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Introduction

Fix an odd prime p. Let Apn be the alternating group on pn letters. Denote by Σpn p

a Sylow p-subgroup of Apn and En an elementary abelian p-group of rank n. Then we
have the restriction homomorphisms

Res(£n, Apn) : H*(BAP*) — >

induced by the regular permutation representation En C Σpn>p C Apn of En (see Mύi
[4]). Here and throughout the paper, we assume that the coefficients are taken in the
prime field Z/p. Using modular invariant theory of linear groups, Mύi proved in [3], [4]
that

ImRes(£n, Apn) = £(Mn,0, . . . , Mn,n-i) <S> P(Ln, Qn,ι, . . . , <2n,n-ι).

Here and in what follows, E(., . . . , . ) and P(., . . . , . ) are the exterior and polynomial alge-
bras over Z/p generated by the variables indicated. Ln,Qn)S are the Dickson invariants
of dimensions pn , 2(pn — ps], and Mn>s, &*, 14 are the Mύi invariants of dimensions
pn — 2ps, pk~l , 2pk~~1 respectively (see §1).

Let A be the mod p Steenrod algebra and let rs, & be the Milnor elements of
dimensions 2ps — 1, 2pz — 2 respectively in the dual algebra A* of A. In [7], Milnor
showed that, as an algebra

A =

Then A* has a basis consisting of all monomials τsξ
R = rβl . . . τSkξ[l . . .£^m, with 5 =

), 0 < 5ι < ... < sjb, Λ = (rι,...,rm), r, > 0. Let 5f5'Λ ζA denote the dual
of TS£R with respect to that basis. Then A has a basis consisting all operations Sts>R.
For 5 = 0, Λ = (r), 5^0'(r) is nothing but the Steenrod operation Pr .

Since H*(BG), G - En

 y Σpn)ί? or A pn, is an A-module (see [13 Chap. VI]) and the
restriction homomorphisms are Λ-linear, their images are A-submodules of H*(BEn).

The purpose of the paper is to study the module structures of ImRes(E'n, Σpn ) P ) and
ImRes(E'n) Apn) over the Steenrod algebra A. More precisely, we prove a duality relation
between Sts^R(M^9Q^9

δ) and Sts' ̂  (U^V^) for δ = 0, 1, l(R) = Jb and ̂ (/?) = n.
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Here by the length of a sequence T = (t\,... ,tq) we mean the number i(T) = q. Using
this relation we explicitly compute the action of the Steenrod operations Pr on Uk+i,

Vfc+i, Mn>s and Qn>s.
The analogous results for p — 2 have been announced in [11].
The action of Pr on Vk+ι and QH)S has partially studied by Campbell [1], Madsen

[5], Madsen-Milgram [6], Smith-Switzer [12], Wilkerson [14]. Eventually, this action was
completly determined by Hung-Minh [10] and by Hai-Hung [8] , Hung [9] for the case of
the coefficient ring Z/2.

The paper contains 3 sections. After recalling some needed information on the in-
variant theory, the Steenrod homomorphism d^Pn and the operations Sts*R in Section
1, we prove the duality theorem and its corollaries in Section 2. Finally Section 3 is an
application of the duality theorem to determine the action of the Steenrod operations
on the Dickson and Mui invariants.

Acknowledgement. The author expresses his warmest thanks to Professor
Huynh Mui for generous help and inspiring guidance. He also thanks Professor Nguyen
H.V. Hung for helpful suggestions which lead him to this paper.

§1. Preliminaries

As is well-known H*(BEn) = E(x\,... ,xn) <g) P(yι,...,yn) where dimx; = 1,
yi = βχi with β the Bockstein homomorphism. Following Dickson [2] and Mui [3], we
define

xk

n efc τ> efc

</ι ••• %
for.every sequence of nonnegative integers ( β i , . . . , ejb), 1 < fc < n. We set

Mfc)5 = [1; 0 , . . . , 5 , . . . , k — 1], 0 < s < k < n.

Then Ln, <3n,s, AΓn,β, t/jb, Vt are defined by

In = ij, h = (p- l)/2, Qn)5 = Ln}S/Ln, 0 < « < n,

Mn>5 = Afn,,^"1-,^ = Mjb,jb-ιljlί, Vi = Lk/Lk-i, l<k<n.

Note that Qn>0 = Z^, Qnjn — 1 for any n > 0.
Let X be a topological space. Then we have the Steenrod power map

which sends u to 1 0 up at the cochain level (see [13; Chap. VII]). We also have the
diagonal homomorphism

x
Apn
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induced by the diagonal map of X, the inclusion En C Apn and the Kΐinneth formula.
<f* Pn has the following fundamental properties.

PROPOSITION 1.1 (Mui [3], [4]). (i) </*Pn ι$ natural monomorphism preserving
cup product up to a sign, more precisely

fnPn(uv) = (-l)nh*r<£PnwrnPnv,

where q = dimiί,r = dimv,h = (p — l)/2.

(ϋ) <rnpn=<rn_,.pn-.(f,ps , o < * < n .
(iii) For H*(El) = E(x) <g> P(y), we have

n-l

d*nPnx = (-fc!)ntfn+ι = (h\)n(Lnx

fnPny=Vn+1 = (-l)n

5=0

ί/n+1 = 17n+ι(xι,.. .,«n,s,i/ι, . ,ί/n,y), Kι+ι = Fn+ι(t/ι, . . . ,yn,ί/)

The following is a description of d*n Pn in terms of modular invariants and cohomology
operations.

THEOREM 1.2 (Mui [4; 1.3]). Let z e H*(X),μ(q) = (A!)^-!)*^-1)/2. WΓe then
have

d*nPnz = μ(q)»

^Λe 5i/m rwns over all (SyR) with S — (s\, . . . ,Sk), 0 < si < . . . < SK, R =

r<

§2. The duality theorem

Let mm > ί, ίm, ςfm | ί, m = n or fc, (resp. tίjb+1, VA-+I) be the dual of Afm >,, Lm, Qm>s

(resp. J7jb+ι,Vib+ι) in

(resp. E(Uk+ι) ® P(I4+ι)) with respect to the basis consisting of all monomials

with 5 = (s ι , . . . ,SA.) ,0 < «ι < ... < sjb, Jϊ = (Λ0, . . . , Am-ι), Λ< > 0, (resp. C/|+1V^+1;

e = 0, 1, j > 0). Let T(ίmι gm,i, . . , ςfm>m-ι) (resp.^^+i)) be the divided polyno-
mial algebra with divided power 7,- , ΐ > 0 generated by £m , gm,i , . . . , ςfm,m-ι (resp. υjb
We set

ϊϊl^ίff = ^m,βι •^m.βfcTΛo^mjTΛiίίm,!) - 7/ιm_ι (ίm.m-l )•

For # > 0 and R = (rι , . . . , rm), set

R*q = (q- 2(n -f . . . + rm), n, . . . , rm_ι).
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Let V be a vector space over Z/p and V* its dual. Denote by

the dual pairing.
The main result of the section is

THEOREM 2.1. Suppose given e, δ = 0, 1, j > 0, (S, Λ), and (S", R1} with l(R) = jfe,

*(#) - n, *(S) - t < k, ί(S') = t'<n. Set σ = r(5, Λ)+r(S', Rf)+8+δ+(t+[-2p ])t'+
nhkδ, with —δ<s<n — δ. Then we have

[ 0 , otherwise.

Here, by convention, Mn,-ι = ^n-

Proof. We prove the theorem for ί = 1. For (5 = 0, it is similarly proved. We set

It is easy to verify that

(a) U = (-l)nfc

Computing directly from Proposition 1.1 gives

(b) U = (-ft!)
n-1

5=-l

n-1

Here by convention, yllp = x, and

We observe that dimMn)S = pn + [—2p5]. According to Theorem 1.2 we have

(c) fkPkMΛt.=μ(ir + [-W])kΣ(
S,R

A simple computation shows that

(A\ ( h\\-(s+l)l(\I U . I ^ — II.ί

Combining (b), (c) and (d) we get

U= (2(-l)n(*Λ+1)+rί5'Λ)+ +1M5Q
Λ^+ι-vι-'5

5=-l S,R

From this, we see that it implies
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(e) (-ir(5'R+n(ω+1)+s+1{m5gfi%Λ_e_23_( ® m5'g>;it_t/ ® u'k+l7j(vk+1), U)

( (-I)"'{m5,fe'% ι,StS'R(Mn,s), e + 2j = -[-2p>],
- J pk-,'

^ 0 , otherwise.

On the other hand, from Proposition 1.1 and Theorem 1.2 we have

U' = (-h\Γnd*nPnUk+l(xly...,xk,x,yι,...,yk,y)

S',R'

From this and the fact that (-hl)-1μ(pk) = (-1)Λ* , we get

(f) (-l)r(5''Λ/)

Comparing (e) with (f) and using (a), we obtain the theorem for δ = 1.

Since the basis {MS'Q
H'} ofE(Mn)0, . . . , Mntn-ι)®P(Ln,Qntι, - . ,Qn,n-ι) is dual

to the basis {ms"ί#'} of E(mnj0, . . . ,mn,n-ι) ®Γ(/n, gn,ι, - ,ίn,n-ι) Hence, we easily
obtain from Theorem 2.1

COROLLARY 2.2. Set

Cs jt - '

PFe Λαr e

5/,JR
/

; δy convention, jι/p(vk+ι) =

By an analogous argument we obtain

COROLLARY- 2.3. SetCtίSίR=(fhs'qR' 2_δ k_i/JSts>R(M^sQ
1

n-s

δ)). We have
2_δ k

Here, by convention, Vk^ ~

§3. Applications

Fix a nonnegative integer r. Let α; = a*(r) denote the z-th coefficient in p-adic
expansion of r. That means

with 0 < ί < p, ί > 0. Set αέ = 0 for i < 0.
The aim of the section is to prove the following four theorems:
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THEOREM 3.1. Set c =

have

P

—--——- tt - on - α?t _ι, 0 < i < k.

\ c(hUk+1
t/i.J.1 = < \

o,

lb-1 fc-1

*t ,, 2r<p*, ί, >0, i < f c ,

otherwise.

THEOREM 3.2. Se* c = (*-!)! α,)(α, -
^^^

αf.ι), -1 < i < 8, ts = (Λ-α f)(« + l"« -ι); *• = < ++ϊ+ 1( t tt '- t t«'-ι)> > s, with
— l<s<n—l. We have

n-l

PrMn<s =

0, otherwise.

The following two theorems were first proved in [10] by another method.

THEOREM 3.3 (Hung-Minh [10]).

jfe-l

o,

THEOREM 3.4 (Hung-Minh [10]). Se* c =
v to L Jy

otherwise.

s φ i < n, as + 1 > α,-ι,

u
To prove these theorems we need

NOTATION 3.5. Let R = (r i , . . . , rn) be a sequence of arbitrary integers and 6 > 0.

Denote by \R\ = X^LiίP''-1)1*^ and ̂  the coefficient of y[l ...yr

n* in (l+j/ι + .. .-hyn)
δ

That means,

( 6!

(6-rι-...-rn)!π!...rn !

0,

, r< > 0, ri + ... + rn < 6,

otherwise.

The proofs of Theorems 3.1 and 3.3 are based on the duality theorem and the
following
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LEMMA 3.6. Let b be a nonnegative integer and ε = 0,1 . We then have

Sts>R(xεyb) = <

\ Λ y
0, otherwise.

Here x and y are the generators of H*(BE1) = E(x) ® P(y),

Proof. A direct computation using Proposition 1.1 shows that

m-l

u=0

ίTl — 1

+c Σ Σ
u=0Λ=( r i j...,r

The lemma now follows from Theorem 1.2.

Proof of Theorem 3. 1. Since dim Uk+ι = p*, it is clear that PΓUk+ι -Ofor2r >p f c.
Suppose r < (pk — l)/2. Applying Corollary 2.3 with δ = n — 1 and using Lemma 3.6
we obtain

PrUk+1 = Σ (-l)

Λ=(rι,...,r fc)

w=0 R

Set ή = oίi - α<_ι, i < *, ΓΛ = A - α fc, Λo = ( f ι , . . . , F Λ ) , Λ« = (rι,...,r t t - 1, . . . , r f c ) ,
1 < w < Ar. Computing directly from Lemma 3.6 with ε = 0, 6 = A or ε = 1, b = h — I
gives

0, otherwise.

(h-lY fu *

ro. .r* ' U

0, otherwise.

A simple computation shows that

r(0, Λo) H- r = r((tι), Ru) -h r + 1 = hk (mod 2).

Hence, the theorem is proved.
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Proof of Theorem 3.3. Since dim Vk+ 1 = 2p*, we have only to prove the theorem
for r < pk . Note that Q\^ = 1. Hence

*'•*<)„ = I1' S = ,* = (0,..,0),
^ 0, otherwise.

So, (q(rγ k,Sts>RQιιl) - 0 for any 5,Λ. Remember that Qι|0 = jf1. So, applying

Corollary 2.3 with δ = 0, n = 1 and using Lemma 3.6 with ε = 0, 6 = p — 1, we get

(a) PrVk+1 =
R

From Lemma 3.6, we see that it implies

0, otherwise.

Suppose that R = (a\ — αo, . . . , αjb-i — αfc-2,p — 1 — <*fc-ι) Then we can easily observe
that

(c) r(0,Λ) + r =

Λ?-1A (-l^-^ftjb-i!

V Λ / Πo<i<*(α«' -<*<-!)'o<i<*

, «1 — Λ O , - • - ,«*-! - QfJb-2)

Theorem 3.3 now follows from (a), (b) and (c).

Following Corollary 2.2, to determine Pr Mn>5 and PΓQn)$ we need to compute the
action of Sts>R on {72 and V2.

PROPOSITION 3.7. Suppose given R = (n,...,rn), αnrf 0 < u < n. Set rU)S =
rs+ι + . . . + rn, for s > u, and rU)S = rs+ι + . . . + rn - h, for s < u. Then we have

'*'' 1'
^^S \ 5=o

S*5'βί/2 = <
, 5- (u), ι/ < n,

5 = 0

0, otherwise.

Here} |Λ| αnί/ ί^J are defined in Notation 3.5.

The proposition will be proved by using Theorem 1.2 and the following

LEMMA 3.8. Let u, v be nonnegative integers with u < v. We have

[u,v] and [l]v] are defined in §1.

The proof is straightforward.
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Proof of Proposition 3.7. Recall that Λ/2,1 = x\yz — #22/1- From Proposition 1.1 we
directly obtain

n

Since LI = y\ and 2(h — 1) = p — 3, using Proposition 1.1 (iii) with y = yι and Notation
3.5 we get

We have ί/2 = M2)ιZ>ι~1, dimί/2 = P and μ(p) — (— 1)ΛΛ!. So, it implies from the above
equalities and Proposition 1.1 that

u=o β
Then by Theorem 1.2 we have

[ti v], 5 = (ti), u < n,

0, otherwise.

Now the proposition follows from Lemma 3.8.

Proof of Theorem 3.2. For simplicity, we assume that 0 < s < n. Applying Corol-
lary 2.2 with δ — k = 1 and using Proposition 3.7 we get

(a) P'Mn,s= £ (-!)'«'
0<ιt<n

Here C(u^R - (ί(r);n_2pβ ® 7,

If 2r > pn - 2ps - 1 then PΓMn,s = 0 since dimMn>5 = pn - 2ps. Suppose 2r <
pn __ 2pS _ i ge|. ^_ Λί _ Q f i_1 ) for 0 < i ^ s, n, fθ = αβ + 1 — α 5_ι, rn = h — αn_ι,

.Ro = (r i , . . . , rn), ΛU = (r i , . . . , ru — 1, . . . , fn), 1 < u < n. From Proposition 3.7 we
have

j

= \

ctu,

0, otherwise.

It is easy to verify that

r((tι), Ru) + r + 5 -h 1 = nh (mod 2).

Theorem 3.2 now is proved by combining the above equalities.

Now we return to the proof of Theorem 3.4. It is proved by the same argument as
given in the proof of Theorem 3.2. We only compute StS)RV2.
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PROPOSITION 3.9. For R = (r i , . . . , rn), r0 = p - n. - ... - rn, we have

rs - p, Ti = 0, i =

- . . . + *•„),
V\«\+P-P- yp t 0 < r < < p , 0 < i < n ,

0, otherwise.

Proof. Recall that V^ = y% — 2/22/1 ~ Applying Proposition 1.1 and Lemma 3.6
with y = yι or y = 2/2 we get

u=0

= (-1)" έ(-
5 = 0

-(-i)
u=0 R

Here the last sum runs over all R = (TΊ, . . . , rn) with 0 < rz < p, 0 < i < n,
RU = ( Γ I , . . . , Γ M - l , . . . ,r n ), 1 < tί < n.

Let v be the greatest index such that rυ > 0. A simple computation shows

(b) ^'-'ΊfΓ = -y\R^-p"-p*M + y[R*p-p"y£.
Combining (a), (b), Lemma 3.8 and the fact that Σ"=0 f^1 ) = 0 we obtain

5=0

(-1)r(ί'Λ)<3Λ-Σ E (p;1

R 5=OU = 5 + 1 \ /lw

The proposition now follows from this equality and Theorem 1.2.
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