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MEROMORPHIC FUNCTIONS SHARING ONE VALUE

AND UNIQUE RANGE SETS

E. MUES AND M. REINDERS

Abstract

We show that there exists a set S with 13 elements such that the condi-
tion Ef(S)=Eg(S) implies f=g for any pair of non-constant meromorphic
functions / and g. The main tool is a general estimate on two meromorphic
functions sharing only one value CM.

1. Introduction and Results

In this paper a meromorphic function is always meromorphic in the com-
plex plane C. We use the standard notations of Nevanlinna theory such as
m(r, /), N(r, /), T(r, /), S(r, /) etc. (see [2], for example). For seAT we
denote by NLsι(r, /) the Nevanlinna counting function of the poles of / where
a p-fold pole is counted with multiplicity min(s, p). df is the divisor of the
meromorphic function /.

We say that two meromorphic functions / and g share the value a^C IM
(ignoring multiplicities) if f~l({a})—g'l({a}). f and g share the value a CM
(counting multiplicities) if a &-fold α-point z0 of / is also a Mold α-point of g
and vice versa, k = k(z0).

Let 5 be a subset of C. For a meromorphic function / we define

Ef(S)={J {(z, />)|/(z)=fl with multiplicity p^
a<=S

S is called a unique range set for meromorphic functions (URSM) if for any two
non-constant meromorphic functions / and g the condition Ef(S)—Eg(S) implies

f=g
Note that Ef(S)=Eβ(S) if and only if /(*)= αeS implies g(z)—b for some

b^S with the same multiplicity, and vice versa.
Li and Yang [7, 8] proved that there are URSM with finitely many ele-

ments. In particular, they gave examples of URSM with 15 elements. On the
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other hand, they showed that any URSM must have at least 5 elements.
In this paper, we show that there are URSM with 13 elements. This is a

consequence of the following theorem (compare also Theorem 1 in [8]).

THEOREM. Let m^2, n^2m+9 be relatively prime integers and α,
such that the polynomial wn+awn~m+b has only simple zeros. Then the set S—
{w<EC\wn+awn~m+b=:Q} is a URSM.

To prove this theorem we state a general lemma on meromorphic functions
sharing one value only.

LEMMA. Let F and G be non-constant meromorphic functions sharing the
value 1 CM. If FΦG and FG^l then

(1) T(r, F)^Nr, , -+#(r, F, G)+o(T(r, F)+T(r, G))

for r— >oo outside a set of finite measure.

Here Mr, F, G) is a Nevanlinna counting function of the points z() where
F(ZQ)— oo or G(ZO)— °°. Each points z0 is counted in the following way:

• If dF(zQ)=~p<Q and 3G(z0);>0 then z0 is counted in N with multiplicity
min(/>, 2).

• If 3F(z0)^0 and 9G(z0)— — <?<0 then z0 is counted in $ with multiplicity
min(0, 2).

• If dF(zo)= — p<Q and 3e(^o)— — ̂ <0 then z0 is counted in N with multi-
plicity 3 if pφq and with multiplicity 2 if />=#.

Note that

Mr, F, G)^NC2](r, F)+NC2](r, G),

Mr, F, G)g3Mr, F) if F and G share oo IM,

Mr, F, G)g2JV(r, F) if F and G share oo CM.

It turns out that the lemma also allows a unified access to some unicity
theorems which arise from shared value problems (see [3, 6, 7, 8, 9, 10, 11], for
example). This will be discussed in section 4.

2. The proof of the lemma

In order to prove the lemma we use a special case of Cartan's second main
theorem on holomorphic curves. Cartan's theorem seems to be more flexible
here than Nevanlinna's theorem on BoreΓs identities ([4]) which is used by the
authors cited above in similar cases.

THEOREM A (Cartan). Let glf g2, g3 be linearly independent entire functions
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without common zeros and gι~gι+gz-\-g$ . Then, for k, /e {1, 2, 3, 4}

(2)

Here W=W(gίf gz, gs) is the Wronkian of glt g2, gs and

for r—*oo outside a set of finite measure.

For a proof see [1] or [5],
Let us make some remarks on how to estimate the term

(3) N^=M

in Cartan's theorem. First we note that

W(glf gt, gJ=W(gί9 gt,

Let ZQ<^C and suppose that

for some ;e{l, 2, 3, 4}.

Since gι, g2, ^3 have no common zeros there are exactly two cases to consider :
(i) 3,Λ(*β)=0 for k*j,
(ii) dgk(zo)—q~:>l for some kφj and dgl(z0)=Q for i Φ j , k.

In case (i) we have dw(zo)^p— 2 if p^2t hence

(4) z0 contributes at most min(/>, 2) to ΛΓ*(r).

In case (ii) if pφq we have p+q^3 and dw(z0)^p+q— 3, so

(5) Zo contributes at most 3 to N*(r) if p^q.

If /)=^ we have dw(z0)^2p—2 and thus

(6) ^o contributes at most 2 to N*(r) if />=^

Now let F and G be non-constant meromorphic functions sharing the value
1 CM. Define the meromorphic function h by

*-£ί
Then

(8) F+Λ-ΛG=1.

Suppose first that the functions F, /ι and —hG are linearly independent.
Let P be a Weierstraβproduct with zeros exactly at the poles of F and with the
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corresponding multiplicities. Then

(9) PF+Ph-PhG=P

and the functions

(10) gι=PF, g*=Ph, gt=-PhG and g4=P

satisfy the hypotheses of Cartan's theorem. It follows that

(11) T(r, F)=τ(r, ^)^7V*(r)+S(r)v gj

where N*(r) is defined in (3) and the error term satisfies

(12) S(r)=o(T (r, j)+T (r, ̂ ))=0(T(r, F)+T(r, G))

for r— >co outside a set of finite measure. Using (7) and (10) we see that

N(r, ~}=N(rf ~] , N(r, -)=N(r, G) ,
\ g!/ \ F/ \ gz/

By the remarks (4), (5) and (6) made in estimating the term AT*(r) we get

(13) A r * ( r ) ^ # r , , - + #(r, F, G).

If we combine (11), (12) and (13) we get the desired estimate (1).
Now we assume that the functions F, h and — hG are linearly dependent.

Then

(14) dF+Cth-CthG^Q

where c ί f c2, cz are constants not all equal to zero. If cl— 0 it follows that F
or G is constant. So Ci^O and we may assume that d=l. From (14) we get

where

(16)

since G is not constant. We consider three cases :
Case 1: c2^0, 1. From (15) we see that GC?0)=0 if and only if F(z0)—c2/

(c2— 1)~ 0. Using the second main theorem we get
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T(r, F)+S(r, F ) < ί f f r f + f f r , -_+J7(rf F)

, F)

, F, G).
\ r IT /

Thus (1) holds in this case.
Case 2: c3^0, 1. In this case we get the inequality (1) in a similar way.
Case 3: c2 e {0, 1} and £3e{0, 1}. If c2=0 then cs=l because of (16).

Substituting these values in (15) gives F=G. If c2=l then c3=0 and (15) gives
FG=1.

3. The proof of the theorem

Let / and g be non-constant meromorphic functions satisfying E f ( S ) = E g ( S ) .
We have to show that f=g. Without loss of generality we may assume that

(17) T(r,g)£T(r,f), r^I

for some set /C(0, oo) of infinite Lebesgue measure. The functions F and G
defined by

b b

share the value 1 CM. We denote the zeros of wm-\-a by uίt ~ , um. Accord-

ing to the lemma, we distinguish three cases.
Case 1: F^G and FG^l. Then

T(r, F ) ^ ^ [ 2 ] r + Λ ^ [ 2 ] r , - + yV[2](r, F)+^Γ2](r, G)

+o(T(r, F)+T(r, G)), rφ.E .

Using (18) and (17) this gives

nT(r, /)^

, f)+o(T(r, /)),

It follows that n^2m+8. Since we assumed n^2m+9 this case can not occur.
2: FG = 1. In this case
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If /(^0)=0 or /TO(z0)+fl=0 then g(z0)=oo and hence gn~m(gm+a) has a pole of
order at least n at z0 It follows that every zero of / has multiplicity at least
two and every zero of fm + a has multiplicity at least n. The second main
theorem gives

(ra-l)T(r, /)+S(r, /)^N(V,-7

Hence m— l^(l/2+m/w). Because of ra^2 we conclude that

_ .
~~ra— 3/2 ~

This is a contradiction to our assumptions.
Case 3: F=G. Then

fn-\-afn~m— gn-\-agn~m .

As in [8] we set h=f/g and get

(19) g1 Λ(Λn-l)=~fl(Λn-n ι-l).

Let z0(=C be a point with /ιn(z0)— 1 but h(z0)3=l. Then /ιn~m^l since n and
n— m are relatively prime. Thus hn(z0)=l with multiplicity at least m. It
follows that h has n — 1 completely ramified values. If Λ is not constant, the
second main theorem implies n — 1^4 in contrast to our assumptions. Hence h
is constant. Since g is not constant, (19) gives h = 1 which means that f=g.

This proves the theorem.

4. Concluding remarks

As we already mentioned in the introduction, there is a series of shared
value problems which can be treated in a unified way with the help of the
lemma. As an example, we quote the following result of Hua [3].

THEOREM B. Let f and g be non-constant meromorphic functions. Suppose
that f and g share the value I CM and that

(20) Δ=ί(0, /)+3(0, £)+ 3(oo, /)+a(oo,

Then f-g or fg=l.

Proof. Without loss of generality we may assume that there exists a set
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/C(0, oo) of infinite measure such that T(r, g)<T(r, /) for re/. If fΦg and
fgφl, the lemma gives

f)+N(r, g)+S(r)

i if re/, ε>0.

It follows that Δ^3. D

The example

(21) /(*)=**•-*«, g(z}=~^

shows that the bound 3 in (20) is best possible. It also shows that we may
have equality in (1).

In a similar way one can use the lemma in all situations where /(ra) and
g(n) share the value 1 CM by setting F=/(n) and G=g(n\

Finally let us note the following corollary of the lemma.

COROLLARY. Let / and g be non-constant meromorphic functions sharing the
values 0 and oo IM and the value I CM. If

then f—g or fg~l.

Proof. If fφg and fgφl, the lemma gives

T<r,/)Stf(rΛ-^

). D
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