A FANO 3-FOLD WITH NON-RATIONAL SINGULARITIES AND A TWO DIMENSIONAL BASIS

By Shiноко IshiI

Introduction

In this paper, the author gives a summary of the paper [I2] and pictures of the Fano 3 -folds which appear in it. Here a Fano 3 -fold means a normal projective variety of dimension three over C whose anticanonical sheaf is ample and invertible. During the past fifteen years, there has been big progress in the investigation of a non-singular Fano 3 -fold owing to Iskovskih, Mori, Mukai and Shokurov. And it is still developing. On the other hand, in singular Fano 3 -folds, progress seems to have started recently. Here we study the structure of a Fano 3 -fold with non-rational singularities.

Let Σ be the locus of non-rational singular points of a Fano 3 -fold X. As X is normal, $\operatorname{dim} \Sigma \leqq 1$. If $\operatorname{dim} \Sigma=0$, then X is isomorphic to a projective cone over a normal K3-surface or an Abelian surface (Theorem 1A, 1B). The proof of this theorem also works in the case that Σ contains an isolated point. So what we should study next is the case that Σ has pure dimension one. Such a Fano 3 -fold is classified in three families according to the maximal basis-dimension of its \mathbf{Q}-factorial terminal modification (Theorem 2, Definition 1). We obtain the fact that a Fano 3-fold with the maximal basis-dimension 2 admits a projective bundle over a non-singular surface as a \mathbf{Q}-factorial terminal modification (Theorem 3). We try to make clear the stucture of a Fano 3-fold in this family: what kind of surface occurs as a basis, what kind of projective bundle appears as a \mathbf{Q}-factorial terminal modification and which parts on the projective bundle are contracted in a Fano 3 -fold.

The author would like to thank Professors Nakayama and Kei-ichi Watanabe and also other members of Waseda Seminar for their stimulating discussion during the preparation of this article. In particular Nakayama's proof of Proposition 1 helped her very much and also K-i. Watanabe's comment "a Weil divisor on a \mathbf{Q}-factorial terminal singularity is Cohen-Macaulay" was very helpful in the proof of Theorem 2.

1. The case $\operatorname{dim} \Sigma=0$

Theorem $1 \mathrm{~A}([\mathrm{I}])$. Let X be a Fano 3 -fold wath $\operatorname{dim} \Sigma=0$. Then there exist a normal surface S which is etther an Abelian surface or a normal K3-surface and an ample invertible sheaf \mathcal{L} on S such that X is the contraction of the negative section of a projective bundle $\mathbf{P}\left(\mathcal{O}_{S} \oplus \mathcal{L}\right)$. Here a normal K3-surface implies a normal projective surface with the trivzal canonical sheaf and has only rational singularities.

Theorem 1B([I]). Let X be a projective cone over a surface S which is eather an

Abelian or a normal K3-surface. Then X is a Fano 3 -fold with $\Sigma=\{$ thevertex $\}$.
2. Basic structure theorem of Q-factorial terminal modifications for the case $\operatorname{dim} \Sigma=1$

Theorem 2. Let X be a Fano 3-fold with Σ of pure dimension one. Let $g: Y \rightarrow X$ be a \mathbf{Q}-factorial termınal modificatıon whose extstence is proved by Morv ([M]). Denote $K_{Y}=g^{*} K_{X}-\Delta$. Then we have a sequence of projective morphisms: $Y=Y_{0} \xrightarrow{\varphi_{0}} Y_{1} \xrightarrow{\varphi_{1}}$ $Y_{2} . \longrightarrow Y_{r} \xrightarrow{\varphi_{r}} Z$, where for each i, φ_{i} is the contraction of an extremal ray R_{\imath} on Y_{i} such that $R_{\imath} \cdot \Delta_{i}>0$ (here, $\Delta_{0}=\Delta$, and $\left.\Delta_{i}=\left(\varphi_{i-1}\right)_{*} \Delta_{i-1}\right)$. For $i \leqq r-1, \varphi_{i}$ is a burational contraction of a divisor ssomorphic to $F_{a, 0}(a \geqq 1)$ to a non-singular point and φ_{r} is a fibration to a lower dimensional variety Z.

Definition 1. The variety Z above is called a basis of X. And each φ_{i} is called a Δ-extremal contraction. Of course a basis of X is not unique for X. It depends on the choice of a Q-factorial terminal modification Y and also on the choice of extremal rays R_{\imath} 's.

From now on, we devote to study X which has a two dimensional basis Z. In this case, the last contraction $\varphi_{r}: Y_{r} \rightarrow Z$ satisfies the assumption of the following proposition. So we can see that it is a \mathbf{P}^{1}-bundle over a non-singular surface Z.

Proposition 1 (Nakayama). Let $\varphi: Y \rightarrow Z$ be a contraction of an extremal ray on a 3 -fold Y with at worst \mathbf{Q} - factorial terminal singularities on to to a surface Z. Assume there exists an invertible sheaf on Y whose degree on a general fiber is 1 . Then Z is non-singular and Y is a \mathbf{P}^{1}-bundle over Z.

Theorem 3. Let X be a Fano 3-fold with one dimensional Σ and a two dimensional basis. Then there exists a Q-factorial terminal modification $g: Y \rightarrow X$ such that a Δ extremal contraction $\varphi_{0}: Y \rightarrow Z$ gives a \mathbf{P}^{1}-bundle over a non-singular surface Z.

This theorem is proved by applying the following lemma successively.
Lemma. Let X be as above and $Y=Y_{0} \xrightarrow{\varphi_{0}} Y_{1} \xrightarrow{\varphi_{1}} Y_{2} . \longrightarrow Y_{r} \xrightarrow{\varphi_{r}} Z$ be a sequence of Δ-extremal contractıons of \mathbf{Q}-factorial terminal modification Y of X with 2-dimensıonal basıs Z. If $r>0$, then there is a flop Y_{\imath}^{\prime} of Y_{\imath} for each $i(i \leqq r-1)$ such that $g^{\prime}: Y^{\prime}=Y_{0}^{\prime} \rightarrow X$ is a \mathbf{Q}-factorial terminal modification of X and $Y^{\prime}=$ $Y_{0}^{\prime} \xrightarrow{\varphi_{0}^{\prime}} Y_{1}^{\prime} \xrightarrow{\varphi_{1}^{\prime}} Y_{2}^{\prime} . \longrightarrow Y_{r-1}^{\prime} \xrightarrow{\varphi_{r-1}^{\prime}} Z^{\prime}$ is a sequence of Δ^{\prime}-extremal contractıoins with 2-dimensional basis Z^{\prime}, where Δ^{\prime} is a \mathbf{Q}-divisor such that $K_{Y^{\prime}}=g^{\prime *} K_{X}-\Delta^{\prime}$.
3. Fano 3-folds which have $\mathbf{P}^{\mathbf{1}}$-bundles as \mathbf{Q}-factorial terminal modifications.

Let X be a Fano 3 -fold with a 2-dimensional basis. Then, by Theorem 3, we can take a \mathbf{Q}-factorial terminal modification $g: Y \rightarrow X$ such that a Δ-extremal contraction
$\varphi: Y \rightarrow Z$ gives a $\mathbf{P}^{\mathbf{1}}$-bundle over a non-singular surface Z. Then we have the following facts:
(i) $-g^{*} K_{\boldsymbol{X}} \cdot \ell=\Delta \cdot \ell=1$, where ℓ is a fiber of $\varphi: Y \rightarrow Z$.
(ii) Δ is denoted by $E_{0}+\varphi^{*}\left(\Delta^{\prime}\right)$, where E_{0} is an irreducible component with $E_{0} \cdot \ell=1$ and $\Delta^{\prime} \in \operatorname{Pic}(Z)$.

The case $\operatorname{Supp} \Delta$ contains a vertical component
We call an irreducible divisor D in Y a vertical divisor for g, if D is mapped to a point of X by g. We call a singular point an intensive singular point, if it is the image of a vertical component for some \mathbf{Q}-factorial terminal modification.

Theorem 4A. Let $X, g: Y \rightarrow X, \Delta$ and $\varphi: Y \rightarrow Z$ be as in the beginning of this section. Asssume $\operatorname{Supp} \Delta$ contains a vertical component.

Then, (i) a vertical component is unıque and coincıdes with E_{0} and it is a section of the projection φ,
(ii) there exists a normal surface Z_{0} with at least one non-rational singular point on it whose canonical sheaf is trivial and whose minimal resolution is $h: Z \rightarrow Z_{0}$ and
(iii) the $\mathbf{P}^{\mathbf{1}}$-bundle $\varphi: Y \rightarrow Z$ is a pull back of a \mathbf{P}^{1}-bundle $\varphi_{0}: Y_{0} \rightarrow Z_{0}$ by h and $g: Y \rightarrow X$ factors as $Y \xrightarrow{h} Y_{0} \xrightarrow{g_{0}} X$, where g_{0} os a contraction of the negative section $h\left(E_{0}\right)$.

Theorem 4B. Let S be a normal surface with trivial canonical sheaf and at least one non-rational singular point on it. Then an arbutrary projective cone X over S is a Fano 3-fold and Σ is generatıng lines over a non-ratıonal singular points of S.

Remark. Normal surfaces with the trivial canonical sheaf and at least one nonrational singular point are studied in [U] among others. The number of non-rational singular points is less than or equall to 2 . It is 2 , if and only if both of them are simple elliptic singularities [U , Theorem 1].

The case $\operatorname{Supp} \Delta$ contains no vertical component
In the previous case, E_{0} is a section of φ. But in this case, it is not necessarily true. First we consider the case that E_{0} is a section. Since E_{0} is not a vertical component, $\left.g\right|_{E_{0}}: E_{0} \rightarrow C$ is a fibration to a curve C.

Proposition 2. The possible triples $\left(E_{0},\left.g\right|_{E_{0}}, \Delta^{\prime}\right)$ are the following:
(i) ($\mathbf{P}^{\mathbf{1}} \times$ elliptic curve, the first projection $\left.p_{1}, \varphi\right)$,
(ii) (a ratıonal elliptıc surface, the elliptıc fibratıon, φ),
(iii) E_{0} is the composite of r-blowing ups $E_{0} \xrightarrow{\sigma_{r}} . . \xrightarrow{\sigma_{1}} \mathbf{P}^{1} \times$ elliptic curve, where σ_{1} is the blow up at a point on the fiber $C=p_{1}^{-1}(z)$ of a point $z \in \mathbf{P}^{1}$ and $\sigma_{2}(i>1)$ is the blow up at the intersection of the proper transform of C and the exceptional curve of $\sigma_{\imath-1}$. The morphism $\left.g\right|_{E_{0}}$ is $p_{1} \cdot \sigma_{1} \cdot \sigma_{2} . \cdot \sigma_{r}$ and $\Delta^{\prime}=$ the proper transform of C.
(iv) E_{0} is a ruled surface $p: E_{0} \rightarrow S$ such that there exist a covering $\pi: S \rightarrow \mathbf{P}^{1}$ and a member D in $\left|-K_{E_{0}}\right|$ of type $D=(\pi \cdot p)^{*}(z)+\Delta^{\prime}$, where $z \in \mathbf{P}^{1}$ and Δ^{\prime} is an
effectuve divisor with $K_{E_{0}} \cdot C \geqq 0$ for every component $C \subset \Delta^{\prime}$. The morphism $\left.g\right|_{E_{0}}$ is πp.

Theorem 5A. Let X be a Fano 3-fold with a non-rational singular point but no intensıve point. Assume X has a \mathbf{P}^{1}-bundle model $\varphi: Y \rightarrow Z$ and E_{0} is a section of φ, where $g: Y \rightarrow X$ is the modification and $E_{0}<\Delta=g^{*} K_{X}-K_{Y}$. Denote $\Delta=E_{0}+\varphi^{*} \delta$ and $-g^{*} K_{X}=E_{0}+\varphi^{*} L$ for divesors δ, L on Z.
Then $\varphi: Y \rightarrow Z$ is defined by a locally free sheaf \mathcal{E} of rank 2 on Z and satisfies the following conditions:
(I) the triple $\left(E_{0},\left.g\right|_{E_{0}}, \bar{\delta}\right)$ is as one of (i)~ (iv) in Proposition 4,
(II) $L-\delta$ is semı-ample and $(L-\delta) \cdot\left(L-\delta-K_{Z}\right)>0$,
(III-1) \mathcal{E} is an extension of $\mathcal{N}=\mathcal{O}_{Z}\left(-K_{Z}-\delta-L\right)$ by \mathcal{O}_{Z} :

$$
(\mathcal{E}) \quad 0 \rightarrow \mathcal{O}_{Z} \rightarrow \mathcal{E} \rightarrow \mathcal{N} \rightarrow 0
$$

(III-2) $\left.\mathcal{E}\right|_{C}=\mathcal{O}_{C}(-L) \oplus \mathcal{O}_{C}(-L)$ for every component $C<\delta$ and
(III-3) $(\mathcal{O}(L) \otimes \mathcal{E})_{y}$ is generated by its global sectıons for each $y \in \delta$.
Theorem 5B. Let Z be a non-singular projective surface, $g_{0}: Z \rightarrow \mathbf{P}^{1}$ be a surjective morphism, L, $\delta \quad(\delta \geqq 0)$ be divisors on Z and \mathcal{E} be a locally free sheaf of rank 2 on Z such that
(I) the triple $\left(Z, g_{0}, \delta\right)$ is as one of (i) \sim (iv) of Proposition 2,
(II) $L-\delta$ is semi-ample and $(L-\delta) \cdot\left(L-\delta-K_{Z}\right)>0$, and
(III-1) \mathcal{E} is an extensıon of $\mathcal{N}=\mathcal{O}_{Z}\left(-K_{Z}-\delta-L\right)$ by \mathcal{O}_{Z} :

$$
(\mathcal{E}) \quad 0 \rightarrow \mathcal{O}_{Z} \rightarrow \mathcal{E} \rightarrow \mathcal{N} \rightarrow 0
$$

(III-2) $\left.\quad \mathcal{E}\right|_{C}=\mathcal{O}_{C}(-L) \oplus \mathcal{O}_{C}(-L)$ for every component $C<\delta$ and
(III-3) $(\mathcal{O}(L) \otimes \mathcal{E})_{y}$ is generated by its global sections for each $y \in \delta$.
Let $\varphi: Y \rightarrow Z$ be a \mathbf{P}^{1}-bundle defined by \mathcal{E} and E_{0} be the section corresponding to the surjectıon $\mathcal{E} \rightarrow \mathcal{N}$ in (III-1).

Then $E_{0}+\varphi^{*} L$ is semı-ample and the image X of Y by $g:=\Phi_{\left|m\left(E_{0}+\varphi^{*} L\right)\right|}$ is a Fano 3-fold with $\Sigma \neq \emptyset$ and no intensive singular point and $g: Y \rightarrow X$ is a \mathbf{Q}-factorial terminal modification.

Now we give an example of a Fano 3 -fold with E_{0} not a section.
Example. Let Z be the projective plane \mathbf{P}^{2}, C and C^{\prime} be two general curves of degree 3 on Z. Let $\sigma: \widetilde{Z} \rightarrow Z$ be the blowing up at 9 -distinct points $\left\{p_{1}, p_{2}, . ., p_{9}\right\}=$ $C \cap C^{\prime}$, then \widetilde{Z} becomes an elliptic surface with elliptic fibers $[C],\left[C^{\prime}\right]$, where $[C]$ is the proper transform of C on \widetilde{Z}. Denote the fiber $\sigma^{-1}\left(p_{i}\right)$ by ℓ_{2}. Let L be $\sigma^{*} L_{0}+\sum_{\imath=1}^{9} \ell_{2}$ where L_{0} is an ample divisor on Z.

Since $H^{1}(\widetilde{Z}, L-[C]) \simeq \oplus H^{1}\left(\ell_{2}, L-\left.[C]\right|_{\ell_{1}}\right) \simeq \mathbf{C}^{\oplus 9}$, we can take an extension sheaf $\widetilde{\mathcal{E}}$ of $\mathcal{O}([C]-L)$ by $\mathcal{O}_{\widetilde{Z}}$ such that the restriction $\left[\left.\widetilde{\mathcal{E}}\right|_{\ell_{\imath}}\right] \in H^{1}\left(\ell_{2}, L-[C] \mid \ell_{\ell_{1}}\right)$ is not zero for every $i(i=1,2, . ., 9)$. Now $\left.\left.\left.0 \rightarrow \mathcal{O}_{\tilde{Z}}\right|_{\ell_{i}} \rightarrow \widetilde{\mathcal{E}}\right|_{\ell_{1}} \rightarrow \mathcal{O}([C]-L)\right|_{\ell_{1}}=\mathcal{O}_{\mathbf{P}^{1}}(2) \rightarrow 0$ does not split, so $\left.\widetilde{\mathcal{E}}\right|_{\ell_{2}} \simeq \mathcal{O}_{\mathbf{P}^{1}}(1) \oplus \mathcal{O}_{\mathbf{P}_{1}^{1}}(1)$. Put $\widetilde{\mathcal{E}}^{\prime}=\widetilde{\mathcal{E}}\left(\Sigma \ell_{\imath}\right)$, then $\left.\widetilde{\mathcal{E}}^{\prime}\right|_{\ell_{2}}$ is trivial for each i. By Schwarzenberger's Theorem, $\widetilde{\mathcal{E}}^{\prime}=\sigma^{*} \mathcal{E}$ for some locally free sheaf \mathcal{E} on Z. Let Y be the
projective bundle $\mathbf{P}(\mathcal{E})$ and \tilde{Y} be $\mathbf{P}\left(\tilde{\mathcal{E}}^{\prime}\right)$. Then we have the diagram of a fiber product

Let \tilde{E}_{0} be the section of $\widetilde{\varphi}$ defined by the surjection $\widetilde{\mathcal{E}} \rightarrow \mathcal{O}([C]-L)$ and E_{0} be the image $\sigma\left(\widetilde{E}_{0}\right)$. Then $H=E_{0}+\varphi^{*} L_{0}$ is a semipositive divisor on Y. The image X of the morphism $\Phi_{|m H|}: Y \rightarrow \mathbf{P}^{M}$ becomes a Fano 3 -fold with $\Sigma \simeq \mathbf{P}^{1}$ and Y is a \mathbf{Q}-factorial terminal modification of X. It is easy to see that $\Delta=E_{0}$ and E_{0} contains the fibers of φ over $p_{1}, p_{2}, . ., p_{9} \in Z$

4. Pictures of Y and X of Theorem 5

(i) In the case the triple is ($\mathbf{P}^{\mathbf{1}} \times C$, the first projection $\left.p_{1}, \phi\right)$, where C is an elliptic curve. Then $\Delta=E_{0}$. If we denote $L=p_{1}^{*} \mathcal{O}_{\mathbf{P}^{1}}(a) \otimes p_{2}^{*} B$, then $a \geqq 0$ and B is ample.
(i-1) $\quad a>0 .\left.g\right|_{Y-E_{0}}: Y-E_{0} \simeq X-\Sigma$.

(i-2) $\quad a=0$ and the exact sequence $(\mathcal{E}): 0 \rightarrow \mathcal{O}_{Z} \rightarrow \mathcal{E} \rightarrow \mathcal{N} \rightarrow 0$ splits.
$\left.g\right|_{Y-E_{0}-E_{\infty}}: Y-E_{0}-E_{\infty} \simeq X-\Sigma-\Sigma_{0}$, and $\left.g\right|_{E_{\infty}}=p_{2}$, where Σ_{0} is the locus of canonical singularities.

(i-3) $\quad a=0$ and the exact sequence $(\mathcal{E}): 0 \rightarrow \mathcal{O}_{Z} \rightarrow \mathcal{E} \rightarrow \mathcal{N} \rightarrow 0$ does not split. There exists a divisor $\sum_{i=1}^{s} m_{i} q_{i} \in|B|$ such that the restriction $\left.(\mathcal{E})\right|_{f_{2}}$ splits for each $i,(i=1, . ., s)$, where $f_{i}=p_{2}^{-1}\left(q_{i}\right)$. For a general fiber $f=p_{2}^{-1}(q), q \in C, Y_{f}$ is $\mathbf{P}^{1} \times \mathbf{P}^{1}$ and for $f_{2}, Y_{f_{2}} \simeq \mathbf{P}(\mathcal{O} \oplus \mathcal{O}(2)) .\left.E_{0}\right|_{Y_{f}}$ is an ample section for general f and is the disjoint section from the negative section for $f=f_{i}$. Denote the negative section of $Y_{f_{2}}$ by \tilde{f}_{2}. Then the restriction $\left.g\right|_{Y-E_{0}-U \tilde{f_{2}}}$ is an isomorphism, $\left.g\right|_{E_{0}}=p_{1}$, and each $\tilde{f_{z}}$ is contracted
to a canonical singularity in X.

(ii) The case that the triple $\left(E_{0},\left.g\right|_{E_{0}}, \Delta^{\prime}\right)$ is (rational elliptic surface, the elliptic fibration, φ). Then $E_{0}=\Delta$ in this case too. If L is big then the exact sequence (\mathcal{E}) splits and if L is not big $|L|$ gives a fibration $\Phi=\Phi_{|L|}: Z \rightarrow \mathbf{P}^{1}$ with a general fiber \mathbf{P}^{1}. Let $C_{\imath}(i=1,2, . ., r)$ be (-2)-curves on Z with $L C_{\imath}=0$ and $f_{j}(j=1, . ., s)$ be (-1)-curves on Z with $L f_{i}=0$. Then $\left.E_{0}\right|_{Y_{f_{2}}}$ is the section disjoint from the negative section. Denote the negative section of $Y_{f_{2}}$ by \tilde{f}_{j}. Then the normal bundle of \tilde{f}_{j} in Y is $\mathcal{O}_{\mathbf{P}^{1}}(1) \oplus \mathcal{O}_{\mathbf{P}^{1}}(1)$.
(ii-1) L is big. Then the restriction $\left.g\right|_{Y-E_{0}-U Y_{C_{i}}-U \tilde{f_{i}}}$ is an isomorphism, $\left.g\right|_{Y_{C_{i}}}$: $Y_{C_{\imath}} \simeq C_{\imath} \times \mathbf{P}^{1} \rightarrow \mathbf{P}^{1}$ is the projection to the second factor and $g\left(\tilde{f_{j}}\right)$ is an isolated canonical singular point for each j. A point of $g\left(Y_{C_{\imath}}\right)$ away from $g\left(E_{0}\right)$ is non-isolated canonical singularities.

(ii-2) L is not big and (\mathcal{E}) splits. Let E_{∞} be the section of φ disjoint from E_{0}. Then the restriction $\left.g\right|_{E_{0}-E_{\infty}-U Y_{C_{2}}}$ is an isomorphism, $\left.g\right|_{Y_{C_{2}}}$ is as above and $\left.g\right|_{E_{\infty}}=\Phi$.

(ii-3) L is not big and (\mathcal{E}) does not split. Denote $L=\Phi^{*} L_{0}$ for a Cartier divisor L_{0} on \mathbf{P}^{1} Then the extension \mathcal{E} of \mathcal{N} corresponds to a non-zero section $\varphi_{\mathcal{E}}$ of $\Gamma\left(\mathbf{P}^{1}, L_{0}+\right.$ $\left.K_{\mathbf{P}^{1}}\right)$. Let $\varphi_{\mathcal{E}}$ define a divisor $\sum_{k=1}^{d} m_{k} q_{k}\left(d \geqq 0, m_{k}>0\right)$ and $\ell_{k} k=1, . ., b(0 \leqq b \leqq d)$ be smooth fibers among $\left\{\Phi^{-1}\left(q_{k}\right)\right\}$. A component of a singular fiber of Φ is either one of $C_{i}^{\prime} s$ or $f_{2}^{\prime} s$ defined above. For a general fiber $\ell=\Phi^{-1}(q) q \in \mathbf{P}^{1}, Y_{\ell}$ is $\mathbf{P}^{1} \times \mathbf{P}^{1}$ and for $\ell_{k}, Y_{\ell_{k}} \simeq \mathbf{P}(\mathcal{O} \oplus \mathcal{O}(2)) . E_{0} \mid Y_{\ell}$ is an ample section for general ℓ, while it is the section disjoint from the negative section for $\ell=\ell_{k}(0 \leqq k \leqq b)$. Denote the negative section of $Y_{\ell_{k}}$ by $\tilde{\ell}_{k}$. Then the restriction $\left.g\right|_{Y-E_{0}-u_{i=1}^{r} Y_{C_{i}}-u_{j=1}^{s} \tilde{f}_{j}-u_{k=1}^{b} \tilde{\ell}_{k}}$ is isomorphic, $\left.g\right|_{Y_{C_{i}}}$ is the second projection, $\tilde{f}_{j}^{\prime} s$ and $\tilde{\ell}_{k}^{\prime} s$ are contracted to canonical singularities in X.

(iii) The case that the triple $\left(E_{0},\left.g\right|_{E_{0}}, \Delta^{\prime}\right)$ is as follows: E_{0} is the composite of r-blowing ups $E_{0} \xrightarrow{\sigma_{r}} . . \xrightarrow{\sigma_{1}} \mathbf{P}^{\mathbf{1}} \times$ elliptic curve, where σ_{1} is the blow up at a point on the fiber $C=p_{1}^{-1}(z)$ of a point $z \in \mathbf{P}^{1}$ and $\sigma_{2}(i>1)$ is the blow up at the intersection of the proper transform of C and the exceptional curve of $\sigma_{\imath-1}$. The morphism $\left.g\right|_{E_{0}}$ is $p_{1} \sigma_{1} \sigma_{2} . . \sigma_{r}$ and $\Delta^{\prime}=$ the proper transform of C.

Then L is nef and big, with $L \ell_{r}>0$ and the exact sequence (\mathcal{E}) splits, where $\ell_{2}(i=1,2, . ., r)$ are the exceptional curves of σ_{i} respectively. Let E_{∞} be the section of φ disjoint from E_{0}, and $\ell_{j} j \in J \subset\{1,2, . ., r-1\}$ be the exceptional curves with $L \ell_{j}=0$ and $C_{i} i=1,2, . . s$ be the curves on E_{∞} with $L C_{i}=0$. Then $\left.g\right|_{Y-E_{0}-Y_{\Delta^{\prime}}-u_{j \in J} Y_{\ell}-u_{i=1}^{n} C_{i}}$ is an isomorphism, $\left.g\right|_{Y_{\ell}} \simeq \ell_{\jmath} \times \mathbf{P}^{1} \rightarrow \mathbf{P}^{1}$ is the projection to the second factor and $g\left(C_{\imath}\right)$ is an isolated canonical singular point on X for $i=1,2, . ., s$.

(iv) The case that the triple is as in (iv) of Proposition 2. Then the exact sequence (\mathcal{E}) does not split. Let $C_{\imath}(i=1,2, . ., r)$ be (-2)-curves on Z with $e C_{\imath}=L C_{\imath}=0$ and $f_{\jmath}(j=1, . . s)$ be (-1)-curves on Z with $e f_{\jmath}>0$ and $L f_{\jmath}=0$ Then we can take the negative section \widetilde{f}_{j} of $Y_{\tilde{f}_{j}}$ disjoint from E_{0}. Then $\left.g\right|_{Y-\Delta-U_{i=1}^{r} Y_{C_{i}}-U_{j=1}^{s} \tilde{f}_{j}}$ is an isomorphism, $\left.g\right|_{Y_{C}}: Y_{C} \simeq C \times \mathbf{P}^{1} \rightarrow \mathbf{P}^{1}$ is the projection to the second factor for a component $C<\Delta$ and for $C=C_{i}(i=1, \ldots r)$ and $g\left(\tilde{f}_{j}\right)$ is an isolated canonical singularity for $j=1, . ., s$.

, where \qquad is the fiber of a point in Σ

References

[I] S. Ishii: Quası-Gorensteın Fano-3-folds with 2 solated non-rational locı. Compositio Math. 77 (1991) 335-341.
[I2] S. Ishii: On Fano 3-folds with non-rational singularities and two dimensıonal base. to appear in Abh. Math. Sem. Univ. Hamburg.
[M] S. Mori: Flip theorem and the existence of minımal models for 3-folds. J. Amer. Math. Soc. 1 (1988) 117-253.
[U] Y. Umezu: On normal projective surfaces with trivial dualizing sheaf. Tokyo J. Math. 4 (1981) 343-354.

Department of Mathematics
Tokyo Institute of Technology
Oh-okayama, Meguro
152 Tokyo, Japan
e-mail: shihoko@math.titech.ac.jp

