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PROPAGATION OF CHAOS IN ENTROPY

ROBERT AEBI

Abstract

A notion of convergence ‘propagation of chaos’, called by McKean [18],
is defined in terms of the relative entropy. Our goal is to show ‘the prop-
agation of chaos in entropy’ for clouds of interacting particles with prescribed
initial and terminal distributions. It is shown that, as the number of particles
in the clouds tends to infinity, particles in the clouds become, in the sence of
relative entropy, asymptotically independent with an identical distribution Q.
The limiting distribution @ is known to be a diffusion process related to the
Schrédinger equation.

1. Introduction

The propagation of chaos for systems of interacting diffusion processes is
introduced by McKean [15], [16] and investigated in Gutkin and Kac [10],
Tanaka [30], Kusuoka and Tamura [15], Shiga and Tanaka [28], Oelschliger
[26], Sznitman [29] and Dawson and Géirtner [8]. Our discussion is related to
problems considered by Nagasawa and Tanaka [17], [18], [19] and Aebi and
Nagasawa [1].

In this paper we formulate ‘propagation of chaos’ in terms of relative
entropy which has been established as a natural indicator for the mutual
randomness of probability measures. See for example Csiszar [5], [6] in
connection with large deviations, Boltzmann [4] and Lanford [16] who deal
with statistical mechanics and Khinchin [12] for an approach to information
theory.

DEFINITION 1. A sequence of systems ((X,, -, X,), @™ ®) of interacting
diffusion processes performs propagation of chaos in entropy with limiting
distribution @ as n and % tend to infinity, if for each m&N, the marginal
distribution Q' *> of @™ * on 2™ and the empirical distribution L,=1/n 3™, 0.,
w,€02, i€ N, satisfy
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(1) lim g oo limy, 0 HQ™ | Q7 #)=0
(2) lim peo limy oo H(Q Q™ [ L ])=0

where k is called a modeling parameter.

The definition given above is the key point of the present article as will be
explained : Nagasawa’s definition given in section 8.2 of [24] consists of two
steps ; namely, H(QW » |Qf) as well as HQ™ *[L,]|Q,) are required to vanish
as n tends to infinity, where (Q;)renr is a family of distributions approximating
Q, indexed by the modeling parameter k, and then H(Q|Q,) is required to
vanish as k tends to infinity. As shown in [1], [24], the definition has techni-
cally no problem, since it implies ‘the propagation of chaos in variation-metric’
(cf. inequality (16) below). It is, nonetheless, mathematically not satisfactory.
Our Definition 1 is a modification which is more natural than Nagasawa’s
definition, since it avoids the two-steps-argument. This causes, however,
mathematical problems, because of the non-symmetry of the relative entropy
H(Q|P) in {Q, P} (cf. definition (5)), which will be resolved in Section 3. Our
goal is to prove Theorem 1 given in Section 2, which improves Theorem 8.3 in
[247 and Theorem 4.1 in [1].

The meaning of Definition 1 is this: First of all, property (1) implies that
for arbitrary but fixed m any subset of m-interacting diffusion processes is
asymptotically independent and that @ is the asymptotic distribution of each
diffusion process in the subset. Property (2) indicates a mixing of the involved
diffusion processes by means of the empirical distribution L, (cf. definition (6)),
namely, the empirical distribution L, under Q™ * converges to @ in entropy
as the total number n of participating diffusion processes and the modeling
parameter k tend to infinity.

In Section 2 a theorem on ‘the propagation of chaos in entropy’ in the
sense of Definition 1 will be given. This kind of limit theorem was first
investigated by Schrodinger in [27], who was motivated by an analogy of wave
functions in quantum mechanics and a pair of diffusion equations in duality :
He considers a cloud of particles independent and identically distributed accord-
ing to an initial distribution ¢, at an initial time @, and then he requires that
the terminal distribution at terminal time b, a<b, must be a prescribed distri-
bution ¢,. To realize such movements of particles, it is therefore necessary to
introduce interactions between participating particles at intermediate time ¢,
a<t<b, through conditioning adapted to the prescribed distributions ¢, and g,
which are assumed to be observable. The ‘controlled’ cloud of particles is obtained
as the ‘most probable’ one in the sense of large deviations (cf. [1]). To discuss
large deviations we adopt, as the substantial mathematical tools, the asymptotic
quasi-independence as well as the I-(‘Csiszar’) projection given by Csiszar [5], [6].

Section 3 is devoted to a proof of ‘the propagation of chaos in entropy’ in
the setting of Section 2. In Section 4 frequently used known results are briefly
quoted for the reader’s convenience. It should be noticed that the limit (41)
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stated in Proposition 2 holds only in this revised form which is essentially
weaker than (2.13) in [1].

Corollary 2 of Theorem 1 is to indicate that the Schrédinger equation can
be considered as a kind of ‘Boltzmann equation’ (cf. [23]), i.e. an equation for
systems of interacting particles in the spirit of Boltzmann. To investigate this
aspect was the main motivation of Schrodinger in [27].

2. A situation for propagation of chaos

To formulate our main theorem we recall some notations and definitions
(cf. [17, ]24] for details). Let 2=C([a, b], R%), —o<a<b<co, be the space
of continuous paths taking values in R¢, d fixed, with the Borel o-field a(2).
M. (2) denotes the set of probability measures on £. The state of a path w=®
at time ¢, a<t<b, is described by the projection X,(w)=X(t, w)=w(t).

For a given pair of probability measures (¢4, ¢,) on R¢, we consider

(3) Au.y={PEM(Q): P-X7'=g, for r=a, b} C M%)

which is a class of continuous stochastic processes on R? with prescribed
marginal distributions ¢, and ¢, at finite initial and final times @ and b,
respectively.

Let PeM,(2) be a Markov process which is going to serve as a reference
measure on the path space 2. We assume that

(4) JP= A, ,: H(P|P)< oo
where the relative entropy H(P|P) of P with respect to P is defined as
= dP . =
(5) H(PIP)—Slog<—d—P)dP, it P<P,
=oc0, otherwise.

In most of the interesting known situations and hence also in our investigations,
the measure P itself is not an element of the set A, , In applications of
Theorem 1 which will be given below, a typical reference measure is the
so-called ‘renormalization’ of a measure with creation and killing (cf. [1], [24]).

Let (2, P) be n independent copies of (2, P), i.e. P is the n-product of
the probability measure P. Denoting the empirical distribution of w=(w, -,
w,)E02" by

(6) Lu@=— 34,

n =1
we have L,(w)eM,(Q) for each such w. To define a reasonable conditioning,
we must enlarge the subset A, , since L, takes only discrete values and hence
{L,€ A, might be empty in general. Let us take any sequence of finite
measurable partitions @,(R*)={B,, ---, B,;} of R?, k&N, such that
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(7) 0(L(R*)Co(Pr(R?)) and o(@x(R?) " o(R?) as k /oo.

We define a family of subsets A(e, k) of M,(R2) for ¢e>0 and 2N in terms of
the partitions 2,(R?) as

(8) Ale, b)y={PeM\(2): IP(XTEBl)—qr(B@)Iégk—, VB 2(R?),

and P-X7'<P-X7! on o(@,(R%) for r=a, b}.
Thus

(9) P(L,€A(e, k)>0

for ¢e>0, kN and neN large enough. In fact, since L,(w)-X7! for w=Q" is
concentrated on w,(*)eR?, j=1, ---, n, {L,€A(e, k)} is the set of those w=s”
for which
#B) o By|<t fori=1, o, k; r=a, b
n 2

where #.(B,) is the number of w;(r), j=1, ---, n, contained in the set B;&®,(R%).
Because of (4), there exists P=A,,, in (3) such that P P. Hence (9) is a con-
sequence of the law of large numbers which claims that P*(L,sA(e, k)) tends
to 1 as n increases to infinity.

The conditioning of P on the set A(e, %) in (8) by means of the empirical
distribution L, in (6) can now be defined as

10) P O()=P(-|L.€A(, k).

We do not indicate ¢ on the LHS of (10), since it is a purely technical parameter
(cf. Lemma 4 in Section 4). It might be illustrative to notice that the marginals
of P™ % on Q belong to A(e, k) in (8). In fact, the convex combination of
elements in A(e, k)

(11) SQnLn(w)(')dI_’(wlLn(w)eA(e, k))z%ép(wi€'|Ln€A(8, k))
=P(w,E-|L,EA(e, k)

is just the j-th marginal distribution of P»® on 2, j=1, ---, n. Following (i)

of Lemma 4 given in Section 4, A(e, k) is a convex set and hence contains the

expression (11). Further discussions will be provided by Lemma 1 and Remark 2.
Let us now formulate our main result.

THEOREM 1. Let the set A, , tn (3) satisfy condition (4). Thus there exists
Csiszar’s projection QEA,,, defined by
12) H(Q|P)= min H(P|P).
PEAa,b

Moreover, there exists a Markovian modification Q™ * of the conditional process
P ™" defined in (10) such that
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(13) HQ™»|Qt )<HWP ™P|QL )
where Q. . is Csiszar’s projection of P on A(e, k) in (8) defined analogously
to (12).

Then the sequence of systems (Xi, -+, Xa), Q™ ®) performs ‘propagation of
chaos in entropy’ of Definition 1 with Csiszar’s projection Q in (12) as limiting
distribution when n and k tend to infinity, provided log(Q *®/Q™:), n, kEN,
s uniformly integrable w.r.t. Q™ for meN.

COROLLARY 1. The results of Theorem 1 for meN are also true, if for all
sequences (n(v), k(v)), vEN, and ¥0>0, IM<co, 36,>0, Ju(m, 8, M, 6,)EN such
that

dQEp@ ke \e
(14) SB,‘,,";} (—m) dQT 1) <0
for all te(—a,, 8,) and for all v>y(m, 0, M, 3,) where
dQP® ko) \ 6
(m) — - — _
(15) B ={( 05re )'>M for 0=1 or —1}.

The proof is an immediate consequence of Lemma 3 providing Q™«
Qrerken yeN, as well as a way to deal with (35) in the proof of Theorem 1.
The integrability condition (14) shows the required accuracy of the approxima-
tion A(e, k) in (8) of A,., in (3) with respect to the reference measure P.

Theorem 1 has some significance in quantum physics. In fact, we learn
from [2], [19], [20], [21] that Schrédinger equations are related to so-called
Schrodinger processes and vice versa, as far as solutions exist and the corre-
sponding Schrodinger processes can be constructed. Moreover, [1] claims that
Schrédinger processes are certain Csiszar projections. As a consequence, Theo-
rem 1 yields

COROLLARY 2. In the situation of Theorem 1, the distribution of a ‘typical
particle’ under the law Q™™ as n and k tend to infinity is determined by the
Schrodinger process Q and hence by the related Schridinger equation. In other
words, a Schridinger equation is a kind of ‘Boltzmann equation’ for a system
of interacting particles represented by a system of interacting diffusion processes
(X, , X0), Q™®) as n and k tend to infinity.

We can consider Schrodinger processes @ as Gibbs states of microscopic
systems represented by Q™ ® for n and % tending to infinity. In fact, Q
determines the rate function of the large deviation principle (40) called approx-
imate Sanov property. Hence, Q is the ‘most probable’ diffusion process under
the given circumstances and consequently, it is the limiting distribution postulated
by the fundamental hypothesis of statistical mechanics. This illustrates the
analogy to classical statistical mechanics, cf. e.g. [16].
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Remark 1. Csiszar [5], Kemperman [11] and Kullback [14] show that the
variation distance is dominated by the relative entropy according to

(16) | P.— Pyl var: < V2H(P,| P,)

where P, P,, ReM,(Q) with P,< P,< R. Hence, Theorem 1 provides a com-
parably strong result. In fact, propagation of chaos in entropy yields propagation
of chaos in variation because of (16) and propagation of chaos in variation
obviously yields propagation of chaos in weak convergence.

3. Proof of Theorem 1

We denote a partial empirical distribution by

a7) Los@=—"r 3 6, m<n, 0=(@, -, 0)=@"

m s

LEMMA 1. Let us assume condition (4). (i) If n>m2*/e is chosen large
enough such that

n—m Lm,,,«u)eA(s—g(%), k)
where
RS
then

_ L.(w)yeA(e, k)
for P™a.a. €.
(i) Moreover, there exists n(m, &, k)EN, n(m, &, k)>m2*/¢, such that

18) QPR

for all n=n(m, ¢, k), where P3'*® is the m-dimensional marginal distribution of
P @b 4n (10).

Proof. Let ®,={B,, ---, B,} be a partition of R¢ as introduced in (7). In
view of the definition of A(e, %) in (8), we first notice for r=a, b that L ,(w)-X7!
is not absolutely continuous with respect to P-X7' on the set {ws®Q™:3j=1,
-, n, =1, -, k such that w;&X7'(B,) where P(X7'(B.))=0} which is however
a Pr-zero set. In terms of (17) we receive

[ Ln(@)(X7(B:)—q{(By)]

‘ n i L &, (XF(BY)—¢.(B.)
E

A
3|~

3384,(X74(B)

n i=m+1
n—m
n

E

L (@) X7 (B.)

| =L (@)X (B~ 01 By)

Il
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for i=1, ---, k and r=a, b. Hence (i) follows for P*-almost every wsQ®, if n
is so large that
ym
8_8<7)_i—‘£
28 T2k g

is positive.
Let n>m2*%/¢ and let B™ cg(2™). Because of Q<P in Lemma 4 (ii), part
(i) implies

19 QM (B™N{L.EA(e, k)})
2B (P (e o(2), )
=08 (75 Lusea(s(2) ),

Since the law of large numbers claims that

(P L neA(s—e(), £))~1 as n oo
there exists n(m, &, k)>m2*/¢ such that for all n=n(m, ¢, k)
Q ("= Ly e A(s—e( ), £))>0.

If Q™(B‘™)>0, then inequality (19) yields

QMB™N{L,cA(e, k)})>0

for all n=n(m, ¢, k) wherg n(m, ¢, k) is independent of the particular set B,
As a consequence of Q<K P,

P*B™N{L,cA(, k)})>0
which implies
P k>(3<m>):f) By (BmM)>()

concluding the proof.
LEMMA 2. Let us assume (4). Then the limit
lim H(Q|Q:, »)=0
k oo

in (38) of Csiszar projections Q and Q. . in Lemma 4 (ii) implies convergence in
variation, i.e.

Moreover, if B,ca(Q) for EEN, then

dP—0 as k /oo.
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@) mgsk tog( d‘é)?k )a@=0.

Proof. The limit (20) follows from (38) because of (16).
We notice that the function A(x)=x logx—(x—1), x=0, satisfies

22) Sh(d‘éﬁk)dQe,kzglog(d‘é?k)Hé?des.sz(Q\Qs,k)

which vanishes in (38) as & tends to infinity. Thus

b ouCgr)a0=), 1 (g )0+, (gr, 1)@

also vanishes as % tends to infinity. In fact, the first term on the RHS can
simply be estimated by (22) since 4 is non-negative, and the second term on
the RHS tends to zero as a consequence of (20).

PROPOSITION 1. Let (4) be provided and let Q and Q. . be the processes in
(12) and in Lemma 4 (ii), respectively. Then there exists a Markovian modifica-
tion Q™® of P%® in (10) with property (13). Its m-dimensional marginal
distributions Qi *®, meN, satisfy

(23) Q"LQi®

for all n>n(m, ¢, k) in Lemma 1 (ii), and

(24) lim lim H@Q7* Q7 4)=0
koo oo
which yields
an k @:Z m—
@) fim lim} | =g [4P"=0

Moreover, if Bimea(2™) for n, REN, then

(26) lim llmS o )log(g;,;hh)ng:.k):O
kAo Mmoo
where
dQ(n k)
(n,ky - Z2¥mM
@7 8m 407, for n, keN.

Proof. The existance of Q™ *® with (13) is provided by Lemma 4.2 in [1]
because of (37) and (41). We notice that the marginal distributions of P ™
and Q™" on 2,,.:X - X8nws» for v=0,1,2, .- coincide because of the
symmetry of P ® in w,;, i=1, ---, n. Thus Lemma 1 (ii) yields (23). Moreover,

28
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by Lemma 11.3 in [24] where 0<r<m—1. Hence (24) is a consequence of (13)
and (41) which cause the RHS of (28) to vanish as n and % tend to infinity.
Convergence in variation (25) follows from (24) by means of (16).

The limit (26) is received analogously to the proof of Lemma 2. In fact,

oo Jes(igr, ) agn, o=l agr, 1o

where h(x)=x log x—(x—1) for x=0. The LHS of (29) equals H(Q® " |Q™;)
which vanishes in (24) as n and k tend to infinity. As a consequence,

(n k) (n k)

SW) log (27 “dom, )i = SB(m)h< s Jaeri+|, . (%%n " _1)aQr,

vanishes as n and % tend to infinity. In fact, the first term on the RHS is
estimated by (29) since A is non-negative, and the second term on the RHS
tends to zero because of (25).

LEMMA 3. Let us assume (4) and (14) in Corollary 1. If for meN, gii® o0,
vEN, is given in (27), then ¥6>0, AM< o, (6, M)EN such that

(30) SﬁémIlog(gﬁ,{“”""‘””)ldQ’"<5, Vu>u(@, M)
with B(mi={|log gt *en | > M},
Proof. Referring to (27) we notice that for Me(0, )
Bm={llog gz *» | >M} = {(gp® *®)?>e¥ for =1 or —1}

which corresponds to B{™) in (15) with M=e". If, as provided by (14),

S (m)exp{t log(gs @ kNN dQ™,

— (n(vy, k) \\+ m
= e o0 ko P IOEEE S 1)} QT

é
_ (). k)))- d
SB(m)ﬂ((log(g(n(V) Eon)y, >0)exp{ Hlog(gs QW < 2

for all te(—d,, 0,) where 1<M< o, then

(31) SB(m,exp{tllog@W £ [} QT )<

for all t=(—d,, 0;). In order to arrive at (30), the inequality
ab<aloga+e® for a, b=0

in section 15 of [3] is applied to a=dQ™/dQ",«y and b=f|log(gF® #en)| for
te(0, 6,). Thus
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llog(gm - *e0)|dQ™

IS agm

- tlog(gimer Een)| X __4Qm,,

t Bls:,nn} I g(g )l Qg,,z)(v) Q k()
1 aQr Q™ N

<7§B§m s0im, o Goim, )40t

1
+753<m>exr’{t|l°g(9‘”‘”’ QT hoy <0

since the first term on the RHS vanishes in (21) as k(y) tends to infinity while
the second term on the RHS can be made arbitrarily small by a large M on
the basis of (31).

Remark 2. In order to verify propagation of chaos, i.e. (1) and (2), we
essentially have for use the limit (38) which is a consequence of (37) and (39)
and the limit (24) which is a consequence of (13), (28) and (41). While (24)
provides some integrability properties in Proposition 1, Lemma 3 shows some
consequences of (38) under assumption (14). Let us briefly resume our approach.
Because of (37) and (38), Q<Q. . <P, where Q. , is Csiszar’s projection of P
on A(e, k) in Lemma 4 (ii). Following Proposition 1, Q™ < Q% ® for n>n(m, ¢, k),
where Q™ ® is the Markovian modification of P ™ #® in (10). We notice that
(20) and (25) yield

Sl dQ(n k) de

dPm 4P
i.e. convergence in variation. In order to get limy relim, . HQ™| Q% #)=0,
i.e. (1), Q%™ has to satisfy additionally a uniform integrability condition with
respect to the limiting distribution Q™. Lemma 2 and Proposition 1 refine (20)
and (25) on the basis of (38) and (24), respectively. In Corollary 1, the assump-
tion (14) is rather a condition on the approximating sequence Q. , than on @
itself.

lim lim dP™=(
koo m oo

Proof of Theorem 1. Because of (4), Lemma 4 provides the unique Csiszar
projections Q and Q. , of Pon A, , and on A(e, k), ¢>0, k=N, respectively.
Moreover, Proposition 1 yields a Markovian modification @™ * of P ™ ® which
satisfies (13). Following Proposition 2, @ * and Q?, satisfy (41) because of
(13). In our situation based on (10), which is particularly symmetrical in w,,
i=1, .-, n, property (1) for m=1 implies property (2) in Definition 1.

In order to show (1) for any me N, we notice first that H(Q™| Q4 *®) is
well-defined. In fact, Q™K Q™®, i.e. n=n(m, ¢, k) in Lemma 1 (ii), holds as a
consequence of (38) and the assumed uniform integrability of log(dQ**»/dQ™,)
w.r.t. @™ Since Q' *® takes different positions in the relative entropy expres-
sions in (1) and (24), respectively, we consider
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a™ _ dQ™ 4o,
dQE®  dQ™, dQT’
for n=n(m, ¢, k) where the first factor on the RHS of (32) exists because of

(38) and the second factor on the RHS of (32) exists on supp@{'*® because of
(24). As a consequence of (32),

(32) Q™a.s.

(33 HQ™ Qi )=mH(Q|Q..»)— | loglgtt )d Q™

where g®®, n, k€N, is defined in (27).
Let us investigate the limit behaviour of the second term of the RHS of
(33). Proposition 1 claims that

(34) lim lim

ko nzmgnlog(gﬁ,{"k)nﬂl)

log(g#)d QS * =0
for any M>0. Thus we are ready to claim that

@5 | [loggg)dQn—{logast dQi

<|Jiog(gsraqm—| log(g§)dQ"|

tilog (g™ BYy sy

log(gst )dQ"~| log(gst )dQz

SHIOg(g,(n"”"HéM) (log (g (™ %)y sy

log(gst»)dQT s~ | log(gst P)dQg

‘Snl‘)g(gﬁn"'k))ném (log (g™ F)y s m

log(g%"k’)dQ%l“k)_Slog(g%““)dQ%"k’ —0

. Snlog(g;,t" Byy sy

as n, k oo, In fact, the first term on the RHS of (35) becomes arbitrarily

small for M large because of the supposed uniform integrability of log(gi™ #),

n, keN, w.r.t. Q™. The fourth term on the RHS of (35) can be made small

for large M because of (34) following from Proposition 1. In case of the second

and the third term on the RHS of (35) we refer to (20) and (25), respectively.
Finally we obtain (1) through (33) by means of

| HQ™ Q)|
<mIHQQ..») |+ {loglett »)dQm—log(g »)d@s
+HQ»1QE )| =0

as n, k /oo, In fact, the first term on the RHS vanishes in (38) as % tends to
infinity, the second term becomes small as n and % tend to infinity because of
(35) and the third term vanishes as shown in (24).
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4. Csiszar’s projection and the approximate Sanov property

Here we briefly arrange some of the quoted results for the reader’s con-
venience.

LEMMA 4 (Csiszar [6], Aebi and Nagasawa [1]). Suppose that any refer-
ence measure PeM(Q) and A, , in (3) satisfy (4). Then:
(i) A.» and A(e, k) in (8) are convex, variation closed and satisfy

(36) Ad.b: m A(sy k)) V5>0.
kEN

(i) There exist uniquely the Csiszar projections Q and Q... of P on A,
and on A(e, k), keN, >0, respectively, defined according to (12). They satisfy

37) lim H(Q.,+| P=HQ|P), Vs>0
and
(38) ki}rrcloH(Q|QE,k)=0, Ve>0.

Proof. Details are found in Lemma 3.5 of [1]. In case of the crucial
convergence in (38), we refer to inequality (2.14) in [6]. It provides

39) HQ|P)—H(Q..:| P)ZH(Q|Q., )

because of Q= A, ,CA(e, k). As a consequence of (37), the LHS of (39) vanishes
as k tends to infinity.

PROPOSITION 2 (Aebi and Nagasawa [l1], revised). Let (4) be provided.
Then:
(i) The set A, » possesses the approximate Sanov property

(40) £1}m lim%logF(LneA(s, EN=—HQ|P), VYe>0
o M A
where Q is Csiszar’s projection of P on the set A, , defined in (12).
(ii) The system (X,, ---, X,) is asymptotically quasi-independent under P ™ *
in (10) with limiting distribution Q. . for each k<N and >0, i.e.

m lim %H(P @8 | Q8 )=0, VEEN, Ve>0,
nA Ao
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