ON MINIMAL SURFACES WITH THE RICCI CONDITION IN SPACE FORMS

ΒΥ ΜΑΚΟΤΟ SAKAKI

0. Introduction

A 2-dimensional Riemannian metric ds^2 is said to satisfy the Ricci condition with respect to c if its Gaussian curvature K satisfies K < c and the new metric $d\hat{s}^2 = \sqrt{c - K} ds^2$ is flat.

Let $X^N(c)$ denote the N-dimensional simply connected space form of constant curvature c, and in particular, let $\mathbf{R}^N = X^N(0)$. The induced metric ds^2 on a minimal surface in $X^3(c)$ satisfies the Ricci condition with respect to c except at points where the Gaussian curvature = c. Conversely, assume that a Riemannian metric ds^2 on a 2-dimensional simply connected manifold M satisfies the Ricci condition with respect to c. Then there exists a smooth 2π -periodic family of isometric minimal immersions $f_{\theta}: (M, ds^2) \to X^3(c); \ \theta \in \mathbf{R}$, which is called the associated family. Moreover, up to congruences, the maps $f_{\theta}; \ 0 \leq \theta < \pi$ represent all local isometric minimal immersions of (M, ds^2) into $X^3(c)$ (see [5]). So, the Ricci condition with respect to c is an intrinsic characterization of minimal surfaces in $X^3(c)$.

Here we consider the following problem, which may be seen as a kind of rigidity problem.

PROBLEM. Classify those minimal surfaces in $X^{N}(c)$ whose induced metrics satisfy the Ricci condition with respect to c, or equivalently, classify those minimal surfaces in $X^{N}(c)$ which are locally isometric to minimal surfaces in $X^{3}(c)$.

A submanifold in $X^N(c)$ is said to lie fully in $X^N(c)$ if it does not lie in a totally geodesic submanifold of $X^N(c)$. Let S(N, c) denote the set of all Riemannian structures of minimal surfaces lying fully in $X^N(c)$. Then the problem is to determine the intersection of S(3,c) and S(N,c).

1. Examples

In this section, we give examples of minimal surfaces in $X^{N}(c)$ which do not lie in a totally geodesic $X^{3}(c)$ and whose induced metrics satisfy the Ricci condition with respect to c. The following three types of examples are known.

Example 1 ([6]). Let $f_{\theta} : (M, ds^2) \to \mathbf{R}^3$; $\theta \in \mathbf{R}$ be the associated family of isometric minimal immersions of a 2-dimensional Riemannian manifold (M, ds^2) into

Received May 27, 1993.

 \mathbf{R}^3 . Then we can construct an isometric minimal immersion $f:(M,ds^2)\to\mathbf{R}^6$ by setting

(1)
$$f = f_{\theta} \cos \varphi \oplus f_{\theta+\pi/2} \sin \varphi,$$

where the symbol \oplus denotes the direct sum with respect to an orthogonal decomposition $\mathbf{R}^6 = \mathbf{R}^3 \oplus \mathbf{R}^3$. The metric induced by f is ds^2 , which satisfies the Ricci condition with respect to 0 except at points where the Gaussian curvature = 0. Furthermore, in general, f(M) lies fully in \mathbf{R}^6 if $\varphi \neq 0 \pmod{\pi/2}$.

Example 2 ([6]). Let c > 0. Let $f_{\theta} : (M, ds^2) \to X^3(c) \ (\subset \mathbf{R}^4)$; $\theta \in \mathbf{R}$ be the associated family of isometric minimal immersions of a 2-dimensional Riemannian manifold (M, ds^2) into $X^3(c)$. Then we can construct an isometric minimal immersion $f : (M, ds^2) \to X^{4m+3}(c) \ (\subset \mathbf{R}^{4m+4})$ by setting

(2)
$$f = a_0 f_{\theta_0} \oplus \cdots \oplus a_m f_{\theta_m},$$

where $\sum_{i=1}^{m} a_i^2 = 1$, $0 \leq \theta_0 < \theta_1 < \cdots < \theta_m < \pi$, each f_{θ_i} is viewed as an \mathbb{R}^4 -valued function with $|f_{\theta_i}| = 1/\sqrt{c}$, and the symbol \oplus denotes the direct sum with respect to an orthogonal decomposition $\mathbb{R}^{4m+4} = \mathbb{R}^4 \oplus \cdots \oplus \mathbb{R}^4$. The metric induced by f is ds^2 , which satisfies the Ricci condition with respect to c except at points where the Gaussian curvature = c. Furthermore, in general, f(M) lies fully in $X^{4m+3}(c)$.

Example 3 ([1] and [4]). Every 2-dimensional flat metric automatically satisfies the Ricci condition with respect to c > 0, and there are flat minimal surfaces lying fully in $X^{2n+1}(c)$ where c > 0.

2. Known results

In the Euclidean case where c = 0, Lawson solved the problem completely as follows.

THEOREM 1 ([6] AND [7, CHAPTER IV]). Let $f: M \to \mathbf{R}^N$ be a minimal immersion of a 2-dimensional manifold M into \mathbf{R}^N . Suppose that the induced metric ds^2 satisfies the Ricci condition with respect to 0 except at isolated points where the Gaussian curvature = 0. Then either (i) f(M) lies in a totally geodesic \mathbf{R}^3 , or (ii) f(M) lies fully in a totally geodesic \mathbf{R}^6 and f is of the form of (1) in Example 1 for $\varphi \neq 0 \pmod{\pi/2}$.

Remark 1. Theorem 1 says that S(3,0) and S(N,0) are disjoint if N = 4, N = 5 or $N \ge 7$. Theorem 1 says also that S(3,0) is included in S(6,0) through Example 1.

Concerning the spherical case where c > 0, Lawson posed the following conjecture.

CONJECTURE ([6]). Let $f : M \to X^N(c)$ be a minimal immersion of a 2-dimensional manifold M into $X^N(c)$ where c > 0. Suppose that the induced metric ds^2 satisfies the Ricci condition with respect to c except at isolated points where the Gaussian curvature = c. Then f must be of the form of (2) in Example 2.

As a matter of fact, there are easy counter-examples to this conjecture (cf. Example 3). So one should consider the conjecture for non-flat minimal surfaces. In [8], with some

MAKOTO SAKAKI

global assumptions, Naka (= Miyaoka) obtained partial positive answers to this question.

3. Our results

First we solve the problem in the case where N = 4.

THEOREM 2 ([10]). Let $f: M \to X^4(c)$ be a minimal immersion of a 2-dimensional manifold M into $X^4(c)$. Suppose that the induced metric ds^2 satisfies the Ricci condition with respect to c except at isolated points where the Gaussian curvature = c. Then f(M) lies in a totally geodesic $X^3(c)$.

Remark 2. (i) Theorem 2 says that S(3, c) and S(4, c) are disjoint.

(ii) When c = 0, Theorem 2 is included in [6].

(iii) In the case where c > 0, Theorem 2 is not true if we replace $X^4(c)$ by $X^5(c)$ (cf. Example 3).

(iv) In [10], with an additional assumption, we give a result also in higher codimensional cases.

In [3] Johnson studied a class of minimal surfaces in $X^{N}(c)$, which are called exceptional minimal surfaces and are related to the theory of harmonic sequences (cf. [2] and [11]). Next we discuss exceptional minimal surfaces in $X^{N}(c)$ whose induced metrics satisfy the Ricci condition with respect to c.

THEOREM 3 ([9]). Let $f: M \to X^N(c)$ be an exceptional minimal immersion of a 2-dimensional manifold M into $X^N(c)$ where c > 0. Suppose that the induced metric ds^2 satisfies the Ricci condition with respect to c except at isolated points where the Gaussian curvature = c. Then either (i) f(M) lies fully in a totally geodesics $X^{4m+1}(c)$ and ds^2 is flat, or (ii) f(M) lies fully in a totally geodesic $X^{4m+3}(c)$.

THEOREM 4 ([9]). Let $f: M \to X^N(c)$ be an exceptional minimal immersion of a 2-dimensional manifold M into $X^N(c)$ where c < 0. Suppose that the induced metric ds^2 satisfies the Ricci condition with respect to c except at isolated points where the Gaussian curvature = c. Then f(M) lies in a totally geodesic $X^3(c)$.

Remark 3. (i) There are flat exceptional minimal surfaces lying fully in $X^{2n+1}(c)$, where c > 0 (see [9]).

(ii) There are non-flat exceptional minimal surfaces lying fully in $X^{4m+3}(c)$ whose induced metrics satisfy the Ricci condition with respect to c, where c > 0 (see [9]).

Reference

- R. Bryant, Minimal surfaces of constant curvature in Sⁿ, Trans. Amer. Math. Soc. 290 (1985), 259-271.
- [2] S.S. Chern and J.G. Wolfson, Harmonic maps of the two-sphere into a complex Grassmann manifold II, Ann. of Math. 125 (1987), 301-335.

454

- [3] G.D. Johnson, An intrinsic characterization of a class of minimal surfaces in constant curvature manifolds, Pacific J. Math. 149 (1991), 113-125.
- [4] K. Kenmotsu, On minimal immersions of \mathbb{R}^2 into S^N , J. Math. Soc. Japan 28 (1976), 182–191.
- [5] H.B. Lawson, Complete minimal surfaces in S^3 , Ann. of Math. 92 (1970), 335–374.
- [6] H.B. Lawson, Some intrinsic characterizations of minimal surfaces, J. Analyse Math. 24 (1971), 151-161.
- [7] H.B. Lawson, Lectures on Minimal Submanifolds, Publish or Perish, Inc., Berkeley, 1980.
- [8] R. Naka, Some results on minimal surfaces with the Ricci condition, Minimal Submanifolds and Geodesics (M. Obata, ed.), 1978, Kaigai Publ., Tokyo, 121-142.
- [9] M. Sakaki, Exceptional minimal surfaces with the Ricci condition, Tsukuba J. Math. 16 (1992), 161-167.
- [10] M. Sakaki, Minimal surfaces with the Ricci condition in 4-dimensional space forms, Proc. Amer. Math. Soc., 121 (1994), 573–577.
- [11] J.G. Wolfson, Harmonic sequences and harmonic maps of surfaces into complex Grassmann manifolds, J. Diff. Geom. 27 (1988), 161-178.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE HIROSAKI UNIVERSITY HIROSAKI 036, JAPAN