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Abstract

We survey some recent research on the geometry of Lipman Bers' universal Teichmuller

space T(l), i.e., the space of quasisymmetric homeomorphisms of the circle modulo Mδbius

moves, and its applications in string theory.

1. Geometric quantization

Bosonic string theory [9, 13, 26] is a proposal of unified field theory where the elemen-
tary particles called bosons are supposed to appear as 1-dimensional extended objects
in the Planck scale 10~35 m; hence, topologically they look like either R (open string) or
Sl (closed string). We shall work with closed strings. The string hypothesis introduces
a new symmetry group into physics, the group Homeo(51) of homeomorphisms of the
circle, as this is the internal symmetry group of a closed string. Non-perturbative bosonic
string theory would be based, ideally at least, on the group Homeo(51). We would like to
geometrize this group, but as it seems to be intractable, in practice, we need to content
ourselves with some subgroup.

There is a standard procedure in physics called geometric quantization [36] to pass
from a classical system to a quantum system. In the classical system, the observables
are functions / in the phase space which is a smooth manifold M2n endowed with a
symplectic form ω in the corresponding quantum system the observables need to be
converted into operators Tf acting in some Hubert space in such a way that Poisson
brackets of functions are converted into Lie brackets of operators

(i.i) τ{h<h} = [τh,τf2].
The standard way to achieve this is to produce a Hermitian line bundle £ over M with
a Hermitian connection V whose curvature equals ω. Then the sought-for operators will
be given by

(1.2) ϊ/ = -iVjr, + /

where Xf is the Hamiltonian vector field corresponding to the observable / by the for-
mula Xf = —ω~~l(df,.). The operators Tf act in the Hubert space of square-integrable
sections of C with respect to the canonical volume form -̂ of (M,u;). In fact, up to
this point, we have only achieved prequantization while the difficult Dirac problem con-
cerning the irreducibility of the representation f \-+Tj remains to be settled. This final
step in the geometric quantization programme can often be achieved by introducing a
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Kahler structure on the phase space and restricting to the holomorphic square-integrable
sections.

Geometric quantization of string theory involves many unsolved problems which we
shall discuss in due course later on. To begin with, we could try to produce a symplectic
structure on Homeo(51), or, more modestly, on some subgroup, e.g., the group DifF(51) of
C°° diffeomorphisms of the circle which should be more amenable to calculus procedures.
The Lie algebra of the infinite-dimensional Lie group Όif[(Sl) is the algebra Vect(51)
of smooth vector fields on the circle. These have Fourier modes labeled by the integers
Z, so that Vect(S'1) formally behaves like an orfrf-dimensional space; hence, certainly
Homeo(51) or DifT(51) as such cannot carry a symplectic structure. Heuristically, an odd
number of degrees of freedom ought to be removed before we can expect a symplectic
phase space.

The simplest idea is to remove the Fourier zero mode by quotienting away the group
of rotations Rot(S'1), or the circle itself. The resulting moduli space is denoted by

(1.3) N = Όif[(S1)/Rot(Sl).

Bowick and Rajeev [5] discovered that the space N carries, indeed, the structure of an
infinite-dimensional Kahler manifold. Implicitly, this phenomenon may be understood as
an infinite- dimensional analogue of the finite-dimensional standard argument of Kirillov,
Kostant, and Souriau which produces a symplectic structure in the coadjoint orbit space
of a Lie group acting on the dual of its Lie algebra.

Moreover, there exists another obvious "even-dimensional" quotient space, namely

(1.4) M = Όif[(Sl)/Mόb(Sl).

Then N is a, holomorphic disc bundle over M. The Kirillov-Kostant-Souriau argument
applies to M as well, and, indeed, Witten [35] has proved that the dual of the Lie algebra
of Ώiff(X) admits no other coadjoint actions by non-trivial subgroups of Όif[(X). Hence,
in principle, we can choose either N or M as the underlying phase space of our geometric
quantization scheme. We shall see that M is far more interesting.

2. Universal Teichmϋller space T(l)

Between Diff(51) and Borneo^1) there lies the group QSίS1) of quαsisymmetnc
(qs) homeomorphisrns. A homeomorphism / is qs if it is Ar-qs for some K. The A'-qs
condition is most conveniently given in terms of the cross ratio

We need to require that

(2-2)

whenever (21,22,23,24) — V^ Equivalently, quasisymmetric maps can be described as
arising as boundary values of quasiconformal maps to be discussed later.

The fundamental sequence of subgroup inclusions

(2.3) DiίftS1) < QS(S1) <

can be quotiented into

(2.4) M = ΌίS(Sl)/MSb(Sl) C QS(51)/Mόb(51) C
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Here we recognize a classical object; namely,

(2.5) Γ(l) := QS(Sl)/M3b(Sl)

is Bers' universal Teichmuller space. Equivalently, we may think of T(l) as the space of
quasisymmetric homeomorphisms of the circle, say, which have three prescribed values.
We stipulate the three points ±1 and —i to be fixed. The infinite-dimensional space T(l)
is universal in the sense that it contains as subspaces all the other Teichmύller spaces
whose definition we briefly recall next [2, 16, 18, 20, 33].

Let G be a Fuchsian group, i.e., a discrete subgroup of Mόb(X). The Teichmuller
space T(G) is defined by

(2.6) T(G) = {[/] G Γ(l) I / o 7 o /-1 G M6b(X) for all 7 G G}.

These spaces are partially ordered: G < G1 clearly implies T(G') C Γ(G); in particular,
all the Teichmuller spaces T(G) are contained in the universal one. (The "1" in the
notation T(l) refers to the trivial group.) Moreover, the inclusion T(G) C Γ(l) turns
out to be a holomorphic embedding.

Another approach to Teichmuller theory is from the point of view of uniformization.
The Teichmϋller space T(Σ) of a Riemann surface Σ is defined as the parametrization
space of its complex structures up to isotopy. A complex structure may be given as a
smooth section / of the endomorphism bundle of the tangent bundle of the surface Σ
which is an anti-in volution, i.e., J2 — —id. Denote the space of all complex structures J
by A. Of course, Diff(Σ) acts on A via the pull-back operation. In the case of a compact
orientable surface of genus > 1, the Teichmuller space T(Σ) simply equals the moduli
space ^4/Diίfo(Σ) where Diffo(Σ) is the identity component of Diff(Σ). This simple global
analytic definition is powerfully exploited in the treatise [33].

In the above set-up, we can easily define a Kahler structure on T(Σ) = .4/Diflo(Σ).
By differentiating the relation J2 = —id, we see that the tangent vectors J of T(Σ) at
J anticommute with J under composition of endomorphisms. Hence, the formula

(2.7) ω ( Λ , Λ ) = / t r ( J o Λ o Λ )
JΣ

defines a 2-form on A. The integration is with respect to the hyperbolic metric uniquely
corresponding to J. This correspondence is natural with respect to the action of Diff(Σ); a
fortiori, with respect to the action of the subgroup Diffo(Σ), so it passes to the quotient.
Moreover, it is straightforward to check that the resulting 2-form on the Teichmuller
space T(Σ) is non-degenerate and closed; hence, a Kahler form. This Kahler form (up
to a constant multiple) is the classical Weil-Petersson Kahler 2-form.

If the surface Σ is uniformized by a Fuchsian group G, Σ = X/Gy then the two
definitions coincide (Tukia [34]), T(Σ) = T(G).

We shall briefly indicate how T(Σ) and T(G) are related to each other. For this
purpose, we need to discuss the classical BeUrami equation. A homeomorphism w :
D —> w(D) between domains in C is quasiconformal (qc) [1, 19] if and only if w has
locally integrable generalized derivatives satisfying almost everywhere on D the Beltrami
equation

(2.8) dw(z) = μ(z] dw(z)

for some measurable complex function μ on D called the BeUrami differential with

(2.9) esssupz€D \μ(z)\ =|| μ ||00< 1.
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Denote the space of Beltrami differentials LQQ(D)\\ it is the open unit ball in the
complex Banach space L°°(D) of essentially bounded functions in D. The existence and
uniqueness, up to three prescribed values, of solutions for the equation (2.8) with an
arbitrary Beltrami differential is guaranteed by a fundamental theorem due to Gauss,
Morrey, Bojarski, and Ahlfors and Bers. We shall next discuss two pertinent classes of
solutions corresponding to specially chosen Beltrami differentials μ G L°°(C)ι.

The real-analytic wμ-theory: By applying the fundamental existence and unique-
ness theorem to the Beltrami differential which is μ on Δ and is extended to Δ* by
reflection (μ(l/~z) = μ(z)z2/~z2 for z G Δ), one obtains the quasiconformal homeomor-
phism Wμ of C which is μ-conformal in Δ, fixes ±1 and — 2, and keeps Δ and Δ* (=
exterior of Δ) both invariant.

The complex-analytic u^-theory: By applying the existence and uniqueness
theorem to the Beltrami differential which is μ on Δ and zero on Δ*, one obtains the
quasiconformal homeomorphism wμ on C, fixing 0,1, oo, which is μ-conformal on Δ and
conformal on Δ*.

It is a fact that wμ depends only real-analytic ally on μ, whereas wμ depends complex-
analytically on μ.

A Beltrami differential μ is G-equivariant, if it is compatible with the action of G
on Δ; more precisely, this leads to the requirement

(2.10) μ(Ίz)ϊ'(z)/Ί'(z) = μ(z}

which should hold almost everywhere on Δ for every 7 £ G. Let us denote the space
of G-compatible Beltrami differentials L°°(G). An alternative description of T(G) can
now be given as T(G) = L°°(G)/ ~ where μ ~ v if and only if wμ = wv on <9Δ — S1,
which happens if and only if wμ = wv on Δ* U S1. Now, if μ is G-invariant, then wμ

conjugates G to another Fuchsian group Gμ = wμGw~l. The equivalence class of μ in
T(G) represents the Riemann surface Xμ — Δ/Gμ.

In the reverse direction, one can use wμ to conjugate G to a quasi-Fuchsian group
Gμ = wμG(wμ)~l so that Gμ acts discontinuously on the quasidisc Δμ = wμ(Δ) and
its exterior Δ*μ = ^^(Δ*). Now, the Riemann surface Xμ is represented by Δμ/Gμ

(whereas Δ*μ/Gμ is the fixed Riemann surface Δ*/G, since wμ is conformal on Δ*).

3. Models of T(l)

We can think about T(l) in several ways. The following three classical models of
T(l) are the best-known:

(a) the real-analytic model consisting of all Mδbius-normalized quasisymmetric
homeomorphisms of the unit circle S1

(a9) the geometric model consisting of all Mόbius-normalized quasicircles, i.e., all im-
ages of the standard circle under a global quasiconformal map that fixes the points
±1 and — i\

(b) the complex-analytic model comprising all functions which fix 0,1, oo, which are
univalent on the exterior of the unit disc Δ* and which allow quasiconformal
extension to the whole Riemann sphere.

As before, we may also define the universal Teichmϋller space as a quotient of Bel-
trami differentials, T(l) = L°°(Δ)ι/ ~ where μ ~ v if and only if wμ = wμ on <9Δ = 51,
or equivalently, if and only if wμ and wv coincide on Δ* U 51.
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We let Φ : jL°°(Δ)ι —> T(l) denote the quotient projection. T(l) inherits its canon-
ical structure as a complex Banach manifold from the complex structure of L°°(Δ)ι;
indeed, Φ becomes a holomorphic submersion.

It is now clear that to μ G ̂ (Δ)! we can associate the quasisymmetric homeomor-
phism fμ = wμ |sι as representing the Teichmuller point [μ] in the real-analytic model
(a) of T(l). Indeed Γ(l)(α) is the homogeneous space QS(51)/Mόb(51) or the space of
quasisymmetric homeomorphisms of S1 fixing ±1 and i.

The geometric model (a') of Γ(l) is merely a reformulation of (a): we can think of
the points of Γ(l) as the images of S1 under wμ. There is a plethora of characterizations
of the quasidiscs and their boundaries, the quasicircles [11]. Perhaps the most elegant is
Ahlfors' condition which identifies quasicircles among those Jordan curves of the complex
plane which pass through oo (this can be achieved by a Mobius transformation): Such
a Jordan curve C is a quasicircle if and only if there is a constant M such that for any
three distinct points α,6,c on C with 6 between α and c

(3.1) |6-α|^M|c-α|.

A generic quasidisc turns out to be a fractal object.
Alternatively, [μ] is represented by the univalent function fμ = wμ |Δ* on Δ*, in

the complex-analytic model (b) of T(l). A more natural choice of the univalent function
representing [μ] is to use a different normalization for the solution wμ (since we have the
freedom to post-compose by a Mobius transformation). In fact, let Wμ = Mμ owμ where
Mμ is the unique Mobius transformation so that the univalent function (representing
[μ]) Fμ = Wμ |Δ* has the properties:

(i) Fμ has a simple pole of residue 1 at oo

(ii) (Fμ(z) - z) -> 0 as z -» oo.
Thus, the expansion of Fμ in Δ* is of the form:

(3.2)
A 6~ 6~

Let us note that the original (0,1, oo fixing) normalization gives an expansion of the

form:

z z2 z3

and the Mobius transformation Mμ must be Mμ(w) = w/a — βι/a. Since (α,/?ι,/?2,..)
depend holomorphically on μ, we see that (61,62,63,...) also depend holomorphically on
μ. Thus, our complex-analytic version of T(l) is:

T(l)(j) = { Univalent functions in Δ* with power series of the form (3.2),

allowing quasiconformal extension to the whole plane}.

In the general theory of univalent functions, the functions of the type (3.2) are known
as the class Σ [10]. It is not difficult to compute that the area of the corresponding
quasidisc is

(3.4) Λ = π(l-f>|6n|
2).

n=l

Of course, this is non-negative so that we deduce the classical Area Theorem [10, 18, 20]
about the coefficients bn in the class Σ:

(3.5)
n=l
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We may think of the coefficients bn as coordinates on T(l). A refinement of the Area
Theorem shows that bn = O(ri~c) with c = 0.509... [6], but the coefficients in the class
Σ still retain many mysteries. It is known that \bι\ ̂  1 , |62| ^ |, and |63| ^ | -f e~6.
These bounds are sharp but there is no "Bieberbach conjecture" about the general sharp
upper bound for |6n|. Nonetheless, we can think of T(l) as a space of certain sequences

4. The physicist's wish-list

In this chapter, we explain why the universal property of T(l) makes it an attractive
object of study from the point of view of non-perturbaiive bosonic string theory whose
precise geometric formulation, as we should stress, is unknown. First we shall review in
simple non-technical terms the basic ideas of the prevailing ptrturbative bosonic string
theory for the benefit of the reader who is not familiar with the physics literature.

The central issue in any quantum field theory is to evaluate the partition function Z
which gives the quantum-mechanical probability amplitudes of the system under study.
Feynman introduced in 1948 a quantization scheme where Z is computed as a path inte-
gral over the space of paths representing the possible worldlines of elementary particles.
The possible spacetime trajectories of a propagating pointlike elementary particle are
1-dimensional paths, whereas a propagating bosonic string, or a 1-dimensional extended
object, sweeps out 2-dimensional world-surfaces. A natural generalization of the Feynman
path integral then is an integral over all possible world-sheets. As a first approximation,
one can limit to deal with compact orientable surfaces which are topologically classi-
fied by the genus 7 = 0, 1,2, . . . The emergence of a handle in the propagation pattern
corresponds to the breaking apart of two strings; correspondingly, the annihilation of
two strings closes a handle. In reality, one should also take into account the degenerate
situations where, e.g., a handle shrinks to a node.

While the topological classification of compact orientable surfaces is easily under-
stood, their geometrical diversity is more intricate. The possible geometries are given
as the infinite-dimensional cone M of all Riemannian metrics g of the underlying topo-
logical surface. This space, however, is physically redundant. The physically meaningful
space in each genus 7 is the parametrization space of conformal structures, or, the Rie-
mann moduli space Λ47. It is well-known that Mo is a point, MI = H/PSL(2;Z), while
MΊ is an orbifold of formal dimension 67 — 6. The Riemann moduli space of a surface
Σ admits as its covering space the Teichmύller space T(Σ), the parametrization space
of conformal structures up to isotopy. Conformal structures are the relevant intrinsic
geometries of the surface Σ, so one should develop an integration scheme over the mod-
uli. Some explicit results are known, e.g., the volumes of some Teichmϋller spaces in the
Weil-Petersson metric (Penner [28]).

We think of Σ propagating in a fixed background space that, as a first approximation,
can be taken to be the flat Minkowski space of some dimension Ό. We also need to take
into account the extrinsic geometries of the string; in other words, the various ways in
which a string may be embedded into the ambient space-time. An extrinsic metric is
induced on the surface M as a pull-back of the flat background metric via an embedding
s. Thus we should also integrate over all embeddings s : M — » M^"1'1.

Consequently, we should be looking for the partition function in the form of a per-
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turbative series

(4.1) * = Σ / e'S

7=0 JMV

Here 5 = S(g, s) is the Polyakov energy, i.e., the Dirichlet energy of an arbitrary embed-
ding of the propagating string into the background spacetime. The integration in (4.1) is
with respect to the so-called Polyakov measure over the moduli space Λ47 of each genus
7 and also over the infinite-dimensional space of all embeddings s. Polyakov discovered in
1981 that this measure exhibits conformal anomaly cancellation in the critical spacetime
dimension D = 26.

Perturbative bosonic string theory suffers from several drawbacks. First of all, the
summation over the genus in (4.1) is well-known to be infrared divergent [14]. Secondly,
the need to prescribe the topology and geometry of the background spacetime is philo-
sophically unsatisfactory. The spacetime should rather arise as an excitation. So far,
merely the critical dimension D = 26 arises as a constraint. Thirdly, the critical dimen-
sion is outlandish, be it lowered to the slightly more palatable D = 10 in superstring
theory [13] which incorporates fermions as well.

Perhaps these drawbacks indicate that we are just scratching the surface of some
underlying intrinsic geometric principle that would imply more stringent conditions on
the global properties of spacetime. The proper geometric environment of bosonic string
theory should be some kind of "universal Riemann moduli space" which would comprise
the moduli of surfaces with an arbitrary number of handles, cusps, boundary components,
and nodes.

The only classically known universal moduli space in mathematics literature is Bers'
universal Teichmtiller space T(l), although no viable notion of universal Riemann moduli
space corresponds to it. Indeed, T(l) is bound to be a highly relevant object, as it plays
a role in both of the existing approaches to the quantization of bosonic strings:

(i) From the point of view of perturbative bosonic string theory, T(l) contains as
subspaces all the finite-dimensional Teichmύller spaces corresponding to various
perturbative orders,

(ii) From the point of view of non-perturbative bosonic string theory, T(l) is contained
in the space Homeo(51)/Mόb(S'1) which, in principle, should be the ultimate arena
of the geometric quantization of bosonic string theory.

Perhaps the perturbative series (4.1) ought to be replaced by a single integral over
the universal Teichmuller space

(4.2) Z=ί e-s.
Jτ(i)

Some preliminary speculations about how the measure in T(l) should look like in terms
of the coefficients bn appear in [15], but no actual progress has been recorded.

The physicists' wish-list for mathematicians to achieve the geometric quantization
of T(l) includes (at least) the following items [29]:

(1) Universal geometry: T(l) should be a Kahler manifold whose Kahler form ω pulls
back to the Weil-Petersson form on each classical Teichmύller space T(G).

(2) Universal topology: There should be an action by a "universal mapping class
group" on T(l) which pulls back to each T(G).



QUASISYMMETRIC MAPS AND STRING THEORY 483

(3) Universal line bundle: There should exist a Hermitian line bundle £ over T(l)
with a connection whose curvature equals ω.

(4) Universal measure: T(ΐ) should carry a "Haar measure" with respect to which
the classical locus, or the union of the images of the embeddings of all the T(G),
is dense and of measure zero in T(l).

(5) Universal action principle: There should exist a scalar- valued function S ("univer-
sal Polyakov energy" ) whose gradient flow should have a superset of the classical
locus as attracting fixed points. This function should coincide with a Kahler po-
tential of the universal Weil-Petersson Kahler form.

We shall review the above-listed items emphasizing the established aspects of the
theory. The current state of art seems to be that the item (1) is well-established for the
quotient space Diff(51)/Mόb(S'1) while some evidence of its validity has been advanced
in a suitable subspace of T(l) (Nag and Sullivan [24]) and, from a different point of view,
even in Homeo^/Mόb^1) (Penner [29]).

The solution to the item (2) has been claimed by Penner [29], but the discussion of
his graph theoretic methods would bring us too far. Ratiu and Todorov [31] suggested
that Quillen's determinant line bundle construction [30] applied to a family of Cauchy-
Riemann operators parametrized by M could solve the item (3). However, one sees
with difficulty how Quillen's construction could be extended to T(l). Possibly, ordinary
calculus ought to be replaced by "quantum calculus" in the sense of Alain Connes'
non-commutative geometry [7, 8].

The item (4) has been preliminarily discussed by Nag and Sullivan [24]. Some time
ago, we suggested in [27] that the quasidisc area functional A on T(l) might serve as a
heuristic candidate for the universal action principle required in item (5), because the
quadratic expression in (3.4) can be interpreted as the Dirichlet energy of the harmonic
extension in Δ defined by the boundary values of the univalent function Fμ in (3.2).
However, we have not been able to compare the functional A with the Polyakov energy
of each genus.

5. The almost complex structure of T(l)

The Lie algebra of the Lie group Diff(51) is the Lie algebra Vect(51) of smooth
vector fields on S1. The complexification Vectc(51) of Vect(51) is generated by the
Fourier modes

(5.1) i. -.""£ = *•«£, » € Z

with z = elύ . To Vect^S1) there does not correspond any global Lie group, yet, Neretin
has constructed a complex semigroup whose tangent cone is a convex cone in Vect<c(51).
The Lie bracket of Vect^S1) is given by the Witt law

(5.2) [Lm,Ln] = i(n-m)Lm+n.

A tangent vector to the orbit space M = Diff(51)/Mόb(51) at its origin is a linear
combination

(5.3) ΰ=

where ΰ = u(^)~^ *s the corresponding smooth real vector field on the circle and the
ύm are the Fourier coefficients of u(ΰ). The Lie algebra corresponding to the three
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missing modes t?_ 1,^0,^1, is s/(2;M), of course. We may conjugate the series (5.3) by
the conjugation operator J to

(5.4) Jΰ=

This is again a smooth vector field, but J can be applied to a much wider class, the
so-called Zygmund class which coincides with the tangent vectors to T(l). Notice that
J2 = —id. Thus, as Kerckhoίf (unpublished) first pointed out, the conjugation operation
on Zygmund class vector fields on 51 transmutes to the almost complex structure of

6. The Bers embedding of T(l)

To provide a system of complex coordinates for T(l) Bers embedded T(l) as a
holomorphically convex domain into the complex Banach space B which consists of
all functions φ(z)y holomorphic in the lower half-plane, L, with bounded Nehari norm
defined by

(6.1) ||<H

In the complex-analytic model of T(l), let fμ represent a point of T(l) and wμ a qua-
siconformal extension of fμ to the whole plane. Then the Bers embedding T(l) *-»• B is
defined by

(6.2) ft*^s(wμ)

where 5 is the Schwarzian derivative
2

which annihilates Mόbius moves. Direct computation gives the transformation rule

(6.4) S(f°g) = (Sfog)(g'f + Sg;

in particular, precomposition by M G Mδb(51) leaves the Schwarzian derivative in-
variant. The Bers embedding does nqt depend on the representative fμ, nor on the
quasiconformal extension wμ, as one can show. Since an element fμ is determined by
the Beltrami differential μ up to a Mόbius move, we may think of the Bers embedding
as a function of μ as well. It then defines a holomorphic embedding of T(l) into B with
respect to the complex structure of the Beltrami differentials.

7. The Kahler structure of T(l)

Nag and Verjovsky [25] proved that the natural inclusion M <-» T(l) is holomorphic.
The proof amounts to showing that, if we write in (5.4)

(7.1) Jύ = ̂ (ϋ)^-!

then u* is essentially the Hubert transform of u\ this is not very difficult.
A more subtle result of Nag [25] endows a subspace of T(l) with a Kahler structure

and shows the inclusion M <—* T(l) to be a Kahler isometry onto its image. Recall that
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the existence of a symplectic form ω on M is predicted by the theory of coadjoint orbits.
To compute it explicitly, we impose the condition dω — 0, or, equivalent ly, at the origin

(7.2) ω([Lm9Ln]9Lp) + ω([LniLp]tLm) + ω([Lp9Lm],Ln) = ^

Also, ω must vanish whenever one of its arguments is LO,£±I since these vector fields
give the zero tangent vector to M. The conditions (5.2) and (7.2) now lead to a system
of difference equations whose only possible solution readily yields a homogenous Kahler
form ω which is given at the origin by

(7.3) ω(Lm,Ln) = a(m3-m)6m-n, m,n G Z\ {0,

The constant a G C \ {0} is arbitrary.
Let v = ̂ m vmLm and w = Σm w™-Lm of the form (5.3) represent two tangent vec-

tors to M at the origin. Then the Kahler metric g, whose Kahler form ω was determined
above, assigns the inner product

00

(7.4) g(v, w) = αRfi ( J^ vmwm(m3 - m)) .
m=2

According to standard results in harmonic analysis, the Fourier coefficients of a Ck+€

smooth function on Sl decay at least as fast as l/nk+€. Hence, the infinite series in (7.4)
converges absolutely whenever the vector fields v and w are C3/2+e smooth on 51 for
any e > 0. Zygmund class functions are not necessarily smooth at all, so that the series
(7.4) does not yield a well-defined inner product on all of T(l). Claims have been made,
though, that even Homeo(5'1)/Mόb(51) carries a Kahler structure in some sense [29],

The Kahler structure ω is universal in the sense that it is closely related to the
Weil- Pet ersson Kahler forms on each T(G). However, the relationship is not by simple
restriction of domains from the infinite- dimensional space T(l) to the complex- analytic
subspace T(G), because T(G) is transversal to the leaf M of the foliation of T(l) in
the following sense: Let us use the geometric definition of T(l) as the space of Mόbius-
normalized quasidiscs. Bowen [3] proved the deep result that if G uniformizes a compact
Riemann surface, then every non-origin point of T(G) corresponds to a quasidisc with
fractal boundary. On the other hand, the quasidiscs corresponding to points of M are
the ones with C°° boundaries. Nag [25] showed that every non-null tangent vector to
T(G) at the origin produces a vector field on 51 that cannot be even C3/2+e smooth.

Nonetheless, the expression of the metric (7.4) is formally the same as that of the
Weil-Petersson metric even when it diverges, and it can be regulated as explained by
Nag in [25]. This procedure is not entirely satisfactory from the point of the physicists'
wish-list, however.

8. Curvature properties of Όitt(Sl) /Mδb(Sl)

Conformal field theory [17] suggests that the natural value of the constant α is
α = Y^. This normalization is natural also when ω is viewed as the generator of the sec-
ond Gelfand-Fuks cohomology H2(Vectco(S1)'ίC) (Segal [32]). Besides being the unique
symplectic form on M, the 2-cocycle ω can also be found as the unique central extension
of the Lie algebra of vector fields on the circle. The centrally extended Lie algebra then
is called the Virasoro algebra. It is customary to write a = ̂  so that the Virasoro law
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reads as

(8.1) [Lm,Ln] ~ i(n - m)Lm+n + 7ττ(m3 - m)6m>_n.

Remarkably, the spectrum of the values of the coupling constant c admitting unitary
representations of the Virasoro algebra (8.1) is continuous precisely for c > 1 [12]. For
c < 1, the spectrum consists of the discrete series

This phenomenon also shows that the value c = 1, i.e., a — ̂  is critical.
The Ricci curvature of the Kahler manifold M has been computed by Bowick and

Lahiri [4]. Such computations are surprising because an infinite-dimensional trace can be
performed without any regularization. For the critical normalization α = ~ one obtains

(8.3) Ricci = -26 xω.

It is surprising to see the mysterious critical dimension D = 26 of bosonic string the-
ory emerge in this context! The critical occurrence of the number 26 in two seemingly
disparate roles must be an instance of the subtle interplay of Feynman's quantization
and geometric quantization of bosonic string theory rather than a mere numerical coin-
cidence, yet this phenomenon has never been geometrically explained.

9. Conclusion

There seems to be emerging a fascinating interplay of Teichmϋller theory and non-
commutative geometry which may shed new light on crucial issues of non-perturbative
string theory. We hope that our survey will be helpful for someone who is seeking his or
her way through the maze of existing literature before tackling the forthcoming papers
of Connes and Sullivan [8], Nag and Sullivan [24], and Penner (in preparation).
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