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NONEXISTENCE OF FINITE ORDER SOLUTIONS OF

CERTAIN SECOND ORDER LINEAR

DIFFERENTIAL EQUATIONS

Ki-Ho KWON

1. Introduction and statements of results

Let ρ(g) denote the order of an entire function g. Consider the second
order linear differential equation

(1) f"+A(z)f'+B(z)f=Q.,

where A(z) and 50)^0 are entire functions. It is known that if p(B)<p(A)
<l/2, then every solution /=£0 of (1) is of infinite order [3], [6], [9]. In [7],
the author proved the following

THEOREM A. Let A(z) and B(z) be entire functions such that p(A)<p(B) or
p(B)<p(A)<l/2. Then every solution /=£0 of (1) satisfies

where T(r, /) is the Nevanlinna characteristic of f (see [5]).

In the case that p(A)>l/2 and p(B}<p(A), the possibility of solutions
of finite order of (1) remains open. In fact, if p(A) is a positive integer and
p(B)<p(A\ (1) may have nonconstant solutions of finite order [3, Examples 1
and 2].

Here we give a partial result for the case that p(A) is not a positive
integer with p(Λ)>l and p(B)<p(A) by proving the following

THEOREM 1. Suppose that A(z) is an entire function of finite nonintegral
order with p(A)>l, and that all the zeros of A(z) lie in the angular sector

<θ2 satisfying
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// q is odd, and

"2 "^2^+D

if q is even, where q is the genus of A(z). Let B(z) be an entire function with
0<jo(β)<l/2. Then every nonconstant solution f of (1) has infinite order with

^ log log TV,/!
logr -^

Let P(z) and Q(z) be nonconstant polynomials, and let h^z) and /ι2(^)^0 be
entire functions satisfying p(hι)<deg P and p(h2)<degQ, where deg R denotes
the degree of a polynomial R. Then every nonconstant solution of the second
order linear differential equation

( 2 ) /''H-/iι(z)0p(2>/'-|-/ι2(z)6Q(2)/—0

has infinite order if degP^degζ) (p. 419, [3]). If deg P^deg ζ), then (2) may
have nonconstant solutions of finite order. Indeed, f(z)—z solves f"-\-zezfr

In this note, we shall investigate the growth of the nonconstant solutions
of (2) in the case that deg P^deg Q.

THEOREM 2. Let P(z) and Q(z) be nonconstant polynomials such that

for some complex numbers aτ, bι (i=Q, 1, 2, •••, n) with αn^0, bn^0 and let hι(z)
and h 2(2)^0 be entire functions satisfying ^(ΛjXdegP and p(h2)<degQ. Then
the following four statements hold :

( i ) // either arg αn^arg bn or an—cbn with 0<c<l, then every nonconstant
solution f of (2) has infinite order with

r-*oo log r

( i i ) Let an~bn and deg(P~Q)=m^l, and let the orders of hι(z) and h2(z)
be less than m. Then every nonconstant solution f of (2) has infinite order with

_
r-oo log r

(iii) Let an — cbn with c>l and deg(P—cQ)=m^l. Suppose that ρ(hl)<m
and /ι20) is an entire function with 0<1o(/ι2)<l/2. Then every nonconstant
solution f of (2) has infinite order with
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(iv) Let an=cbn with c^l, and let P(z)—cQ(z) be a constant. Suppose that
p(hl)<p(h2)<l/2. Then every nonconstant solution f of (2) has infinite order
with

"~r
r-oo log T

2. Preliminary lemmas

For the proofs of the theorems we need the following lemmas.

LEMMA B [4], Let f(z) be a nonconstant entire function, and let α>l and
ε>0 be given constants. Then the following two statements hold:

(i) There exist a constant c>0 and a set £ιCl[0, oo) having finite linear
measure such that for all z satisfying \z\—rφEl we have

^c[T(ar, /)relogTW, /)]*,
/(*)

(ii) There exist a constant £>0 and a set £2C[0, 2π) having linear measure
zero such that if 00^[0, 2π)—E2, then there is a constant R0=R0(φ0)>Q so that
for all z satisfying arg z=ψQ and z =r^RQ, we have

, /)logT(αr,

For £c[0, oo), the upper linear density of E is defined by

m(£Π[0, r])

where m(F) is the linear measure of a set F.

LEMMA C [1], Let f(z) be an entire function of order p where 0<io<l/2,
and let ε>0 be a given constant. Then there exists a set £3Cl[0, oo) with

dens £3^1— 2p such that for all z satisfying z\—r^Ez, we have

3. Proof of Theorem 1

The proof of the theorem depends heavily on the following lemma, which
gives information of the minimum moduli of entire functions having their zeros
in certain angular sectors.
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LEMMA 3. Let f(z) be an entire function of finite nonintegral order p and
of genus q:>l. Suppose that for any given ε>0, all the zeros of f(z) have their
arguments in the following set of real numbers:

if q is odd, and

'\
if q is even. Then for any £>1, there exists a real number R>0 such that

for all r^R.

Proof. Let z=reίθ with r>0, \θ\<π. Then, from the well-known repre-
sentation due to Valiron [10], we have

2

for any rn>0, where E(w, q} is an elementary factor. Taking real parts, we
get

S
oo 7? + l

..iŝ

log

If θ<^S(q, ε), then there is a δ>Q such that

Hence, for Θ^S(q, ε),

(3)

-at.

dt
rntq + l(t+r) '

By the canonical representation of /O), we may set

for some nonnegative integer m, where P(z) is a polynomial with deg P^q and
g(z)=TlE(z/an, q) with an=rne

iβn, rn>0 and θn^S(g, ε). Since /O) has non-
integral order p, we have p(g)—p and 9</)<ζί+l. Let n(ί) be the number of
zeros of g(z) in the disk z <t; then it follows from (3) that for all r>0,

(4) lθg|£(-r)|=Σk>g E(-/-, q)
^ an '
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Jo P+l(t+r) '

Now, άegP^q implies that there are real numbers c>l and #ι>0 such that

for all |z|=r^/?ι. Since />></ and

r-»oo log r

there is an R2>Rl satisfying

(5) /= δ

Furthermore we may presume that R2 is so large that for any r>2R2, we have

(6) Γ~ n(t)dt ^ f <• n(t)dt

^ n(R2)
= 2r

> n(R2}

Thus (4), (5) and (6) imply that

for all r>2R2. Therefore

log|/(-r)|=mlogr+ReP(-r)+log|^(-r)ι

^-cr9

for all r>7? with R=2R2.

Proof of the theorem. Rotating properly the axes of the complex plane,
we may assume that all the zeros of A(z) have their arguments in the set
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S(q, ε) defined in Lemma 3 for some ε>0. Hence, by Lemma 3, there exists a
positive real number R such that for all r>R, we have

(7) min,,,.,!^*)!^!.

If / is a nonconstant solution of (1), it follows from (1) that

(8)
/"(z)

\A(z)\
ί'(z)

Hence we deduce from Lemma C and (8) that if 0<σ<p(B), then there is a
set -B3C[0, oo) with a positive upper density such that for all z satisfying

3, we have

(9)
f " ( z )

/(z)
\A(z)\

f ' ( z )

f(z)

Thus Lemma B and (9) imply that there is a set £c[0, oo) with positive upper
density such that for all z satisfying \z\=r&E, we have

(10) exp(r')£(l + 1 A(z) \)T(2r,

Therefore we deduce from (7) and (10) that

for all r<^Er\[R, oo). Thus we conclude that /(z) has infinite order with

log log TV,/)
log r

Hence the result of the theorem follows, since σ is an arbitrary number less
than p(B).

4. Proof of Theorem 2

In the proof of the theorem, we use the following basic property of poly-
nomials: Let n be a positive integer, and let P(z)—anz

n-\-an.lz
n~lJr ••• -hfli^+flo

with an—ane
ίθn, an>Q. For given ε, 0<ε<ττ/4n, we introduce 2n closed angles

-e (;=0, 1, -, 2«-l).

Then, there exists a positive number R=R(ε) such that

if \z\—r>R and z<^D3, where / is even, while

ReP(z)<-anr
n(l-ε)sinnε
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if \z\ =r>R and z&D,, where / is odd (see pp. 253-255, [8]).
Suppose that Ai^O. Then if / is a nonconstant solution of (2), it follows

from Theorem A that

r-oo log T

Hence all four statements of Theorem 2 are true. Thus, in the following
proofs, we always assume that A^O. We also assume that / is a nonconstant
solution of (2).

(i) Suppose first that arg anφaτgbn. Then there exist real numbers
! and Θι<θ2 such that for all r^Ri and Θ^Θ^ΘZJ we have

(11)
ReQ(reίθ)>arn.

Let β satisfy p(hl)<β<n (*'=!, 2). Then there is an increasing sequence { r k }
of positive real numbers converging to infinity as k—>oo such that for ι=l, 2,
we have

(12) — (r*)^<log| hi(rke
ίθ)\ <(rk)

β

for all k^N and 0e[0, 2π) (for the left inequality of (12), see Theorem 3.7.1,
[2]). We deduce from Lemma B that there exist real numbers θQ^(θίt #2),
7?2>0 such that for all z satisfying z—reίθQ and r^R2, we have

(13)

for j=l and 2. It follows from (2) that

/"(*) /'(*)(14)

Hence, calculating at the points zk=rke
ίθ° with r*^max{/?i, R2}, we get from

(11), (12), (13) and (14) that

Thus, n>β implies

log T
^
~

Suppose now that αn—cbn with 0<c<l. Since degQ>deg(P—cQ}, there
exist real numbers α>0, λ, R$ and Θι<θ2 such that

(15)
Re{P(reiθ)-cQ(reίθ)}<λ
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for all r>R1 and θ^(θlf 02). It follows from (2) that

(16)

385

Calculating at the points zk=rke
iθ° with r*^max{#2, #3}, we deduce from (12),

(13), (15) and (16) that

Thus, n>β and 0<c<l imply

ΠSMlogTXr,./).
r-oo log r

( i i ) Suppose that an — bn and deg(<3 — P)=m, l<m<n. Then there exist
real numbers α>0, Rt and #ι<#2 such that

(17)

for all r>Rι and θ^(θlt Θ2). If ρ(hl)<m (/—I, 2), then there is an increasing
sequence {r*} of real numbers satisfying (12) for some β<m. It follows from
(2) that

(18)

Hence we deduce from (12), (13), (17) and (18) that

for all sufficiently large r f t. Thus, m>β implies

m _ T ( r l f l

(iii) Suppose that an — cbn with c>l and deg(P— cQ)—m^l} and that
p(hι)<m and Λ2(2') is an entire function with 0</o(/ι2)<l/2. Since deg(P— cp)
<deg Q, there exist a positive real number a and a continuous curve C tending
to infinity such that for all z^C with \z\=r, we have

(19)

Let β satisfy p(h1)<β<m. Then there exists a positive real number
that for all z satisfying \z\=r>R^ we have

?ι such

(20)
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Furthermore, if Q<γ<p(h2), then by Lemma C, there exists a set £8C[0, oo)
with positive upper density such that for all z satisfying \z\=r^Es, we have

(21)

It follows from (2) that

(22) Iλ.W^-'XX 'U - - - - , -jφ- π-,«ιW« jφ

Calculating at z=reiff on C, we deduce from (19), (20), (21), (22) and Lemma B
that

for some unbounded set of r. Thus, m>β implies

log Γ

Therefore

logr
,

~rv "

since p is an arbitrary real number less than p(h2).

(iv) Let an—cbn with c^l and let P(z)—cQ(z) be a constant. Suppose
that p(h1)<ρ(h2)<l/2. If α and j8 satisfy ρ(hl)<β<a<ρ(hz), then Lemma C
and the definition of the order imply that there exists a set £ci[0, oo) with a
positive upper density such that for all z satisfying \z\= r^E, we have

(23)

Let C be a continuous curve tending to infinity on which Re Q(z)— 0. Then we
deduce from (21), (22), (23) and Lemma B that

for some real number b, and for some unbounded set of r. Hence «>/3 implies

lim : >a.
r— log r -

Thus
r,- log log T(r, /)

since α is an arbitrary real number less than ρ(h2).
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