

ί v( t)
-^ dt > Iog|α0 | + v(r) log 2.

o t

By Cauchy's inequality, we have

(2.2) μ(2ή<M(2r,g).

This and (2.1) yield

(2.3) v(r)log2<logM(2r,g) + C,

where C(>0) is a constant. By this and (1.2), we have

(2.4) BE l θ g , l θ g V ( r ) < Ίta 1 O g l O g ' ° g M ( r ' g ) = a2(g) = a.
V ' r-+oo l o g r r-»oo log r

On the other hand, by (ii) of Lemma 1, we have

(2.5) M(r,g) < μ(r){v(2ή + 2} = \av{r)\r^{v(2ή + 2}.

Hence, we get from (2.5)

log M(r, g) < v(r) log r + log v(2r) + C\,

(2.6) log log M{r, g) < log v(r) + log log v(2r) + log log r + C2

where C7 (>0) (j = 1,2,3) are constants. By (2.6) and (1.2), we get

T — 1°S 1°S l°g M{r, g) τ.— log log v(2r) —— log log v(r)
(2.7) σi\g) = hm < lim — - — = lim — .

r̂ oo logr r^co log 2r r-^co log r

Lemma 2 follows from this and (2.4).

LEMMA 3 ([7, Theorem 6]). Let Ao,A\ satisfy the hypothesis of Theorem 5.
Then every entire solution f φ 0 0/(1.12) satisfies σ(f) = 00.

LEMMA 4 ([6]). Let f(z) be a transcendental meromorphic function, and let
α > 1 be a given constant. Then there exists a set is c (l,+oo) of finite loga-
rithmic measure and a constant B > 0 that depends only α and (m,n) (m,n positive
integers with m < ή) such that for all z satisfying \z\=rφ [0,1] ΌE, we have

^ ^ ( l o g α r ) l o g Γ ( α r , ,

LEMMA 5 ([2]). Let f(z) be an entire function of order σ(f) = σ < 1/2 and
denote A(r) = inf{log |/(z)|; \z\ = r}, B(r) = sup{log |/(z)|; |z| = r}. If σ < a <
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1, then

logdens{r : A(r) > (cosπoc)B(r)} > 1 ,
<x

logdensjE) = Um(J [χE{t)/t)dt\ l\ogr,

ΪS^Γs(E) = Ήm (\{χE{t)/t) dλ/logr.

where

and

LEMMA 6 ([3]). Le/ /(z) Z>e an entire function with μ(f) = μ < 1/2
σ(f) = σ. If μ<δ < min (σ, 1/2) and δ < a < 1/2, then

\ogdens{r : A(f) > (cosπa)B(r) > rδ} > C(σ,<5,α),

where C(σ,δ,a) is a positive constant depending only on σ,δ, and α.

3. Proofs of Theorems 1 and 2

Proof of Theorem 1. Assume that f(z) is a transcendental entire solution of
(1.8). First of all, ΐrom Wiman-Valiron theory (see [9, or 14]), we have

where \z\ — r, |/(z)| = M(r,/), r φ E\ which has a finite logarithmic measure.
Substituting (3.1) into (1.8), we obtain

(3.2) {^\ (1 + o(l)) + dιZ"ι ^ ( 1 + o(l)) + doz
n°(l + o(l)) = 0,

where α7 = rf7z^(l +o(l)) , dj are constants (7 = 1,2). Since any solution of an
algebraic equation is continuous function of the coefficients, therefore v/(r) is
asymptotically equal to the solution of the equation

(3.3) (vf(r)) V 2 + dxz*-χVf(r) + d ^ = 0.

From the argument used in [14, pp. 106-108], for sufficiently large r, we have

(3.4) v/(r)~αr σ , r φ Eu

where α(>0) is constant and σ is rational number. By (3.4), it is easy to see that
the degrees (in z) of three terms of (3.3) are respectively,

(3.5) 2 ( σ - l ) , m + ( σ - l ) , n0.
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Then by Wiman-Valiron theory, (3.4) and (3.5), we can easily conclude (i). In
(ii), if no = n\ — 1, it is easy to see that (1.8) possibly has polynomial solutions.

Now we discuss polynomial solutions of equation (1.8), if f\(z) and /2(z) are
linearly independent polynomial solutions, then by Abie's identity, the Wronskian
of /i, /2 satisfies

/l fl

A A
This is a contradiction. Therefore, any two polynomial solutions are linear
dependent, hence all polynomial solutions /(z) have the form fc(z) = cp(z),
where p is a polynomial and c is an arbitrary constant.

Proof of Theorem 2. Assume that f(z) is a transcendental entire solution of
(1.9). We adopt the argument as used in the proof of Theorem 1, and notice
that when z satisfies |/(z)| = M(r,f) and \z\ -» oo, \b(z)/f(z)\ —> 0, we can
prove that if no > 2n\, then σ(f) = (no 4- 2)/2; if no < n\ — 1, then σ(f) = n\ + 1;
if n\ - 1 < no < 2n\, then σ(f) = n\ + 1 or σ(f) = n0 - n\ + 1. We know that
when no > 2n\, or no < n\ — 1, or n\ — 1 < no < 2n\, every solution / ψ 0 of
the corresponding homogeneous equation of (1.9) is transcendental, so that the
equation (1.9) has at most one exceptional polynomial solution, in fact if
f\ifi{Φf\) a r e polynomial solutions of (1.9), then fx — f2 ψ 0 is a polynomial
solution of the corresponding homogeneous equation of (1.9), this is a con-
tradiction. When no—n\ — 1, if the corresponding homogeneous equation of
(1.9) has no polynomial solution, then (1.9) has clearly at most one exceptional
polynomial solution, if the corresponding homogeneous equation of (1.9) has a
polynomial solution p(z), then (1.9) may have a family of polynomial solutions
{cp(z) + fo\ (/o is polynomial solution of (1.9), c is a constant).

Now we prove λ(f) = σ(f) for a transcendental solution / of (1.9). Since
b(z) is a polynomial which has only finitely many zeros, it follows that if zo is a
zero of f(z) and |zo| is sufficiently large, then the order of zero at zo is less than
or equal to 2 from (1.9). Hence

(3-6)

By (1.9), we have

Hence

(3-8)
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By σ(f) < oo and m(rju)/f) = O(logr) (j = 1,2), we get, from (3.6) and (3.8),

(3.9) Γ(r,/) = r ( r , ± ) + O ( l )

where d(>0) is a constant. By (3.9), we have σ(f) < !(/), hence λ(f) = σ(f).

4. Proofs of Theorems 3 and 4

Proof of Theorem 3. Assume that f(z) ψ 0 is an entire solution of the
equation (1.12). Then by the elementary theory of differential equations, it is
easy to see from (1.10) and (1.11) that σ(f) = oo.

Now we prove that σ2(f) = σ(Ao) = σ. By Theorem B, we have σ2(f) >
σ — ε, and since ε is arbitrary, we get σ2{f) > O(AQ) = σ.

On the other hand, from Wiman-Valiron theory, there is a set E2 <= (l,+oo)
with logarithmic measure lmE2 < oo, we can choose z satisfying \z\ — r φ [0,1] U
E2 and \f(z)\ = M(r,f), such that (3.1) holds. For any given ε > 0, when r is
sufficiently large, we have

(4.1) \Aj(z)\<cxp{r"+e}, (7 = 1,2).

Substituting (3.1) and (4.1) into (1.12), we obtain

(4.2) 'W 2

where z satisfies \z\ = r φ [0,1] UE2 and \f{z)\ = M(rJ). By (4.2), we get

(4.3) m*****'® ίσ + ε.
r-̂ Go l o g r

Since ε is arbitrary, by (4.3) and Lemma 2 we have O2{f) < σ. This and the fact
that σι(f) > o yield σι(f) — σ.

Proof of Theorem 4. We assume that/is a solution of (1.13) and f\,f2 are
two entire solutions of the corresponding homogeneous equation (1.12). Then
by Theorem 3, we have CΓ2C/J) = σ(^o) (j = 1,2). Since / can be expressed in
the form

(4-4) / ( Z ) = J β 1

where 2?i(z),2?2(z) are some entire functions satisfying

B[ = -f2F/{fιf'2 - f2f[), B'2 = -fiF/Mf't - f2f[).

By (4.4) and σ(F) < + 00, it is easy to see that σ2{f) < cr(̂ 4o)
By using the similar arguments as used in the proof of Theorem 2, we can

conclude that all solutions / of (1.13) satisfy σ2(f) = σ, with at most one ex-
ceptional / 0 such that σ2(f) < σ.
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By (1.13), it is easy to see that if/has a zero at zo with order greater than 2,
then it must be a zero of F. Hence

(4.5)

Now (1.13) can rewritten as

1
(4.6) j = (r + Aι

By (4.6), we have

/ l\ / f'\ ( f"\ ( \
(4.7) m r,- <m(r/-r) +m[r/—) + rn(r,A0) +m{r,Aχ) + m r ,-

\ J J \ J J \ J J \ F

By (4.5) and (4.7), we get for \z\ = r outside a set E3 of finite linear measure,

(4.8) T(r,f) =

, i ) + T{r,Λ{) + Γ(r,^0) + T(r,F)

where <i(>0) is a constant. For sufficiently large r, we have

(4-9) dlogT(r,f)<l-T(r,f),

(4.10) Γ(

(4.11) T(r,F)<rσ{F)+ε.

Thus, by (4.8)-(4.11), we have

(4.12) T(r,f) < 6N(r,j\ + 4rσ+ε + 2rσ^+°, (|z| = r φ E3).

Hence for any /with θ2{f) = σ, by (4.12), we have σ2(/) < h(f) Therefore,
Mf) = σi{f) = σ.

5. Proofs of Theorems 5 and 6

Proof of Theorem 5. Assume that f(z) is a nonzero entire solution of
(1.12). By AQ ψ 0, it is easy to see that (1.12) does not have a polynomial
solution. Hence every nonzero solution of (1.12) is transcendental. By Lemma
3, we have σ(f) = oo.

\ϊ A\ is transcendental, σ(A\) = 0, AQ is a polynomial, then we have
σi(f) > <τ(A\) obviously; if σ(Ao) < σ(A\) < 1/2, then by Theorem A, we have
σi{f) > σ(A\). Similarly, as in the proof of Theorem 3, we have 0*2(/) < σ(A\).
Therefore, σι{f) = σ(A\).
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Proof of Theorem 6. Assume that f(z) is an entire solution of (1.13). For
case (i), we assume σ(A\) > 0 (when σ{A\) = 0, Theorem 6 holds clearly), by
(1.13) we get

(5.1) A _ F A f f" - F f Λ f f"
x~r~ °f f i r °τ y

By Lemma 4, we see that there exists a set £4 c (l,+oo) of finite logarithmic
measure such that for all z satisfying \z\ — r φ [0,1] U E4, we have

(5.2) <drc{T(2r,f)}2,

where d(>0) and c(>0) are some constants. Now set b — max{σ(Ao)1σ(F)},
and choose a,β such that

(5.3) b<oc<β<σ(A{).

Then for sufficiently large r, we have

(5.4) Mo(z)|

By Lemma 5 (if μ(A\) = σ(A\)) or Lemma 6 (if μ(A\) < σ(A\)) there exists a
subset /ίc:(l,+oo) y with logarithmic measure imH — 00 suth that for all z
satisfying \z\ = r e H, we have

(5.5) μ,(r) |>exp{^} .

Since M{r,f) > 1 for sufficiently large r, we have by (5.4)

(5.6) < exp{rα}.
M(r,f)

On the other hand, by Wiman-Valiron theory, there is a set E$ c (1,+co) of
finite logarithmic measure such that (3.1) holds for some point z satisfying \z\ =
r φ [0,1] UEs and |/(z)| = M(r,f). By (3.1), we get

or

(5.7)

Now by (5. l)-(5.7), we get

/ '

/ ( z)

1

~ 2

/(z)
f'(z)

v/(r)

z

(5.8) exp{r^} < Mrc[T(2r,f)}22cxp{ra}2r

for |z| = r e J/\([0,1] U £ 4 U £ 5) and |/(z)| = M(r,f). From this and since β is
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arbitrary, we get <72(/) >σ(A\). Using the similar argument as used in the
proof of Theorem 3, we have <72(/) ^ σ(A\). Thus, <72(/) = σ(A\).

Similarly by argument as used in the proof of Theorem 4, we can get

hi/) = σiif) = σ{Ax).
Finally case (ii) can also be obtained by using argument similar to that in the

proof of Theorem 4.

Concluding remark: For some general and related results of «-th order
linear differential equations with coefficients of infinite order, we refer the reader
to [13].

Acknowledgement. The authors would like to thank the referee for ex-
hibiting concrete examples and making valuable suggestions to improve the
original statements of Theorems 1 and 2.
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