NOTE ON ESTIMATION OF THE NUMBER OF THE CRITICAL VALUES AT INFINITY

BY LE VAN THANH AND MUTSUO OKA

1. Let f(x, y) be a polynomial of degree d and we consider the polynomial function $f: \mathbb{C}^2 \to \mathbb{C}$. Let $\Sigma(f)$ be the critical values. The restriction

$$f: \mathbf{C}^2 - f^{-1}(\Sigma) \to \mathbf{C} - \Sigma$$

is not necessarily a locally trivial fibration. We say that $\tau \in \mathbf{C}$ is a regular value at infinity of the function $f: \mathbf{C}^2 \to \mathbf{C}$ if there exist positive numbers R and ε so that the restriction of $f, f: f^{-1}(D_{\varepsilon}(\tau)) - B_R^4 \to D_{\varepsilon}(\tau)$, is a trivial fibration over the disc $D_{\varepsilon}(\tau)$ where $D_{\varepsilon}(\tau) = \{\eta \in \mathbf{C}; |\eta - \tau| \leq \varepsilon\}$ and $B_R^4 = \{(x, y); |x|^2 + |y|^2 \leq R\}$. Otherwise τ is a called a critical value at infinity. We denote the set of the critical values at infinity by Σ_{∞} . It is known that Σ_{∞} is finite ([23], [2]). The purpose of this note is to give an estimation on the number of critical values at infinity. The detail will be published elsewhere ([12]).

We first consider the canonical projective compactification $\mathbf{C}^2 \subset \mathbf{P}^2$. We denote the homogeneous coordinates of \mathbf{P}^2 by X, Y, Z so that x = X/Z and y = Y/Z Let L_{∞} be the line at infinity: $L_{\infty} = \{Z = 0\}$. Write

$$f(x,y) = f_0 + f_1(x,y) + \cdots + f_d(x,y)$$

where $f_i(x, y)$ is a homogeneous polynomial of degree *i* for i = 0, ..., d. We can write

(1.1)
$$f_d(x,y) = c x^{\nu_0} y^{\nu_{k+1}} \prod_{j=1}^k (y - \lambda_j x)^{\nu_j}$$

where $c \in \mathbf{C}^*$ and $\lambda_1, \ldots, \lambda_k$ are non-zero distinct numbers and we assume that $\nu_i > 0$ for $1 \le i \le k$ and $\nu_0, \nu_{k+1} \ge 0$. Note that we have the equality

$$(1.2) \qquad \qquad \nu_0 + \dots + \nu_{k+1} = d$$

Let C_{τ} be the projective curve which is the closure of the fiber $f^{-1}(\tau)$. Then C_{τ} is defined by $C_{\tau} = \{(X;Y;Z) \in \mathbf{P}^2; F(X,Y,Z) - \tau Z^d = 0\}$ where F(X,Y,Z) is the homogeneous polynomial defined by

(1.3)
$$F(X,Y,Z) = f(X/Z,Y/Z)Z^{d} = f_0 Z^{d} + f_1(X,Y)Z^{d-1} + \dots + f_d(X,Y)$$

The intersection of C_{τ} and the line at infinity, $C_{\tau} \cap L_{\infty}$, is independent of $\tau \in \mathbb{C}^2$ and it is the base point locus of the family $\{C_{\tau}; \tau \in \mathbb{C}\}$. Obviously we have $C_{\tau} \cap L_{\infty} = \{Z = f_d(X, Y) = 0\}$. For brevity, let $A_i = (\alpha_i; \beta_i; 0) \in \mathbb{P}^2$ for $i = 0, \dots, k+1$ where $A_0 = (0; 1; 0), A_{k+1} = (1; 0; 0)$ and $\beta_i / \alpha_i = \lambda_i$ for $1 \leq i \leq k$. Then under the assumption $(1.1), C_0 \cap L_{\infty} = \{A_i; \nu_i > 0\}$. Note that $A_i \in C_0 \cap L_{\infty}$ for $i = 1, \dots, k$. We consider the family of germs of a curve at $A_i: \{(C_{\tau}, A_i); \tau \in \mathbb{C}\}$. Then it is known that τ is a

Received June 30, 1993.

regular value at infinity if and only if $\{(C_t, A_j); t \in \mathbf{C}\}$ is a topologically stable family near $t = \tau$ for any A_j with $\nu_j > 0$ ([2]). This is the case if $f(x, y) - \tau$ is reduced and the local Milnor number μ of the family $\{(C_t, A_j); t \in \mathbf{C}\}$ is constant in a neighborhood U of $\tau \in \mathbf{C}$. To study the stability of the local topological type at A_j , we will use the affine polar quotient along the polar curve at infinity.

2. Affine polar quotients and a toric compactification.

A. Affine polar quotients.

Let $\ell(x, y) = \alpha y - \beta x$ be a linear form. The polar curve $\Gamma_{\ell}(f)$ for f with respect to ℓ is defined by the Jacobian $\Gamma_{\ell}(f) = \{(x, y) \in \mathbf{C}^2; J(f, \ell)(x, y) = 0\}$ where

$$J(f,\ell)(x,y) = \alpha \frac{\partial f}{\partial x}(x,y) + \beta \frac{\partial f}{\partial y}(x,y) = 0$$

 $\Gamma_{\ell}(f)$ is an affine curve of degree d-1 and equal to the critical locus of the mapping $(f,\ell): \mathbb{C}^2 \to \mathbb{C}^2$. Let L_{η} be the projective line $\{\alpha Y - \beta X - \eta Z = 0\}$ which is the closure of the affine line $\ell^{-1}(\eta)$. The base point of this pencil $\{L_{\eta}; \eta \in \mathbb{C}\}$ is $B = (\alpha; \beta; 0)$ in the homogeneous coordinates. We say that ℓ is generic at infinity for the polynomial f if $B \notin C_0 \cap L_{\infty}$. This is the case if and only if $f_d(\alpha, \beta) \neq 0$. We assume the genericity of ℓ hereafter. Let $\overline{\Gamma_{\ell}(f)}$ be the projective closure of $\Gamma_{\ell}(f)$ and let $\overline{\Gamma_{\ell}(f)} \cap L_{\infty} = \{Q_1, \ldots, Q_{\delta}\}$. Let γ be a local analytic irreducible component of $\overline{\Gamma_{\ell}(f)}$ at Q_i . Consider an analytic parametrization $\Phi_{\gamma}: (D_{\varepsilon}(0), 0) \to (\gamma, Q_i)$ in a local coordinate system in a neighborhood of Q_i . In the original affine coordinates, this can be written as $\Phi_{\gamma}(t) = (x_{\gamma}(t), y_{\gamma}(t))$ where $x_{\gamma}(t)$ and $y_{\gamma}(t)$ are Laurent series in t. Consider the rational number $v_{\gamma}(f, \tau)$ defined by

$$v_{\gamma}(f, au) = rac{ ext{val}_t(f(x_{\gamma}(t),y_{\gamma}(t))- au)}{ ext{val}_t(\ell(x_{\gamma}(t),y_{\gamma}(t)))}$$

Here val_t is the standard valuation defined by the variable t. It is easy to see that this number depends only on τ , γ and f and it does not depend on the choice of the parametrization. So we call this number the affine polar quotient of the the function $f(x, y) - \tau$ ([9],[15]). This definition is an analogy of the local polar quotient defined in [10]. In the case of $f(x_{\gamma}(t), y_{\gamma}(t)) - \tau \equiv 0$, the valuation val_t $(f(x_{\gamma}(t), y_{\gamma}(t)) - \tau)$ is $+\infty$ by definition. Let p be a positive integer. We use the convention $+\infty/\pm p = \pm\infty$ and $-\infty$ (resp. $+\infty$) is negative (resp. positive). Note that for the definition of the affine polar quotient, the compactification does not make any difference.

We generalize the notion of a regular value at infinity. Let $A_i \in C_0 \cap L_\infty$ (so $\nu_i > 0$) and let $\tau \in \mathbf{C}$. We say that τ is a regular value at A_i for $f : \mathbf{C}^2 \to \mathbf{C}$ if there exists an open neighborhood U of A_i in \mathbf{P}^2 and a positive number ε such that $f : U \cap f^{-1}(D_{\varepsilon}(\tau)) \to D_{\varepsilon}(\tau)$ is a trivial fibration. Here $f^{-1}(D_{\varepsilon}(\tau)) \subset \mathbf{C}^2$ and therefore $U \cap f^{-1}(D_{\varepsilon}(\tau)) \subset U - L_\infty$. Now the importance of the affine polar quotients is the following lemma:

LEMMA (2.1). Assume that ℓ is generic. Then $\tau \in \mathbb{C}$ is a regular value at A_i for $f: \mathbb{C}^2 \to \mathbb{C}$ if the affine polar quotient $v_{\gamma}(f, \tau) \geq 0$ for any local irreducible component γ of $\overline{\Gamma_{\ell}(f)}$ at A_i .

For the proof, we reffer to [12].

COROLLARY (2.1.1)([15]). Assume that ℓ is generic. Then $\tau \in \mathbb{C}$ is a regular value at infinity for the function $f : \mathbb{C}^2 \to \mathbb{C}$ if (and only if) the affine polar quotient satisfies $v_{\gamma}(f, \tau) \geq 0$, for any local irreducible component γ of $\Gamma_{\ell}(f)$ at A_i , i = 0, ..., k + 1.

Note that $\operatorname{val}_t(\ell(x_\gamma(t), \underline{y_\gamma(t)})) < 0$ as $||(x_\gamma(t), y_\gamma(t))|| \to \infty$. Thus for any irreducible component γ at infinity of $\Gamma_\ell(f)$, we have

(2.1.2)
$$v_{\gamma}(f,\tau) \ge 0 \iff \operatorname{val}_t(f(x_{\gamma}(t),y_{\gamma}(t))-\tau) \le 0$$

LEMMA (2.2). Assume that ℓ is generic. Choose A_i with $\nu_i \geq 2$ and let $(x_{\gamma}(t), y_{\gamma}(t))$ be a parametrization of a local irreducible component γ of $\overline{\Gamma_{\ell}(f)}$ at A_i .

- (i) If $v_{\gamma}(f;0) > 0$, then $v_{\gamma}(f;\tau) > 0$ for any any $\tau \in \mathbb{C}$.
- (ii) If $v_{\gamma}(f;0) \leq 0$, there exists a unique $\xi \in \mathbf{C}$ so that $v_{\gamma}(f;\xi) < 0$. For any other $\tau \neq \xi$, $v_{\gamma}(f;\tau) = 0$.

Proof. Assume first that $v_{\gamma}(f; 0) > 0$. Then $\operatorname{val}_t(f(x_{\gamma}(t), y_{\gamma}(t))) < 0$ by (2.1.2) and therefore $\operatorname{val}_t(f(x_{\gamma}(t), y_{\gamma}(t)) - \tau) < 0$ for any τ .

Assume that $v_{\gamma}(f;0) \leq 0$. This implies that $\operatorname{val}_t(f(x_{\gamma}(t), y_{\gamma}(t))) \geq 0$. Then $\lim_{t\to 0} f(x_{\gamma}(t), y_{\gamma}(t))$ is well defined. So we denote this limit by ξ . Then it is obvious that $\operatorname{val}_t(f(x_{\gamma}(t), y_{\gamma}(t)) - \tau) = 0$ for any $\tau \neq \xi$. This completes the proof.

DEFINITION (2.3). We call that a local irreducible component γ of $\overline{\Gamma_{\ell}(f)}$ at A_i is stable (respectively unstable) if $v_{\gamma}(f;0) > 0$ (resp. $v_{\gamma}(f;0) \leq 0$). We denote the set of unstable local irreducible components of $\overline{\Gamma_{\ell}(f)}$ at infinity by $\mathcal{US}(\Gamma_{\ell})$. Assume that γ is a unstable local irreducible component and let ξ be the complex number characterized in (ii). Considering ξ as a function of γ , we write $\xi(\gamma)$. Thus we have a mapping ξ : $\mathcal{US}(\Gamma_{\ell}) \to \mathbb{C}$. $\xi(\gamma)$ is called the limit critical value of f along γ .

COROLLARY (2.3.1). The number of the critical values at infinity $|\Sigma_{\infty}|$ is equal to the cardinality of the image $\xi(\mathcal{US}(\Gamma_{\ell}))$. In particular, it is less than or equal to the cardinality of $\mathcal{US}(\Gamma_{\ell})$.

We define the projective degeneracy at infinity $\nu_{\infty}^{pr}(f)$ by

$$u_{\infty}^{pr}(f) = \sum_{i=0}^{k+1} \max(\nu_i - 1, 0)$$

As the number of irreducible components of $\overline{\Gamma_{\ell}}$ at A_i is less than or equal to $\nu_i - 1$, we have the following estimation.

THEOREM (2.4). The number of critical points at infinity $|\Sigma_{\infty}|$ is less than or equal to $\nu_{\infty}^{pr}(f)$. In particular, $|\Sigma_{\infty}| \leq d-1$.

This estimation can be obtained using the projective compactification but it is not so good when ν_0 or ν_{k+1} is big. It turns out that a suitable toric compactification is more convenient for our purpose.

B. Toric Compactification of C^2 .

Let $f(x,y) = \sum_{(m,n)} a_{m,n} x^m y^n$ be a given polynomial of degree d. As we are interested in the estimation of the number of critical values at infinity, we may assume that $f(0,0) \neq 0$ by adding a constant if necessary. We consider the Newton polygon $\Delta(f)$ of f which is the convex hull of the integral point (m,n) such that $a_{m,n} \neq 0$. By the assumption $f(0,0) \neq 0$, we have $O \in \Delta(f)$. Let N be the space of covectors. Any covector P defines a linear function on $\Delta(f)$. For any integral covector $P = {}^t(p,q)$, let $\Delta(P; f) \subset \Delta(f)$ be the locus where the linear function $P|\Delta(f)$ takes the minimal value. We denote this minimal value by d(P; f) as usual. Let $f_P(x, y)$ be the partial sum

$$f_P(x,y) := \sum_{(m,n)\in\Delta(P;f)} a_{m,n} x^m y^n$$

and we call f_P the face function of the covector P. The dual Newton diagram $\Gamma^*(f)$ is defined by the following equivalence relation in $N: P \sim Q$ if and only if $\Delta(P; f) = \Delta(Q; f)$. Here $\Delta(P; f)$ is the locus where the linear function $P|\Delta(f)$ takes its minimal value. Let Σ^* be a regular simplicial cone subdivision of $\Gamma^*(f)$ and let X be the toric variety associated with Σ^* . Let $E_1 = {}^t(1,0), E_2 = {}^t(0,1)$. It is easy to see that $\operatorname{Cone}(E_1,E_2)$ is admissible with Σ^* . This is immediate from the assumption that $O \in \Delta(f)$. Thus we may assume that $\operatorname{Cone}(E_1,E_2)$ is a simplicial cone in Σ^* . Let R_1,\ldots,R_{μ} be the vertices of Σ^* in the counter-clockwise orientation where $R_1 = E_1, R_2 = E_2$. Thus $\sigma_i := \operatorname{Cone}(R_i, R_{i+1}), i = 1, \ldots, \mu$ be the two-dimensional simplicial cones in Σ^* where $R_{\mu+1} = R_1$. Here we assume $R_1 = E_1, R_2 = E_2, R_{\mu+1} = R_1$. Let $\sigma_1 = \operatorname{Cone}(E_1, E_2)$. Recall that X is a smooth compact toric variety of dimension 2 whose affine charts are $\mathbf{C}^*_{\sigma_i}; i = 1, \ldots, \mu$ and it has the canonical decomposition

$$X = \mathbf{C}^{*2} \coprod_{i=1}^{\mu} \widehat{E}(R_i)$$

where $\widehat{E}(R_i)$ is a rational curve corresponding to the vertex $R_i \in \operatorname{Vertex}(\Sigma^*)$. The divisor $\widehat{E}(R_i)$ intersects with $\widehat{E}(R_{i-1})$ and $\widehat{E}(R_{i+1})$. So the dual graph of the divisors $\widehat{E}(R_i)$, $i = 1, \ldots, \mu$ makes a cycle. Taking a subdivision if necessary, we may assume that $H := {}^t(-1, -1)$ in $\operatorname{Vertex}(\Sigma^*)$. Thus we assume that $H = R_{\theta}$ for some $3 \leq \theta \leq \mu$. The projective compactification corresponds to the smallest simplicial cone Σ_0^* which has three vertices $\{E_1, E_2, H\}$. Let (u_i, v_i) be the corresponding coordinates of the chart $C_{\sigma_i}^2$. Let us consider the unimodular matrix σ'_i corresponding to the vertices of the cone σ_i :

$$\sigma'_i = \begin{pmatrix} a_i & a_{i+1} \\ b_i & b_{i+1} \end{pmatrix}$$

 $(a_i b_{i+1} - a_{i+1} b_i = 1)$. Then the original affine space is identified with the coordinate space $\mathbf{C}^2_{\sigma_1}$ with $x = u_1, y = v_1$. Recall that $\mathbf{C}^2_{\sigma_i}$ is glued with the original affine space \mathbf{C}^2 by

(2.5)
$$\begin{cases} x = u_i^{a_i} v_i^{a_{i+1}} \\ y = u_i^{b_i} v_i^{b_{i+1}} \end{cases}, \quad \begin{cases} u_i = x^{b_{i+1}} y^{-a_{i+1}} \\ v_i = x^{-b_i} y^{a_i} \end{cases}$$

We consider the curve $C = \{(x, y) \in \mathbf{C}^2; f(x, y) = 0\}$ in the original affine space \mathbf{C}^2 and let \widetilde{C} be the closure of C in X. The curve \widetilde{C} is defined in $\mathbf{C}^2_{\sigma_1}$ by the equation

 $f_{\sigma_i}(u_i, v_i) = 0$ where $f_{\sigma_i}(u_i, v_i)$ is defined by

$$f_{\sigma_i}(u_i, v_i) := f(u_i^{a_i} v_i^{a_{i+1}}, u_i^{b_i} v_i^{b_{i+1}}) / u_i^{d(R_i;f)} v_i^{d(R_{i+1};f)}$$

In $\mathbf{C}^2_{\sigma_i}$, $\widehat{E}(R_i)$ is defined by $u_i = 0$. It is easy to see that $f_{\sigma_i}(0,0) \neq 0$ and

$$f_{\sigma_i}(0, v_i) = f_{R_i}(u_i^{a_i} v_i^{a_{i+1}}, u_i^{b_i} v_i^{b_{i+1}}) / u_i^{d(R_i;f)} v_i^{d(R_{i+1};f)}$$

is non-constant if and only if dim $\Delta(R_i; f) \geq 1$. Let D_1, \ldots, D_m be the faces of $\Delta(f)$ in the counter-clockwise orientation so that D_1, D_m contains the origin O. Let $P_i = {}^t(p_i, q_i)$ be the corresponding primitive integral covector of D_i . Note that each P_i must be a vertex of Σ^* and therefore we can write $P_i = R_{\nu_i}$ for some $1 \leq \nu_i \leq \mu$. Then we can write

(2.6)
$$f_{P_i}(x,y) = \delta_i x^{r_i} y^{s_i} \prod_{j=1}^{L_i} (y^{p_j} - \xi_{i,j} x^{q_i})^{\nu_{i,j}}$$

where $\delta_i \in \mathbf{C}^*$ and $\xi_{i,j}$, $1 \leq j \leq \ell_i$ are mutually distinct non-zero complex numbers. By the above consideration, $\widehat{E}(R_i) \cap C \neq \emptyset$ if and only if $i = \nu_j$ for some $1 \leq j \leq m$. We consider the toric coordinate chart $\sigma_{\nu_i} = \operatorname{Cone}(R_{\nu_i}, R_{\nu_i+1})$. Then

(2.7)
$$h_{\sigma_i}(0, v_i) = \delta_i \prod_{j=1}^{\ell_i} (v_i - \xi_{i,j})^{\nu_i, j}$$

Thus $\widehat{E}(R_{\nu_i}) \cap \widetilde{C}$ consists of ℓ_i points $\{(0,\xi_{i,j}); j = 1,\ldots,\ell_i\} \subset \mathbf{C}^2_{\sigma_{\nu_i}}$. Put $A_{i,j} := (0,\xi_{i,j}) \in \widehat{E}(R_{\nu_i}) \cap \widetilde{C}$ for $1 \leq i \leq m, 1 \leq j \leq \ell_i$. See [20], [16], [7] for further information about the toric compactification.

Now we consider the limit of the value of the function f along an irreducible component γ of $o\Gamma_{\ell}(f)$. Let $\Phi_{\gamma}(t)$ be a parametrization of γ in the coordinates (x, y) (namely in $\mathbf{C}_{\sigma_1}^2$) in the neighborhood of the infinity where $x_{\gamma}(t)$ and $y_{\gamma}(t)$ are Laurent series in the variable t. We assume that $x_{\gamma}(t), y_{\gamma}(t) \neq 0$ and write them as

(2.8)
$$\begin{cases} x_{\gamma}(t) = \alpha_{\gamma} t^{p_{\gamma}} + \text{ (higher terms)} \\ y_{\gamma}(t) = \beta_{\gamma} t^{q_{\gamma}} + \text{ (higher terms)}, \quad t \in D_{\varepsilon}(0) \end{cases}$$

Let $Q_{\gamma} := {}^{t}(p_{\gamma}, q_{\gamma}) \in N$ and $A_{\gamma} := (\alpha_{\gamma}, \beta_{\gamma})$. We assume that (2.8.1) $\min(p_{\gamma}, q_{\gamma}) < 0, \quad \alpha_{\gamma}, \beta_{\gamma} \neq 0$

so that $x_{\gamma}(t) \not\equiv 0, \ y_{\gamma}(t) \not\equiv 0$ and $|x_{\gamma}(t)|^2 + |y_{\gamma}(t)|^2 \to \infty$. In this situation, we have

PROPOSITION (2.9). (i) We have $\operatorname{val}_t f(x_{\gamma}(t), y_{\gamma}(t)) \ge d(Q_{\gamma}; f)$ and the inequality holds if and only if $Q_{\gamma} \sim P_i$ and $\beta_{\gamma}^{p_i} - \xi_{i,j} x_{\gamma}^{q_i} = 0$ for some $i, 1 \le i \le m$ and $j, 1 \le j \le \ell_i$.

(ii) The limit $\lim_{t\to 0} \Phi_{\gamma}(t)$ in X always exists and we have

$$\lim_{t \to 0} \Phi_{\gamma}(t) = \begin{cases} (0,0) \in \mathbf{C}^{2}_{\sigma_{j}} & \text{if } Q_{\gamma} \in \operatorname{IntCone}(R_{j}, R_{j+1}) \\ (0, \alpha_{\gamma}^{-b_{j}} \beta_{\gamma}^{b_{j}}) \in \mathbf{C}^{2}_{\sigma_{j}} & \text{if } Q_{\gamma} = cR_{j}, \text{ for some } c > 0 \end{cases}$$

Here $\operatorname{IntCone}(R_j, R_{j+1})$ is the open cone generated by R_j and R_{j+1} . In particular, if $Q_{\gamma} \sim P_i$ and $\beta_{\gamma}^{p_i} - \xi_{i,j} x_{\gamma}^{q_i} = 0$ for some $i, 1 \leq i \leq m, \lim_{t \to 0} \Phi_{\gamma}(t) = (0, \xi_{i,j}) \in \mathbb{C}^2_{\sigma_{\nu_i}}$.

We refer to [12] for the further detail. Note that $d(Q_{\gamma}; f) \leq 0$. By (i) and Lemma (2.1), we have to check the stability at $A_{i,j}$ with $\nu_{i,j} \geq 2$.

3. Toric estimation.

Let f(x, y) be as before. We will generalize Theorem (2.4) using the toric embedding theory. We assume for brevity that dim $\Delta(f) = 2$ but every argument works even in the case dim $\Delta(f) = 1$. Let D_1, \ldots, D_m be the faces of $\Delta(f)$ in the clockwise orientation so that D_1, D_m contain the origin. Let $P_i = {}^t(p_i, q_i)$ be the corresponding primitive integral covector of D_i . To get a better estimation, we first introduce the reduced polynomial $\tilde{f}(x, y) := f(x, y) - f(0, 0)$. Note that $\Delta(\tilde{f}) \subset \Delta(f)$ but $O \notin \Delta(\tilde{f})$. We factorize $\tilde{f}_{P_i}(x, y)$ as follows.

(3.1)
$$\widetilde{f}_{P_i}(x,y) = \delta_i x^{r_i} y^{s_i} \prod_{j=1}^{\ell_i} (y^{p_i} - \xi_{i,j} x^{q_i})^{\nu_{i,j}}$$

Note that $f_{P_i}(x,y) = \widetilde{f}_{P_i}(x,y)$ for i = 2, ..., m-1. We define the following integers

(3.2.1)
$$\nu(D_i) = \sum_{i=1}^{\ell_i} (\nu_{i,j} - 1), \quad \eta(D_i) = \sum_{i=1}^{\ell_i} \nu_{i,j}$$

(3.2.2)
$$\eta(D_1)' = \begin{cases} \eta(D_1), & p_1 < 0\\ 0, & p_1 = 0 \end{cases}, \quad \eta(D_m)' = \begin{cases} \eta(D_m), & q_m < 0\\ 0, & q_m = 0 \end{cases}$$

(3.2.3)
$$\varepsilon_x(f) = s_1 + p_1 \sum_{j=1}^{\ell_1} \nu_{1,j}, \qquad \varepsilon_y(f) = x_m + q_m \sum_{j=1}^{\ell_m} \nu_{m,j}$$

(3.2.4)
$$\varepsilon(f) = \begin{cases} 0, & \max(\varepsilon_x(f), \varepsilon_y(f)) \le 1\\ 1, & \max(\varepsilon_x(f), \varepsilon_y(f)) \ge 2 \end{cases}$$

Note that $\varepsilon_x(f)$ (respectively $\varepsilon_y(f)$) is the y-coordinate (resp. x-coordinate) of the left side edge of $\tilde{\Delta}_1 = \Delta(P_1; \tilde{f})$ (resp. $\tilde{\Delta}_m = \Delta(P_m; \tilde{f})$).

Let us define define the toric degeneracy $\nu_{\infty}^{tor}(f)$ by

(3.3)
$$\nu_{\infty}^{tor}(f) = \sum_{i=2}^{m-1} \nu(D_i) + \eta(D_1)' + \eta(D_m)' + \varepsilon(f)$$

The toric degeneracy $\nu_{\infty}^{tor}(f)$ is smaller than the projective degeneracy $\nu_{\infty}^{pr}(f)$ in general. Now we are ready to state the main theorem.

MAIN THEOREM (3.4). The number of critical values from infinity of the function f is less than or equal to $\nu_{\infty}^{tor}(f)$.

We say that f(x, y) is non-degenerate on the outside boundary if $\nu(D_i) = 0$ for any $2 \le i \le m-1$. Recall that \tilde{f} is convenient iff $\tilde{f}(x, 0) \ne 0$ and $\tilde{f}(0, y) \ne 0$.

COROLLARY (3.4.1) ([20]). Assume that $\tilde{f}(x, y)$ is a convenient polynomial. Then $\nu_{\infty}^{tor}(f) = \sum_{i=2}^{m-1} \nu(D_i)$. In particular, if $\tilde{f}(x, y)$ has non-degenerate outside Newton boundaries, f has no critical value from the infinity.

We give an outline of the Main theorem. For the detail, we refer to [12].

Let γ be an unstable irreducible component of $\Gamma_{\ell}(f)$ at infinity and let $\Phi_{\gamma}(t)$ be a parametrization of γ in the coordinates (x, y) where $x_{\gamma}(t)$ and $y_{\gamma}(t)$ are Laurent series in the variable t. We assume first that

$$x_{\gamma}(t), y_{\gamma}(t) \not\equiv 0$$
 and $|x_{\gamma}(t)|^2 + |y_{\gamma}(t)|^2 \to \infty \ (t \to 0)$

and we expand them in Laurent series as

(3.5)
$$\begin{cases} x_{\gamma}(t) = a_{\gamma}t^{p_{\gamma}} + \text{ (higher terms)} \\ y_{\gamma}(t) = b_{\gamma}t^{q_{\gamma}} + \text{ (higher terms)} \end{cases}$$

The case $x_{\gamma}(t)y_{\gamma}(t) \equiv 0$ will be treated later. Let $Q_{\gamma} := {}^{t}(p_{\gamma}, q_{\gamma}) \in N$ and $A_{\gamma} := (a_{\gamma}, b_{\gamma})$. By the assumption we have that

(3.6)
$$A_{\gamma} \in \mathbf{C}^{*2}, \quad \min(p_{\gamma}, q_{\gamma}) < 0$$

First we have the following Proposition:

PROPOSITION (3.7). We have $\operatorname{val}_t f(\ell(x_\gamma(t), y_\gamma(t))) \ge d(Q_\gamma; f)$ and the inequality holds if and on if

$$Q_{\gamma} = cP_i, \quad f_{P_i}(A_{\gamma}) = 0 \quad \text{for some } c > 0 \quad \text{and } 1 \leq i \leq m.$$

Recall that $\Gamma_{\ell}(f)$ is defined by $\Gamma_{\ell}(f) = \{(x, y) \in \mathbf{C}^2; J(x, y) = 0\}$ where

$$J(x,y) = \alpha \frac{\partial f}{\partial x}(x,y) + \beta \frac{\partial f}{\partial y}(x,y) = \alpha \frac{\partial \widetilde{f}}{\partial x}(x,y) + \beta \frac{\partial \widetilde{f}}{\partial y}(x,y) = 0$$

First we observe that the Newton boundary $\Delta(J)$ is slightly different from $\Delta(\tilde{f})$ but the following is enough for our purpose.

$$(3.8) \quad J_{Q_{\gamma}}(x,y) = \begin{cases} \alpha \frac{\partial \tilde{f}_{Q_{\gamma}}}{\partial x}(x,y) + \beta \frac{\partial \tilde{f}_{Q_{\gamma}}}{\partial y}(x,y) & p_{\gamma} = q_{\gamma} \\\\ \alpha \frac{\partial \tilde{f}_{Q_{\gamma}}}{\partial x}(x,y) & p_{\gamma} > q_{\gamma}, \ \tilde{f}_{Q_{\gamma}}(x,y) \neq \tilde{f}_{Q_{\gamma}}(0,y) \\\\ \beta \frac{\partial \tilde{f}_{Q_{\gamma}}}{\partial y}(x,y) & p_{\gamma} < q_{\gamma}, \ \tilde{f}_{Q_{\gamma}}(x,y) \neq \tilde{f}_{Q_{\gamma}}(x,0) \end{cases}$$

We divide the situation in two cases.

CASE I.
$$d(Q_{\gamma}; f) < 0.$$
 CASE II. $d(Q_{\gamma}; f) = 0.$

We first consider the case:

<u>CASE</u> I. $d(Q_{\gamma}; f) < 0$. We assume that γ is an unstable irreducible component of $\overline{\Gamma_{\ell}(f)}$ at infinity. Then by Proposition (3.7), we must have $Q_{\gamma} = cP_i$ with $2 \leq i \leq$ m-1. We call the face D_2, \ldots, D_{m-1} the outside faces of $\Delta(f)$. We ask how many such components are possible for a fixed *i*. By an easy computation, we can see that the multiplicity of $y^{p_i} - \xi_{i,j} x^{q_i}$ in the factorization of $J_{P_i}(x, y)$ is exactly $\nu_{i,j} - 1$. Thus by the argument in the previous section, the local equation of $\overline{\Gamma_{\ell}(f)}$ in the toric coordinate chart $C^2_{\sigma_{\nu}}$ is of the form

$$\delta_i \eta(v_{\nu_i}) \left\{ \prod_{j=1}^{\ell_i} (v_{\nu_i} - \xi_{i,j})^{\nu_{i,j}-1} + u_{\nu_i} g(u_{\nu_i}, v_{\nu_i}) \right\} = 0$$

where $\delta_i \neq 0$, $\eta(v_{\nu_i})$ is a polynomial with $\eta(\xi_{i,j}) \neq 0$ for any $j = 1, \ldots, \ell_i$. (Recall that $P_i = R_{\nu_i}$ and $\sigma_{\nu_i} = \text{Cone}(R_{\nu_i}, R_{\nu_i+1})$.) Let $A_{i,j} = (0, \xi_{i,j}) \in \mathbf{C}^2_{\sigma_{\nu_i}}$. Thus by an easy argument, we have

PROPOSITION (3.9). The number of local irreducible components γ at infinity of $\overline{\Gamma_{\ell}(f)}$ such that $\lim_{t\to 0} (x_{\gamma}(t), y(\gamma(t))) = A_{i,j}$ is at most $\nu_{i,j} - 1$ for any $2 \leq i \leq m-1$. Thus the number of the unstable irreducible components γ such that the limit $\lim_{t\to 0} (x_{\gamma}(t), y(\gamma(t)))$ intersect with the divisor $\widehat{E}(P_i)$ is bounded by $\nu(D_i)$.

Now we consider the second case: $d(Q_{\gamma}; f) = 0$. Then it is clear that $d(Q_{\gamma}; \tilde{f}) \ge 0$. We divide Case II into two subcases.

CASE II-1.
$$d(Q_{\gamma}; \tilde{f}) = 0.$$
 CASE II-2. $d(Q_{\gamma}; \tilde{f}) > 0.$

Recall that D_1 and D_m are the face which contains the origin O. Let $\widetilde{D_1} = \Delta(P_1; \widetilde{f})$ and $\widetilde{D_m} = \Delta(P_m; \widetilde{f})$. We call D_1 and D_m (respectively $\widetilde{D_1}$ and $\widetilde{D_m}$) the right and left conical faces of f(x, y) (respectively of $\widetilde{f}(x, y)$). Note that $\widetilde{D_i} \subset D_i$ and $\widetilde{D_i}$ might be a vertex for i = 1, m. $\widetilde{D_1}, \widetilde{D_m}$ are called bad faces in [14]. It is more convenient to consider the factorization of $\widetilde{f}_{P_1}(x, y)$:

(3.10.1)
$$\widetilde{f}_{P_1}(x,y) = \delta_1 (x^{q_1} y^{-p_1})^{e_1} \prod_{j=1}^{\ell_1} (1 - \xi_{1,j} x^{q_1} y^{-p_1})^{\nu_{1,j}}, \quad e_1 > 0$$

(3.10.2)
$$\widetilde{f}_{P_m}(x,y) = \delta_m (x^{-q_m} y^{p_m})^{e_m} \prod_{j=1}^{\ell_m} (x^{-q_m} y^{p_m} - \xi_{m,j})^{\nu_{m,j}}, \qquad e_m > 0$$

Comparing with (3.1), we have

$$r_{1} = q_{1}e_{1}, \quad s_{1} + p_{1}\sum_{j=1}^{\ell_{1}}\nu_{1,j} = -p_{1}e_{1}$$
$$r_{m} + q_{m}\sum_{j=1}^{\ell_{m}}\nu_{m,j} = -q_{m}e_{m}, \quad s_{m} = p_{m}e_{m}$$

Now we consider Case II-1 first. In this case, we must have either $Q_{\gamma} = cP_1$ or $Q_{\gamma} = cP_m$ for some c > 0. Let us consider the case $Q_{\gamma} = cP_1$ for instance. By the assumption $\min(p_i, q_i) < 0$ and $\dim(\Delta(f)) = 2$, we must have $p_1 < 0 < q_1$ if such a γ exists. Now we assert

LEMMA (3.11). The number of the local irreducible components of $\overline{\Gamma_{\ell}(f)}$ of type Case II-1 with $Q_{\gamma} = cP_1$, c > 0 (respectively $Q_{\gamma} = cP_m$, c > 0) is less than or equal to $\eta(D_1)'$ (respectively $\eta(D_m)'$). They are all unstable.

See [12] for the proof. Now we consider the last case:

CASE II-2. $d(Q_{\gamma}; f) = 0$ and $d(Q_{\gamma}; \tilde{f}) > 0$.

This is the case if and only if $\Delta(Q_{\gamma}; f) = \{O\}$ and $p_{\gamma}q_{\gamma} < 0$. So we assume for example

 $(3.12) p_{\gamma} < 0 < q_{\gamma}$

By the assumption $d(Q_{\gamma}; \tilde{f}) > 0$, we have that $\tilde{f}_{Q_{\gamma}}(x, 0) \equiv 0$. (If $\tilde{f}_{Q_{\gamma}}(x, 0) \not\equiv 0$, we get a contradiction: $d(Q_{\gamma}; \tilde{f}) < 0$.) and $\tilde{f}_{Q_{\gamma}}(x, y) \neq \tilde{f}_{Q_{\gamma}}(x, 0)$. Thus by (3.8) $J_{Q_{\gamma}}(x, y) = \frac{\partial f_{Q_{\gamma}}}{\partial y}(x, y)$. The assumption $\Delta(Q_{\gamma}; f) = \{O\}$ implies that $p_1 < 0 < q_1$ and

$$(3.13) \qquad \qquad \det(Q_{\gamma}, P_1) > 0$$

We consider the equality $J(x_{\gamma}(t), y_{\gamma}(t)) \equiv 0$. The leading term of this equality gives the following necessary condition is that

(3.14)
$$J_{Q_{\gamma}}(A_{\gamma}) = \frac{\partial f_{Q_{\gamma}}}{\partial u}(A_{\gamma}) = 0$$

By (3.14), we must have

$$\dim \Delta(Q_{\gamma}; f) = 1$$

Such a face $\Delta(Q_{\gamma}; \tilde{f})$ is called an inside face with mixed weight vector of $\tilde{f}(x, y)$. Geometrically the supporting line of such a face separates the Newton polygon $\Delta(\tilde{f})$ and the origin O. We consider the right conical face $\widetilde{D_1}$. By the expression (3.1) or (3.10), the left edge of $\widetilde{D_1}$ is $R := (r_1, s_1 + p_1 \sum_{j=1}^{\ell_1} \nu_{1,j}) = (q_1e_1, -p_1e_1)$. This gives a vertex $(q_1e_1, -p_1e_1 - 1)$ of the Newton polygon $\Delta(J)$ by the differential in y.

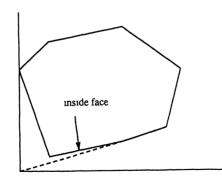


Figure (3.17.A)

If $-p_1e_1 = 1$, it is easy to see that there exists no inside face of mixed weight Q_{γ} with $p_{\gamma} < 0 < q_{\gamma}$. Therefore we assume

$$(3.16) -p_1 e_1 \ge 2$$

In this case, it is not necessary to count the number of such local irreducible components. In fact, we have PROPOSITION (3.17). Each local irreducible components γ of $\overline{\Gamma_{\ell}(f)}$ of Case II-2 gives the limit critical value -f(0,0).

Proof. By the assumption, we have

 $f(x_{\gamma}(t), y_{\gamma}(t)) = f(0, 0) + (\text{higher terms})$

Thus the assertion is trivial. \Box

Until now, we have assumed that $x_{\gamma}(t), y_{\gamma}(t) \neq 0$. Now we consider the exceptional case that $x_{\gamma}(t) \equiv 0$ or $y_{\gamma}(t) \equiv 0$. Assume for example

$$\gamma: x_{\gamma}(t) = 1/t, \qquad y_{\gamma}(t) \equiv 0$$

This implies that y divides J(x, y). By the above argument, it is necessary that $-p_1e_1 \ge 2$. In this case, we can see that $f(x, 0) \equiv f(0, 0)$. Thus if this is the case, $\operatorname{val}_t f(x_{\gamma}(t), y_{\gamma}(t)) = 0$ and γ is unstable and the corresponding limit critical value is again -f(0, 0). Now summerizing the above argument, we have

PROPOSITION (3.18). Assume that $-p_1e_1 \ge 2$ in (3.10.1) (respectively $-q_m e_m \ge 2$ in (3.10.2)). Then either there exists an unstable local irreducible component of $\Gamma_{\ell}(f)$ of type Case II-2 with $p_{\gamma} < 0 < q_{\gamma}$ (resp. $q_{\gamma} < 0 < p_{\gamma}$), or y = 0 (resp. x = 0) is a (global) component of $\Gamma_{\ell}(f)$. In any case, the possible limit critical value is -f(0,0).

Now we give several examples.

Example (3.19). (A) Let $\tilde{f}(x,y) = y^{2n} + x^{3n}y^n(x+y)^n + x^4y$. Then $\Delta(\tilde{f})$ has four faces. In this example, d = 5n and $\tilde{f}_{5n} = x^{3n}y^n(x+y)^n$, and the projective degeneracy at infinity $\nu_{\infty}^{pr}(f) = 5n - 3$. On the other hand, $\eta(D_l)' = n - 1$, $\nu(\Delta_2) = n - 1$ and $\nu(D_3) = 0$, $\eta(D_4)' = 0$ and $\varepsilon(f) = 0$. Thus we have $\nu_{\infty}^{tor}(f) = 2n - 2$.

(B) Let $\tilde{f}(x,y) = x^4y^4 + xy^3 + x^3y^2 + xy$. In this example, we have $\nu(\Delta_2) = \nu(\Delta_3) = 0$, $\eta(D_1)' = \eta(D_4)' = 0$ and $\varepsilon(f) = 1$ and $\nu_{\infty}^{tor}(f) = 1$. In fact, 0 is the only critical point of \tilde{f} from the infinity.

(C) Let $\tilde{f}(x,y) = x + c_2 x^2 + \cdots + c_n x^n + x^m y$. Then $\Delta(\tilde{f})$ has three faces and $\nu_{\infty}^{tor}(\tilde{f}) = 1$. In fact, \tilde{f} has one critical value 0 from the infinity. This polynomial has no critical point ([19]).

Reference

- S.A. Broughton, On the topology of polynomial hypersurfaces, Proceedings of Symposia in Pure Mathematics, 40, AMS, 1983, pp. 167–178.
- [2] H.V. Hà et D.T. Lê, Sur la topologie des polynôme complexes, Acta Math. Vietnamica 9, n.1 (1984), pp. 21-32.
- [3] H.V. Hà et L.A. Nguyen, Le comportement géométrique à l'infini des polynômes de deux variables, C.R. Acad. Sci. Paris t. 309 (1989), pp. 183-186.
- [4] H.V. Hà, Nombres de Lojasiewicz et singularités à l'infini des polynômes de deux variables complexes, C.R. Acad. Sci. Paris t. 311 (1990), pp. 429-432.
- [5] A.G. Khovanskii, Newton polyhedra and toral varieties, Funkts. Anal. Prilozhen. 11, No. 4 (1977), pp. 56-67.

- [6] A.G. Kouchnirenko, Polyèdres de Newton et Nombres de Milnor, Inventiones Math. 32 (1976), pp. 1-32.
- [7] G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat, Toroidal Embeddings, vol. 339, Lecture Notes in Math., Springer, Berlin-Heidelberg-New York, 1973.
- [8] D.T. Lê, Sur un critére d'equisingularité, C.R. Acad. Sci. Paris, Ser. A-B 272 (1971), pp. 138– 140.
- [9] V.T. Le, Affine polar quotients of algebraic plane curve, Acta. Math. Viet. 17 (1992), pp. 95-102.
- [10] D.T. Lê, F. Michel and C. Weber, Courbes polaires et topologie des courbes planes, Ann. Sc. Ec. Norm. Sup. 4^e Series 24 (1991), pp. 141–169.
- [11] D.T. Lê and M. Oka, On the Resolution Complexity of Plane Curves, preprint.
- [12] V.T. Le and M. Oka, Estimation of the Number of the Critical Values at Infinity of a Polynomial Function $f: \mathbb{C}^2 \to \mathbb{C}$, Titech-Math 07-93.
- [13] J. Milnor, Singular Points of Complex Hypersurface, Annals Math. Studies, vol. 61, Princeton Univ. Press, Princeton, 1968.
- [14] A. Némethi and A. Zaharia, On the bifurcation set of a polynomial function and Newton boundary, Publ. RIMS. Kyoto Univ. 26 (1990), pp. 681–689.
- [15] W.D. Neumann and V.T. Le, On irregular links at infinity of algebraic plane curves, Math. Annalen 295 (1993), pp. 239-244.
- [16] T. Oda, Convex Bodies and Algebraic Geometry, Springer, Berlin-Heidelberg-New York, 1987.
- [17] M. Oka, On the topology of the Newton boundary II, J. Math. Soc. Japan 32 (1980), pp. 65–92.
- [18] —, On the topology of the Newton boundary III, J. Math. Soc. Japan 34 (1982), pp. 541–549.
- [19] —, On the boundary obstructions to the Jacobican problem, Kodai Math. J. 6 (1983), pp. 419-433.
- [20] —, On the topology of full non-degenerate complete intersection variety, Nagoya Math. J. 121 (1991), pp. 137-148.
- [21] —, Geometry of plane curves via toroidal resolution, to appear in Proceeding of Algebraic Geometry, Ladabida, 1991.
- [22] —, A Lefshetz type theorem in a torus, to appear in Proceeding of College of Singularity at Trieste 1991.
- [23] J.P. Verdier, Stratifications de Whitney et théorème de Bertini-Sard, Inventiones Math. 36 (1976), pp. 295-312.
- [24] O. Zariski, Studies in equisingularity, I, Amer. J. Math. 31 (1965), pp. 507-537.

LE VAN THANH INSTITUTE OF MATHEMATICS P.O. Box 631 Bo Hô, 10000 Hanoi

MUTSUO OKA DEPARTMENT OF MATH. TOKYO INST. OF TECH. OH-OKAYAMA, MEGURO-KU, TOKYO 152