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ON SINGULAR SOLUTIONS FOR A SEMILINEAR
ELLIPTIC EQUATION

SUSUMU ROPPONGI

1. Introduction

Let 2 be a bounded domain in R” (n=2) with smooth boundary 9£. And let
2 be a C=-compact submanifold of £ of dimension m (0<m<n—1). We take
an arbitrary a(x)eC*=(2) such that a(x)>0 on 2 and consider the following
equation.

—Au=u’+ady in 9(2) (p>1)
(1.1) {

0sueCy(NY),

where 0y is the measure defined by

(1.2) s, =\ 2(0)d

for any p=C3(Q).
What can one say about the existence of a solution of (1.1) and the local
behaviour of its solution near 2? We have the following.

THEOREM 1. There exists a solution of (1.1) if and only 1f 1<p<(n—m)/
(n—m—2) 1<p<o if n—mZ2). And there exists a solution u of (1.1) satisfying

Cid(x)~" "= Ly(x)K Cod(x)~ (P2 near 3 (if m<n—3)
(L.3) Cillog d(x)| Su(x)=C,|log d(x)| near 2 (if m=n—2)
w(x)eCR) (f m=n—1),

where d(x) denotes the distance between x and 2. Here C, and C, denote some
positive constants.

THEOREM 2. Assume that p<n/(n—2) (p<oo if n=2). Then the same
bounds as in (1.3) hold for any u satisfying (1.1) and, in addition,
1.4) usl?

loc

@  if m=n—1.
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Remarks. 1. It is curious to the author that the exponent p such that
(1.1) has a solution depends on the dimension of 5. When Y= {a point}, Lions
[6] has proved the above results. Therefore we may assume that m>=1 here-
after. When pe(l, (n+2)/(n—2)) (n=3), the following holds immediately from
Gidas and Spruck [5, Theorem 3.1, pp. 540-5417, since —Au=u? in 2 \J%.

(1.5) u(x)< Cod(x)2/P-D near X

Since p<(n—m)/(n—m—2), the upper bounds in (1.3) is more sharp than that
in (1.5). When p=n/(n—2), we do not know the more sharp estimates than
(1.5). Furthermore, when p=(n+2)/(n—2), we do not know the behaviour of
the solution of (1.1) in general.

2. In the case m<n—2, usL? (2) holds for any u satisfying (1.1) [see

loc
Lemma 2.1 in section 2]. We suspect that the assumption (1.4) is not necessary.
3. For the related papers we see Aviles [1], Brezis and Lions [3], Gidas
and Spruck [5], Serrin [7] and the references in the above papers.
The other case where u? is replaced by —|u|? 'u is discussed in, for ex-
ample, Brezis and Veron [4], Vazquez and Veron [8], Veron [9], [10].

2. Asymptotics

Let 2, 5, a(x) be as before. Let G(x, y) be the Green function of —A in
Q2 associated with the Dirichlet boundary condition. Then,

Kalx—yl*™  (if n=23)

G(x, 9)—S(x, y>={ .
—(1/2m)log|x—y| (i n=2),

where S(x, y)eC*(2x ) and
K,=((n—-2)|S*'])"' (n=3).

Here |S™"!| denotes the surface area of the unit sphere of R”.
We put

2.1) g(0)=| G(x, Da(a)da.
Then 0<ge=C=(2\Y) and g satisfies
@2 { —Ag=ady in 9/(2)

g=0 on 4% .
By Propositions A.2 and A.3 in Appendix, we have

Cid(x)y-mm2— D Zg(x)S Cod(x)~ 772 (if m<n-3)
2.3) Cillog d(x)| —D:<g(x)<Cyllog d(x)|+D,  (if m=n—2)
g(x)eC(2)  (f m=n—1)
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2.4 { geLy () for ge[l, (n—m)/(n—m—2))  (if m<n—3)
' g&ELy ()  for gqe[(n—m)/(n—m—2), o)  (if m=n—3)
2.5) geLL (D) for gell, w) (if m=n—2).

Here C,, C,, D, and D, denote some positive constants.

LEMMA 2.1. Assume that m<n—2 and u satisfies

—Au=u? m N\ (p>1)
(2.6) {

0fuesCyR\2).
Then usL?

loc

().

Proof. We take a C*-convex function @ on [0, o) such that @(0)=1, &)
=0 for t=1 and put

O(Cle™ ™% g(x)+Dy)  (if m<n—3)
O(Ci'|loge|g(x)+Dy)  (if m=n—-2).

Here C, and D, denote the same constants as in (2.3). Then, by (2.2) and (2.3),
we can easily get

Es(x):{

E(x)eC~(2), 0=&(x)<1 on 2
&(x)—1 as ¢e—0 a.e. in Q2
@.7 g(0)=0 if d(x)<e
v&.(x)—0 as ¢—0, uniformly on any compact subsets of 2\%
A& (x)=0 a.e. in Q.
Let p=C3(£2) such that 0<y<1, =1 near 3. Since p&.C5(2\2), we have

2.8) [, urnédr=—{ uatngds
:—Sgu(nAée-’rZVr] Ve AEAYdx

<—| uyy-ve+eands.

Notice that both v» and Az vanish near Y. Thus, by using (2.7) and Fatou’s
Lemma with (2.8), we get

Sgu”r;dxg—ggumydx<+oo .
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Since u=C*£\2), this implies ue L2 (2). g.e.d.
Now we can get the lower bounds of u satisfying (1.1) and (1.4).

LEMMA 2.2. Fix an arbitrary smooth domain £’ satisfying YER' 9.
Then, for any u satisfying (1.1) and (1.4),

(2.9) u(x)=g(x)—C IT=1 100X

holds for a positive constant C.
Moreover p<(n—m)/(n—m—2) holds if (1.1) has a solution and if m<n-—3.

Proof. By (L1), (14), (2.2), (2.3), (2.4), (2.5) and Lemma 2.1,
(2.10) 0=—A(u—g)ELi (D), u—geLi (D),

loc

and u—geC*(2\2). Thus we get (2.9) by the maximum principle.
Assume that p=(n—m)/(n—m—2) holds. Since 0<g(x)Su(x)+CesL? (),

loc

ge Lt (2) holds with g=(n—m)/(n—m—2). But this contradicts (2.4). There-

loc

fore p<(n—m)/(n—m—2) holds if m<n—3. q.e.d.

Next we consider the upper bounds of u satisfying (1.1) and (1.4). We
recall (2.10). Therefore, by using L'-elliptic regularity theory (see, for example,
Benilan, Brezis and Crandall [2, Appendix, pp. 547-555]), we get the following.

LEMMA 2.3. For any u satisfying (1.1) and (1.4), us Ly

4,.(82) holds for any
g<ll, n/(n—2)) (g€[1, ) if n=2).

LEMMA 2.4. Assume that n=2 and m=1. Then, for any u satisfying (1.1)
and (1.4), usC*() holds.

Proof. We fix an arbitrary ¢>p. By (1.1), (1.4), (2.2) and Lemma 2.3,
—Alu—g)=uPs L¥?(Q). Thus, by using the Sobolev embedding, u—gcW24?(Q)

loc loc

CCYQ). Since g=C%P), usCY) holds. g.e.d.
We introduce the following function A(x) for the case n=3.
(2.11) h(x):Szlx——al"do e (n=3),

where
m—2+(n—m—2)p (if m£n—3)

t={ m—1/2 (if m=n—2)
m—3/2 (if m=n—1).

Then we have the following.
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LEMMA 2.5. Let h(x) be as mn (2.11). Assume that n=3 and that p<(n—m)
/(n—m—2) if m<n—3. Then

h(x)eCY2) Gf m=zn—2, or if m=n—3 and p=(l, 2))
2.12) { A(x)=Cllogd(x)|+D  (f m=n—3 and p=2)
h(x)ZCd(x)?(n-m=-2P Gf m<n—4, or if m=n—3 and p=(2, 3)),
Cd(x)y~=m=22  (if m<n—3)

(2.13) —Ah(x)=3 Cd(x)™%? @f m=n—2)
Cd(x)™V2 @f m=n—1),

and

(2.14) 0 g(x)P<—CAh(x)

hold for x@~\3. Here C and D denote some positive constants.

Proof. We can immediately get (2.12) from (2.11) and Proposition A.2 in
Appendix. Differentiating (2.11), we see

2.15) —Ah(x):r(n——Z——r)Sz_lx——o‘|‘<’”’d0 ez,
where
(n—m—2)p+m—2)n—m—p(n—m—2)) (if msn—3)

(n—2—1)=
1( 5) (if m=n—2, or if m=n—1).

2

n——

2

We recall that m=1 and p>1. Thus 7(n—2—17)>0 holds. And we can easily
get (2.13) from (2.15) and Proposition A.2. Furthermore (2.14) easily follows
from (2.3) and (2.13). q.e.d.

Now we have the following.

LEMMA 2.6. Assume that n=3 and p<n/(n—2). Fix an arbitrary smooth
domain Q' satisfying YEQ'&€Q. Then, for any u satisfying (1.1) and (1.4),

(2.16) wR)Lg(x)+Ch(x)+C  x&Q\%
holds for some positive constant C.

Proof. We fix an arbitrary g=(p, n/(n—2)). Then, by Lemma 2.3, ue
LY. We put

(2.17) u=u,t+g,

where u, satisfies
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—Auy=u? in 2’
(2.18)
Up=1U on 0%’ .

Since 0<ueC*(2\2Y) and u?e L¥(Q’) with ¢(0)=g¢/p>1, (2.18) has a unique
non-negative solution u,&W?99(£2’). By the Sobolev embedding,

U EW2PIOQNCT LR,
where
r(0)=ng(0)/(n—2¢(0)>n/(n—2).
Let u, be the solution of
—Auy=(u,y)? in £’
(2.19) {
Uy=1u on 0f’.

Since u,& L7 (') holds with »(0)>n/(n—2)>p, the same argument as above
implies

U, EWEIQNCT L™ (Q),
where

q)=r0)/p>1,
r(D=ng(1)/(n—29(1))>n/(n—2).
Furthermore, by (2.14), (2.17), (2.18) and (2.19),
—Auy=uP < (uy+g)?

<277 ((uy)? 4 gP)< — CAu,— CAh a.e. in &’
and
Uy—Cuy—Ch=—(C—1Du—Ch<0 on 08’

hold, where C>1 denotes some positive constant. Thus, by the maximum
principle,
0= ug(x) < Couy(x)+Crh(x) a.e. in £’

hold for some positive constant C,>1.
By (2.3) and (2.12), h(x)<const. g(x) holds for x=Q’\Y. Observing this
fact and (2.14), we have

(2.20) Oguo(x)écju](x)-l‘cjh(x) a.e. in Ql

for j=1, where C, denotes some positive constant and a sequence of functions
{u;} ;21 is defined py letting u,,, be a unique solution of

{ —Au,,=(uy)?  in Q&

Uy =u on 0%’
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inductively for 7=0. Furthermore,
u;EWHIN(QNC LT9(R")
hold for =0, where ¢(0)=¢/p and
aN=r(G=0/p,  r(H=nq()/(n—24(}))
for j=1. Since ¢>p, we can easily see
1/¢())—=2/n=2/n(p—1)—2/n(p—1)—1/9)p’
<2/n(p—1)—2/n(p—1)—1/p)p’
=@—(n—(n—=2)p)p*"")/n(p—1)

for 7=0. We recall that p<n/(n—2). Thus, 2¢(k)>n holds for some positive
integer k. By the Sobolev embedding,

(2.21) UrEWIB(QNC CY2).
By (2.17), (2.20) and (2.21), we get (2.16). g.e.d.

Now we are in a position to prove Theorem 2. From (2.3), Lemmas 2.2,
2.4, 2.5 and 2.6, we can immediately get (1.3) for the case m<n—2 or the case
n=2 and m=1. Therefore we only treat the case m=n—1 and n=3. We take
an arbitrary » satisfying (1.1) and (1.4). Then, by (2.2), Lemmas 2.5 and 2.6,

—A(u—g)=uPe Ly

loc

(), u—geC(N2).

Thus u—geCYQ) holds. Since g CA2) by (2.3), ucCY(R2). Now we get the
desired Theorem 2.

3. Existence of a solution
Let u be a solution of (1.1) satisfying (1.3). We take an arbitrary A>0 and
put v=2"1®"by B=2"2/?"Dg_ Then v satisfies
an { —Av=2w?+Bd5) in 9/(Q)
0<veC(2N\2) (p>1, 2>0)

and the same bounds as in (1.3). Therefore we treat (3.1) hereafter. We put
3.2) g(x):SzG(x, 0)B(0)do .

Then 0<geC=(2\%) and g satisfies
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{ —Ag=B0y in 9(Q)
=0 on 082

and the same properties as in (2.3), (2.4) and (2.5).
At first we construct a supersolution of (3.1).

LEMMA 3.1. Let n=3 and h(x) be as in (2.11). Then there exist A>0 and
7 satisfying

(3.3) 0=5(x)=A(g(x)+h(x)eC=(2\3),
3.4) — A= A(B7+P03) in 9'(2).
Furthermore ¥ satisfies the same bounds as in (1.3).

Proof. We only treat the case m<n—4, since the other cases can be
treated similarly. We put

(3.5) 3(x)=A@G(x)+h(x)) x=Q\%,

where A>0 is some constant which will be defined later. Then ¥ satisfies (3.3)
and

(3.6) —AP=A(Bds—Ah) in 9/(2).

By Lemma 2.2, we may assume that p<(n—m)/(n—m—2) holds. Thus, by
(2.3), (2.12), (2.13) and (3.5),

(3.7 vP(x)= AP2P7H(G(x)P+h(x)P)
< AP2P-Y(Cod(x)"Mm-DP 4 Cd(x) - n-m-DDD)
= AP2P-1d(x)"("-m=DP(C, 4 Cd(x)P-m= -2 2)P)
< CyAPd(x)-(»-m-P < B AP(—Ah(x))

hold for xeQ\Y, where C, C,, C, and B denote some positive constant inde-
pendent of A. By (3.6) and (3.7) we have

— A= BA'" "5+ ABds in 9/(Q).
Therefore we get (3.4) if we choose A=A=B"?, qg.e.d.

LEMMA 3.2. Assume that n=2 and m=1. Then there exist A>0 and v
satisfying

—ADZA(HP+Bds)  in D'(Q)
(3.8) {

0<5=CY2).
Proof. We put
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3.9 w(x):SE(Iog (Rlx—e| ™)) %do red\Y.

Here R denotes the diameter of Q2. By Proposition A.3 in Appendix, 0=w(x)
eC%R). Differentiating (3.9), we have

_._Aw(x)=4"lgzl x—a|Ylog (R|x—a|"))*de

for xeQ\3. Since 0<log t<3t"/* hold for any t>1,
O<log(R|x—a| HZ3RY}| x—g|™1/?

hold for any xef2\Y and any ¢=X. Thus, by Proposition A.2 in Appendix,
we have

(3.10) —AwZCi| | x—0]"doz Cod(x) 12 Ci>0

for xeQ\Y. Here C,, C, and C, denote some positive constants.
We put

(3.11) #(x)=AGx)+w(x) rx=O\Y,

where A>0 is some positive constant which will be defined later. Since 0<g
eC'(2), 07 C%(R) and P(x)?< APC (x=4) hold for some positive constant C
independent of A. By (3.10) and (3.11), we have

—Ap=A(Bos—Aw)
= ACs+ABos
2 A"PC,C'pP+ABOy  in 9'(2).
Therefore we get (3.8) if we choose A=A=(C;/C)"?, g.e.d.

Now we are in a position to prove Theorem 1. Let 7 be as in Lemma 3.1
(resp. Lemma 3.2) for the case n=3 (resp. n=2 and m=1). We define a sequence
of functions {v;},., by v,=0 and by letting v,,, be a unique solution of

—A,,,:=A(v,)’+Bd5) in 9'(2)
{ v,,1=0 on %2,
inductively. It is easy to see by induction that
0=v(x)<v, .1(x)<8(x) a.e. in £

for j=0. Thus, vi(x)—v(x) (J—) a.e. in 2, which is a solution of (3.1) and
satisfies

(3.12) AZ(x)=v,(x)<v(x)<0(x) a.e. in Q.
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From (2.3), (3.12), Lemmas 3.1 and 3.2, we can easily get Theorem 1.

4. Appendix

Let 2, X be as in Introduction. At first we consider the following integral.
(A1) I(x)=82|x—at"sd0, xeQN3 (se(0, ).
Then we have the following.

LEMMA A.l. We fix an arbitrary acX. Then there exists a small ¢>0
such that

(A.2) Cid(x)"*<1(x)=Cod(x)™*+D,  (if s#m)
(A.3) —Cy(log d(x))— D\ <1(x)
<—Cylog d(x))+D,  (f s=m)

hold for any x&B (¢; a). Here C,, C,, D, and D, are some positive constants
independent of x, ¢ and B(e; a) denotes the ball of radius € with the center a.

Proof. When m=n—2, the first inequality in (A.3) is proved in Vazquez
and Veron [8, Lemma 2.3, pp. 129-130]. Therefore we use the same notations
as in [8].

We fix a2 and set B,=B(y; a), 2,=3NB, for y>0. And we put

(A4 I(x)=1(x)+15(x),
where

11<x)=S£ |x—0|-*de
n

Iz(x):gz\zle—al‘sdo.

There exists a local diffeomorphism from an open subset GCR"™ onto B,
such that ¥(0)=a and ¥(w)=2, if e=GNR™. And the restriction ¥ of ¥ to
o is a parametrization of ¥,. If y=(5, p)€R"XR" ™, ¥T(5)=¥ (5, 0). Thus
we have

(A5) Lw=| J®|x—T()ds,

where

J(9)=] det <g_g‘£ g_y;'j> 12

As T is a parametrization of X',, we may assume that
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(A.6) ¥ and ¥ are uniformly Lipschitz continuous
(A7) 0<Ci=J3=C,
(A.8) {yeR"; ly|sblcGC{yeR"; |y|=c}.

Here C,, C,, b and ¢ denote some positive constants.
We take >0 such that 0<e<%/2. And we take an arbitrary x<B. and
write x=¥(z, p), ZER™, pR" ™. If ¢ is small enough,

(A.9) [Z]°+101°<(b/2)
holds. By (A.8) and (A.9), we have the following.

(A.10) {yeR™; |5 <b/2}C{yeR™; |5—2|<b}
(A.1D) {JeR™; |y—2|<clC{FER™; | 5| <2}
Summing up (A.5), (A.6), (A.7), (A.10) and (A.11),

(A.12) Coly(x)S1(x)SCul (%)

hold, where C, and C, are some positive constants and

b/2
IGo={"rm et pl
2¢
1= Tt oy
Since |p|<b/2<2¢ hold from (A.8) and (A.9),
lol 2c¢
(A.13) 1w= " ripr-tdr 4 [ pmetar
0 1ol
<{ Clpl™*+D (if s+#m)
" Clog @c/lp)+D  (if s=m),

(A19) 1wz "o ol

_Z_z-s/zlp|-3Siﬂ'rm_1d7___m—12—s/2|p|m—s (se(0, o0))

and
b/2

(A.15) IS(X)ZSI |r"‘"(r2+|p|2)—s/2dr
o

/
T: rmstidy=2""12 log (b/2| p|) (if s=m)
|

=2

hold for some positive constants C and D. By the way, from (A.6),
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(A.16) Csd(x)=1p| =Ced(x)

hold for some positive constants C; and Cs.
By (A.12), (A.13), (A.14), (A.15) and (A.16), we can see that [I,(x) satisfies
the same bounds as in (A.2) and (A.3) for any x&B(e; a). On the other hand,

0<Iy(x)=@2/p)*| 2]
hold for any x=B(¢; a), since 0<e<5/2 and
[x—ad|zlo—a|—|x—alzn—e>n/2

hold for any x&B(e; «) and any ¢=2\J3,. Therefore we get the desired
results. q.e.d.

Now we have the following.

PROPOSITION A.2. Let I(x) be as in (A.1).

i) If s>m,
Cid(x)"*<I(x)< Cod(x)™*  xe€Q\J,
1€LYQ)  for any q&(0, (n—m)/(s—m)),
T LY(D) for any q=[(n—m)/(s—m), o).
i) If s=m,

C,llog d(x)| —Di=I(x)=C,|log d(x)|+D, xe@\Y,
I LYQ) for any g=(0, ).

iii) If s<m, 1€CA(Q2).
Here C,, C,, D, and D, denote some positive constants.

Proof. At first we treat the case s<m. Fix an arbitrary ac2. Then,
by (A.2), 0<I(x)<C holds for any x&B(e; a). Here C is a positive constant
independent of x and ¢. Thus, by using Fatou’s Lemma, I(x)—I(a) as x—a,
Since asd is arbitrary, we get iii).

Next we treat the case s=m. Using the compactness of 2, (A.2) and (A.3)
remain valid in some neighbourhood of Y. Since I(x)eC=(2\23), (A.2) and
(A.3) remain valid in 2.

Notice the following formula in Weyl [11].

(A17) Sd(rKeldx:lB,"""l | Senm4o(e™ ™) as e—0.

Here |B;"~™| denotes the volume of the unit ball in R* ™.
From (A.2), (A.3) and (A.17), we can easily get i) and ii). q.e.d.

Next we consider the following integral.
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(A.18)
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K(x)::gz(log(R[x-al“’))sda xe@\Y (se(0, ),

where R denotes the diameter of Q.
Since |x—0d|<R for s, x 0 and 0<log t<2st'/* for =1, we get

(A.19)

OéK(JC)é(Zs)sRl/zSZl X—a l -12d g

We fix an arbitrary a=2. Then, by (A.1), (A.2) and (A.19),

0=K(x)=Cod(x)" 1?4+ D, <C

hold for any x=B(e; a). Here C denotes some positive constant. Therefore
the same argument as in the proof of Proposition A.2 yields the following.

PROPOSITION A.3. Let K(x) be as in (A.18). Then, K(x)=C%Q) holds for
any s<(0, o),

(1]
£2]
£3]

[8]
[9]
(10]
(11]
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