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NOTE ON ESTIMATION OF THE NUMBER OF THE
CRITICAL VALUES AT INFINITY

BY LE VAN THANH AND MUTSUO OKA

1. Let /(#, y] be a polynomial of degree d and we consider the polynomial function
/ : C2 —> C. Let Σ(/) be the critical values. The restriction

/ :C 2 ^Γ 1 (Σ)-^C-Σ

is not necessarily a locally trivial fibration. We say that τ £ C is a regular value at
infinity of the function / : C2 —» C if there exist positive numbers R and ε so that the
restriction of /, / : f~l(Dε(r)) — B^ -» De(r), is a trivial fibration over the disc Dε(r)
where Dε(τ) - {η G C; \η - τ\ < ε} and B*R = {(z, y); \x\2 + \y\2 < R}. Otherwise r is
a called a critical value at infinity. We denote the set of the critical values at infinity

by ΣOO It is known that ΣCO is finite ([23], [2]). The purpose of this note is to give
an estimation on the number of critical values at infinity. The detail will be published
elsewhere ([12]).

We first consider the canonical projective compactification C2 C P2. We denote the
homogeneous coordinates of P2 by X, y, Z so that x = X/Z and y = Y/Z Let LOO be
the line at infinity: LOO = {Z = 0}. Write

/(*, y) = /o + /i (*, y) + + fd(χ, y)
where /;(#, y) is a homogeneous polynomial of degree i for i = 0 , . . . , d. We can write

k

(1.1) fd(x,y) = cxl">y'">

where c £ C* and A I , . . . , Aj. are non-zero distinct numbers and we assume that vi > 0
for 1 < i < k and ι/0, *ΆH-I > 0. Note that we have the equality

(1.2) i/o + + iΉ-i =d

Let Cτ be the projective curve which is the closure of the fiber f~l(τ). Then Cτ is defined
by Cτ = {(X\Y\Z] G P2;F(X,Y,Z) - rZd = 0} where F(XtY,Z) is the homogeneous
polynomial defined by

(1.3) F(X,Y,Z) = f(X/Z,Y/Z}Zd = hZd + h(X,Y)Zd~l -f • + fd(X,Y)

The intersection of Cτ and the line at infinity, Cτ Π LOO , is independent of r £ C2 and
it is the base point locus of the family {Cτ\r £ C}. Obviously we have Cτ Π Z/oo =
{Z = /d(X,y) = 0}. For brevity, let At = (^ A O) G P2 for i = 0,. , f e + 1 where
AQ = (0; l;0),^4jfe+ι = (l O O) and βi/oci = λt for 1 <i<k. Then under the assumption

(1.1), Co Π La, — {Λ t̂ > 0}. Note that A t e Co Π Loo for i = 1 , . . . , fc. We consider
the family of germs of a curve at A3: {(Cτ, A ;);r E C } . Then it is known that r is a
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regular value at infinity if and only if {(Ct,Aj)]t 6 C} is a topologically stable family
near t — r for any A3 with Vj > 0 ([2]). This is the case if f(x,y) — r is reduced and
the local Milnor number μ of the family {(Ct, A j ) ] t £ C} is constant in a neighborhood
U of r £ C. To study the stability of the local topological type at A3, we will use the
affine polar quotient along the polar curve at infinity.

2. Affine polar quotients and a toric compactification.

A. Affine polar quotients.
Let £(x, y) = ay — βx be a linear form. The polar curve Γ/(/) for / with respect to

I is defined by the Jacobian Γ*(/) - {(#, y) £ C2; J(f,t)(x, y) = 0} where

Γ/(/) is an affine curve of degree d — 1 and equal to the critical locus of the mapping
( f , l ) : C2 -> C2. Let Lη be the projective line {aΎ -βX-ηZ = 0} which is the closure
of the affine line ί~l(ή). The base point of this pencil {Lη\η £ C} is B — (α;/3;0) in
the homogeneous coordinates. We say that ί is genenc at infinity for the polynomial / if
B £ CQ Π LOO This is the case if and only if fd(a, β) Φ 0. We assume the genericity of ί

hereafter. Let Γ/(/) be the projective closure of Γ/(/) and let Γ/(/)fUoo = {Qi, . . , Qδ}
Let 7 be a local analytic irreducible component of Γ/(/) at (jt . Consider an analytic
parametrization Φ7 : (Dε(Q), 0) — >• (7, Q, ) in a local coordinate system in a neighborhood
of Qi. In the original affine coordinates, this can be written as Φ7(tf) = (xΊ(t),yΊ(t))
where xΊ(i) and yΊ(t) are Laurent series in t. Consider the rational number v^(f,τ)
defined by

, (f ._ valt(/(x
7U> } vaJt(ί

Here valt is the standard valuation defined by the variable t. It is easy to see that
this number depends only on r, 7 and / and it does not depend on the choice of the
parametrization. So we call this number the affine polar quotient of the the function
/(#, y) — r ([9], [15]). This definition is an analogy of the local polar quotient defined in
[10J. In the case of f(xΊ(t),y-γ(t)) — r = 0, the valuation v&lt(f(xΊ(t),yΊ(t)) — r) is +00
by definition. Let p be a positive integer. We use the convention +oo/ ± p = ±00 and
—oo (resp. +00) is negative (resp. positive). Note that for the definition of the affine
polar quotient, the compactification does not make any difference.

We generalize the notion of a regular value at infinity. Let Az £ CO Π L^ (so ι/t >
0) and let r G C. We say that τ is a regular value at Aτ for / : C2 — > C if there
exists an open neighborhood U of Aτ in P2 and a positive number ε such that / :
U Π fl(De(r)) -+ De(τ) is a trivial fibration. Here f~l(Dε(τ)) C C2 and therefore
U Π f~l(Dε(r)) C U — LOQ. Now the importance of the affine polar quotients is the
following lemma:

LEMMA (2.1). Assume that I is genenc. Then r £ C is a regular value at A% for
f : C2 — > C if the affine polar quotient v7(/, r) > 0 for any local irreducible component

7 o f T ι ( f ) atAi.

For the proof, we reffer to [12].
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COROLLARY (2.1.1)([15j). Assume that f. is generic. Then τ £ C is a regular value
at infinity for the function f : C2 -* C if (and only if) the affine polar quotient satisfies
vy(f,T) > 0; for any l°cal irreducible component 7 o f T ι ( f ) at Ai, « = 0, . . . , fc + 1.

Note that vdλt(t(xΊ(t),yΊ(t)}} < 0 as \\(xΊ(t),yΊ(t)}\\ -> oo. Thus for any irreducible
component 7 at infinity of Γ/(/), we have

(2.1.2) vΊ(f, r) > 0 <=> vai«(/(*7(ί),^(ί)) - r) < 0

LEMMA (2.2). Assume thatt is generic. Choose A% with ι/i>2 and let (xΊ(t),yΊ(t))
be a parametnzation of a local irreducible component 7 o f Γ ι ( f ) at A%.

(i) 7/t;7(/;0) > 0, then vΊ(f\ r) > 0 for any any r G C.
(ii) If t>7(/;0) < 0, there exists a unique ξ G C so that v7(/;£) < 0. For any other

r^ί, t;7(/;r) = 0.

Assume first that v7(/;0) > 0. Then valt(/(a?7(ί), 2/7(0)) < 0 by (2.1.2)
and therefore valt(/(x7(2), 2/7(0) ~ r) < 0 ί°Γ anY r

Assume that v7(/;0) < 0. This implies that valt(/(x7(t), y7(0)) > O Then limt_o
f(xΊ(t), y-y(t)) is well defined. So we denote this limit by £. Then it is obvious that
valt(/(x7(ί), yΊ(t)) — r) = 0 for any r φ ξ. This completes the proof.

DEFINITION (2.3). We call that a local irreducible component 7 of iχ/) at At is
stable (respectively unstable) if v7(/;0) > 0 (resp. v7(/;0) < 0). We denote the set of

unstable local irreducible components of Γ^(/) at infinity by US(?t). Assume that 7 is
a unstable local irreducible component and let £ be the complex number characterized
in (ii). Considering ξ as a function of 7, we write £(7). Thus we have a mapping ξ :
US(Yt) —» C. £(7) is called the limit critical value of f along 7.

COROLLARY (2.3.1). The number of the critical values at infinity |Σoo| is equal
to the cardinality of the image ξ(US(Γι)). In particular, it is less than or equal to the
cardinality ofUS(Tι).

We define the projective degeneracy at infinity &££(/) by

As the number of irreducible components of Γ^ at Aτ is less than or equal to ι/» — 1, we
have the following estimation.

THEOREM (2.4). The number of critical points at infinity |Σoo| w less than or equal

to vg(f). In particular, |Σoo| < d - 1.

This estimation can be obtained using the projective compactification but it is not
so good when ZΌ or Z/AJ+I is big. It turns out that a suitable toric compactification is
more convenient for our purpose.
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B. Toric Compactifi cation of C2.
Let f ( x , y ) = Σ(m>n)

arn,nXmyn be a given polynomial of degree d. As we are in-
terested in the estimation of the number of critical values at infinity, we may assume
that /(O, 0) ^ 0 by adding a constant if necessary. We consider the Newton polygon
Δ(/) of / which is the convex hull of the integral point (ra, n) such that αm>n φ 0. By
the assumption /(0,0) φ 0, we have O £ Δ(/). Let N be the space of covectors. Any
covector P defines a linear function on Δ(/). For any integral covector P = t(p1 <j), let
Δ(P;/) C Δ(/) be the locus where the linear function P|Δ(/) takes the minimal value.
We denote this minimal value by d ( P \ f ) as usual. Let f p ( x , y ) be the partial sum

fP(x,y):=
(m,n)€Δ(P;/)

and we call fp the face function of the covector P. The dual Newton diagram Γ*(/) is de-
fined by the following equivalence relation in N: P ~ Q if and only if Δ(P; /) = Δ(Q; /).
Here Δ(P; /) is the locus where the linear function P|Δ(/) takes its minimal value. Let
Σ* be a regular simplicial cone subdivision of Γ*(/) and let X be the toric variety as-
sociated with Σ*. Let E\ = '(1,0), #2 = *(0,1). It is easy to see that Cone(JS7ι,£?2)
is admissible with Σ*. This is immediate from the assumption that O £ Δ(/). Thus
we may assume that Cone(£Ί, #2) is a simplicial cone in Σ*. Let R\,...,Rμ be the
vertices of Σ* in the counter-clockwise orientation where RI = E\ , RΊ = E^ . Thus
σ% :— Cone(Λn Λί+ι), i = 1, . . . , μ be the two-dimensional simplicial cones in Σ* where
Rμ+ι — RI. Here we assume RI = E\,Rϊ = Eι,Rμ+\ = Ri Let σ\ = Coτιe(Eι , £2)
Recall that X is a smooth compact toric variety of dimension 2 whose affine charts are
C2 . i = 1, . . . , μ and it has the canonical decomposition

t=l

where E(Rl) is a rational curve corresponding to the vertex Ri £ Vertex(Σ*). The
divisor E(Rτ} intersects with E(Rl^ι) and E(Rί+ι). So the dual graph of the divisors
E(Rι), i = 1, . . . ,μ makes a cycle. Taking a subdivision if necessary, we may assume
that H := *(-!, -1) in Vertex(Σ*). Thus we assume that H = Rθ for some 3 < θ < μ.
The projective compactification corresponds to the smallest simplicial cone Σj$ which
has three vertices {J5/ι, ^2, H}. Let (w^, Vi) be the corresponding coordinates of the chart
C2 . . Let us consider the unimodular matrix σ( corresponding to the vertices of the cone

(αi6ί+ι — α, +ι6i = 1). Then the original affine space is identified with the coordinate
space C2 with x = ι«ι , y = υ\ . Recall that C2 is glued with the original affine space
C 2 b y

fx = uW+> (ui=xb«*V—+*
(2'5) l y = uN?^ ' U = *-V'
We consider the curve C = {(x,y) £ C2 ;/(#,?/) = 0} in the original affine space C2

and let C be the closure of C in X. The curve C is defined in C2

t by the equation
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fσt(ui,Vi) = 0 where /^(u;,^) is defined by

/
/ \ £( α. α +i bi b.+ι\ / d(Ri\f} d(R.+ i \ f }

σi(ui,Vi) :=/(VV ,tιt V )/V "'V '+1'"

In C2. , ^(Λj) is defined by Ui = 0. It is easy to see that /σί(0, 0) φ 0 and

is non-constant if and only if dimΔ(JR2; /) > 1. Let DI, . . . , Dm be the faces of Δ(/) in
the counter-clockwise orientation so that Dι,Dm contains the origin O. Let Pz = *(pi, φ)
be the corresponding primitive integral covector of D{ . Note that each Pi must be a vertex
of Σ* and therefore we can write Pi = RVt for some 1 < z/z < μ. Then we can write

A
(2.6) /Λ(*,y) - ί.-x'V

where ί, £ C* and & ι<7, 1 < j < ίi are mutually distinct non-zero complex numbers. By

the above consideration, JE(Rl) Π C φ 0 if and only if i — Vj for some 1 < j ' < m. We
consider the toric coordinate chart σI/i = Cone(βI/ί,ΛI/i+ι). Then

(2.7) Λσ i(0,ι;<) = «<

Thus E(RV%)ΠC consists of l% points {(Q,ξitj)'J = 1,...,4} C C2^ . Put A t>J :=

(0,& f J) E #(#„<) Π C for 1 < f < m, 1 < j < tt. See [20], [16], [7] for further information
about the toric compactification.

Now we consider the limit of the value of the function / along an irreducible compo-
nent 7 of oΓ^(/). Let Φ7(tf) be a parametrization of 7 in the coordinates (x>y) (namely
in C^) in the neighborhood of the infinity where xΊ(i) and yΊ(t) are Laurent series in
the variable t. We assume that xΊ(t),yΊ(t) φ 0 and write them as

ί xΊ(t] = <xΊt*ι + (higher terms)

[ yΊ(t) = βΊt*ι + (higher terms), t £ Dε(0)

Let QΊ := t(pΊ,qΊ] G N and AΊ := (α7,/?7). We assume that

so that xΊ(t) φ 0, y7(t) φ 0 and |x7(ί)|2 -f |i/7(^)|2 —»• oo. In this situation, we have

PROPOSITION (2.9). ( i ) We have vdλtf(xΊ(t),yΊ(i)) > d(QΊ]f) and the inequal-

ity holds if and only if QΊ ~ Pi and β?1 — ζl^x?f

i = 0 for some i, 1 < i < m and

(ii) The limit limt_oΦ7(^) ίw X always exists and we have

limΦ 7(tf)= < ' _ j b

σj Ί 3> J
t-f° I (0,α7

 J/?7

J) G C£ «/ Q7 = cRjj for some c > 0

#ere IntCone(Λ7,Λ<7+ι) 25 Me open cone generated by R3 and Rj+i In particular, if

QΊ ~ Pi and β^ - ζijx^ = 0 for some i, 1 < i < m, limt_^o Φτ(0 = (0,&,j) G C2^ .

We refer to [12] for the further detail. Note that d(QΊ\ f ] < 0. By (i) and Lemma
(2.1), we have to check the stability at AtJ with ι/, f j > 2.



414 LE VAN THANH AND MUTSUO OKA

3. Toric estimation.

Let /(#, y) be as before. We will generalize Theorem (2.4) using the toric embedding
theory. We assume for brevity that dim Δ(/) = 2 but every argument works even in the
case dimΔ(/) = 1. Let DI, . . . , Dm be the faces of Δ(/) in the clockwise orientation so
that DI , Dm contain the origin. Let Pi — t(pi>qi) be the corresponding primitive integral
covector of Di. To get a better estimation, we first introduce the reduced polynomial
f(x,y) :r= /(z,2/)-/(0,0). Note that Δ(/) C Δ(/) but O £ Δ(/). Wefactorize fPi(x,y)
as follows.

A
(31) fPi(x,y) = δtx'W

Note that fp^x^y) = fp^x.y) for i = 2, . . . , m — 1. We define the following integers

(3-2.1) *( A) = X>,, - 1), iKA) = Σ "O
i-l 1=1

f l/Pl), P l < 0
= < ,

(0, pi = 0
(3.2.2) ^(A)'= <{ Γ^1" ~-, v(An)Ή0

/ V~m" "»<0

(3.2.3) ε^(/) = si + pi ^ij, εy(/) = xm + qm

j=ι

V " ~ \ l , max(M/),^(/))>2

Note that ε^/) (respectively εy(f^) is the ^-coordinate (resp. α?-coordinate) of the left

side edge of ΔI = Δ(Pι;/) (resp. Δm = Δ(Pm;/)).

Let us define define tfΛe fonc degeneracy ^Γ(/) by
m-l

2 = 2

The toric degeneracy ^r(/) is smaller than the projective degeneracy vξ£(f) in general.
Now we are ready to state the main theorem.

MAIN THEOREM (3.4). The number of critical values from infinity of the function
f is less than or equal to ̂ Γ(/).

We say that f ( x , y ) is non-degenerate on the outside boundary if v(Di) = 0 for any
2 < i < m - 1. Recall that / i s convenient iff f ( x , 0) φ 0 and /(O, T/) ̂  0.

COROLLARY (3.4.1) ([20]). Assume that f ( x , y ) is a convenient polynomial. Then
ί/ooΓ(/) ~ ΣI=1 v(Di). In particular, if f ( x , y ) has non-degenerate outside Newton
boundaries, f has no critical value from the infinity.

We give an outline of the Main theorem. For the detail, we refer to [12].
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Let 7 be an unstable irreducible component of Γ^(/) at infinity and let Φ7(tf) be a
parametrization of 7 in the coordinates (x^y) where xΊ(t) and yΊ(i) are Laurent series
in the variable t. We assume first that

*7(ί),Ifr(ί)£0 and |*7(ί)|
2 + |j/7(0|2 - oo (ί -> 0)

and we expand them in Laurent series as

ί xΊ(t) = aΊt^ + (higher terms)

I yΊ(t] = bΊt
qt + (higher terms)

The case xΊ(i)yΊ(i) = 0 will be treated later. Let QΊ := *(p7,<?7) G N and AΊ := (α7, 67).
By the assumption we have that

(3.6) AΊ G C*2, mm(pΊ,qΊ) < 0

First we have the following Proposition:

PROPOSITION (3.7). We have valtf(£(xΊ(t),yΊ(t))) > d(Q7;/) and the inequality
holds if and on ^f

QΊ = cPi, /p^Aγ) = 0 for some c > 0 and I < i < m.

Recall that Γ/(/) is defined by Γ/(/) = {(x, y) G C2; J(x, y) = 0} where

J(x,y) = at(x, y) + β y ) = « (

First we observe that the Newton boundary Δ(J) is slightly different from Δ(/) but the
following is enough for our purpose.

(3.8) Λj, (*,») = dfo
-

We divide the situation in two cases.

CASE I. d(QΊ] /) < 0. CASE II. d(Q7; /) = 0.

We first consider the case:

CASE I. d(Q7;/) < 0. We assume that 7 is an unstable irreducible component
of IX/) at infinity. Then by Proposition (3.7), we must have QΊ — cP{ with 2 < i <
m — I. We call the face £>2, . . . , An-i the outside faces of Δ(/). We ask how many
such components are possible for a fixed i. By an easy computation, we can see that the
multiplicity of ypί — ξ i j X q t in the factorization of Jpt(x, y) is exactly ι/i}J — 1. Thus by
the argument in the previous section, the local equation of Γ/(/) in the toric coordinate
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chart C?. is of the form

+

where <$2 / 0, η(vVi) is a polynomial with η(ξi,j) Φ 0 for any j = 1, . . . ,4- (Recall that
P; = #„. and σ^ = Cone(Λί/t, Λ^+i).) Let Λ?J = (0,&,j) G C^ . Thus by an easy
argument, we have

_ PROPOSITION (3.9). The number of local irreducible components 7 at infinity of
Tt(f) such that limt-+Q(xΊ(t),y('γ(t))) = ^*j ίs a^ rnos^ Vij ~~ 1 for any 2 < i <
m — 1. Thus the number of the unstable irreducible components 7 such that the limτt

Q ( x Ί ( t ) , y ( j ( t ) ) ) intersect with the divisor E '(Pi) is bounded by v(D{).

Now we consider the second case: d ( Q Ί ] f ) = 0. Then it is clear that d(QΊ;f) > 0. We
divide Case II into two subcases.

CASE II-l. d(QΊJ) = 0. CASE II-2. d(QΊ\f) > 0.

Recall that Di^and Dm are the face which contains the^origin^O^ Let DI = Δ(Pι; /)
and Dm — Δ(Pm;/). We call D\ and Dm (respectively £>ι̂ and Dm) thejright and left
conical faces of f(x,y) (respectively of /(x,y)). Note that Di C A and Di might be a
vertex for i — 1, ra. D\, Dm are called bad faces in [14]. It is more convenient to consider
the factorization of f p ί ( x j y):

/I

(3.10.1) M (*,</) - ίι(^t/-pl)eι ΐ[(l-ξijX9ly-pίΓ >, d > 0

(3.10.2) fPrn(χ,y) = ίm(a?

Comparing with (3.1), we have

m

"I" ίm / ^ ̂ ίπj :~: <?mem> ^m ^ Pmem

Now we consider Case II-l first. In this case, we must have either QΊ — cP\ or QΊ — cPm

for some c > 0. Let us consider the case QΊ = cPi for instance. By the assumption
min(pι,gi) < 0 and dim(Δ(/)) = 2, we must have p\ < 0 < <?ι if such a 7 exists. Now
we assert

LEMMA (3.11). The number of the local irreducible components o f Γ t ( f ) of type
Case II-l with QΊ = cP\, c > 0 (respectively QΊ = cPm, c> 0) is less than or equal to
η(Dι)' (respectively η(Dmy). They are all unstable.
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See [12] for the proof. Now we consider the last case:

417

CASE II-2. d(QΊ\f) = 0 and d(QΊ\f) > 0.

This is the case if and only if Δ(Q7;/) = {O} and pΊqΊ < 0. So we assume for
example

(3.12) pΊ < 0 < qΊ

By the assumption d(QΊ]J) > 0, we have that fqχ(x,Q) = 0. (If Jq^(x,U) φ 0, we get

a contradiction: d(QΊ\J} < 0.) and JqΛx.y) Φ fq(x,ϋ). Thus by (3.8) Jqy(x,y) =
Λ f

Ύ(#, y). The assumption Δ(Q7;/) = {O} implies that pi < 0 < qι and

(3.13) det(Q7,Pι)>0

We consider the equality J(xΊ(i), yΊ(t)) = 0. The leading term of this equality gives the
following necessary condition is that

(ϊ Ί4Ϊ 7s* (A } — ^Ύ (A ϊ — Π
V / QΎ\ Ύ / — Q \ Ύ / —ί/ty

By (3.14), we must have

(3.15) dimΔ(Q7;/) = l

Such a face Δ(Q7;/) is called an inside face with mixed weight vector of /(x,2/). Geo-
metrically the supporting line of such a face separates the Newton polygon Δ(/) and
the origin O. We consider the right conical face D\. By the expression (3.1) or (3.10),

the left edge of D\ is R := (rι,sι -h pi ]C^=ι ^Λ) = (<?ιeι>-~Pιeι) This gives a vertex
— 1) of the Newton polygon Δ( J) by the differential in y.

Figure (3.17.A)

If — piei = 1, it is easy to see that there exists no inside face of mixed weight QΊ

with pΊ < 0 < qΊ. Therefore we assume

(3.16) -piei > 2

In this case, it is not necessary to count the number of such local irreducible components.
In fact, we have
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PROPOSITION (3.17). Each local irreducible components 7 o f ΐ t ( f ) of Case II-2
gives the limit critical value — /(0,0).

Proof. By the assumption, we have

/(*7(t), yΊ(t)) = /(0,0) + (higher terms)

Thus the assertion is trivial. D

Until now, we have assumed that xΊ(t)^yΊ(i) φ 0. Now we consider the exceptional
case that xΊ(t) = 0 or yΊ(t) = 0. Assume for example

7: xΊ(t) = l/t, yΊ(t) = Q
This implies that y divides J(x, y). By the above argument, it is necessary that —p\e± >
2. In this case, we can see that /(#,0) = /(0,0). Thus if this is the case, valt/(#7(£),
yΊ(i)} = 0 and 7 is unstable and the corresponding limit critical value is again — /(0,0).
Now summerizing the above argument, we have

PROPOSITION (3.18). Assume that -p\t\ > 2 in (3.10.1) (respectively -qmem > 2
in (3.10.2),), Then either there exists an unstable local irreducible component ofTι(f) of
type Case II-2 with pΊ < 0 < qΊ (resp. qΊ < 0 < pΊ), or y — 0 (resp. x = Oj is a (global)
component o f Γ ι ( f ) . In any case, the possible limit critical value is —/(0,0).

Now we give several examples.

Example (3.19). (A) Let f(x^y) = y2n + x3nyn(x + y)n+x4y. Then Δ(/) has four
faces. In this example, d = 5n and fan = x3nyn(x -f ϊ/)n, and the projective degeneracy
at infinity vξ£(f) = 5n — 3. On the other hand, η(D\)' = n — 1, ^(Δz) — n — I and
ι/(Z?3) = 0, η(Dί)' = 0 and ε(f) = 0. Thus we have v£r(f) = 2n-2.

(B) Let f ( x , y ) = iP4y4 + a?2/3 + #32/2 + a??/. In this example, we have ^(^2) =
ι/(Δ3) = 0, ι?(DιJ; = η(Di)' = 0 and ε(/) = 1 and ̂ r(/) = 1. In fact, 0 is the only
critical point of / from the infinity.

(C) Let f ( x y y)j= x + c2x
2 + + cnx

n 4- xmy. Then Δ(/) has three faces and
^oor(/) = l In fact, / has one critical yalue 0 from the infinity. This polynomial has no
critical point ([19]).
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