A GEOMETRICAL APPROACH TO THE JACOBIAN CONJECTURE FOR $\boldsymbol{n}=2$

By Lê Dũng Tráng and Claude Weber

Let us recall the Jacobian conjecture (see [B-C-W] §I p. 288):
Jacobian Conjecture. Let $F: \mathbf{C}^{n} \rightarrow \mathbf{C}^{n}$ be a polynomial map. Suppose that, for every point $x \in \mathbf{C}^{n}$, the derivative $F^{\prime}(x)$ is invertible. Then the map F is invertible.

In this lecture we describe a geometrical approach to this conjecture when $n=2$.
First we shall need some results on the geometry of complex polynomial functions.

Topology of polynomial functions.

It is known that a complex polynomial function might not be a locally trivial topological fibration over the complement in \mathbf{C} of its critical values. As an example, consider the polynomial $f(X, Y)=X-X^{2} Y$ (see [B]): this complex polynomial function has no critical point, but it is not a locally trivial topological fibration on \mathbf{C}. In fact the fiber $f=0$ has two connected components, but, for any $\lambda \neq 0, f=\lambda$ has only one component. However there is a general theorem of R. Thom:

Theorem (Тном). Let $f: \mathbf{C}^{n} \rightarrow \mathbf{C}$ be a complex polynomal function. There is a minimal finte set $A(f)$, such that f induces a locally trivial topological fibration over the complement of $A(f)$ in \mathbf{C}.

One can check that the finite set $A(f)$ always contains the set of critical values $D(f)$. Let us write:

$$
A(f)=D(f) \cup I(f)
$$

where $D(f)$ and $I(f)$ might not be disjoint. By definition $I(f) \neq \emptyset$ depends on "accidents" at ∞. We shall call $A(f)$ the set of atypical values of f.

Polynomuals which are locally trıvial topological fibrations are well understood because of the following observation:

Proposition. If the complex polynomial functıon

$$
f: \mathbf{C}^{2} \rightarrow \mathbf{C}
$$

is a locally trivial fibration on \mathbf{C}, there is an algebraic automorphism σ of the complex plane, such that $f \circ \sigma=X$.

Received April 26, 1994.

This proposition is consequence of the Embedding Theorem of S. Abhyankar and T.T. Moh ([A-M]):

Theorem (S. Abhyankar - T.T. Мон). Let C be a complex algebraic affine curve embedded in the complex plane \mathbf{C}^{2} and asomorphic to the complex line \mathbf{C}. Let $f=0$ be its (reduced) equatıon. Then, there is an algebraic automorphism σ of the complex plane, such that $f \circ \sigma=X$, where X is one of the coordinates of \mathbf{C}^{2}.

The methods developed in this note are the basic tool for a geometrical proof of the Abhyankar-Moh Theorem (see [A]).

The proposition above has the following consequence:
Corollary. Let $F=(f, g): \mathbf{C}^{2} \rightarrow \mathbf{C}^{2}$ be a polynomial map. Suppose that, for every point $x \in \mathbf{C}^{2}$, the derivative $F^{\prime}(x)$ is invertible and furthermore, suppose that f is a locally trival topological fibratıon on \mathbf{C}. Then F is invertible.

Proof. If we assume that f is a locally trivial topological fibration on \mathbf{C}, the general fibers of f are isomorphic to the complex line. Therefore the Embedding Theorem of S. Abhyankar and T.T. Moh shows that there is an algebraic automorphism σ of the complex plane such that $f \circ \sigma=X$. This proves the proposition above. Now the Jacobian $J(F \circ \sigma)$ of $F \circ \sigma$ is the product of the Jacobians $J(F)$ and $J(\sigma)$ and therefore is equal to a non-zero constant k. But $F \circ \sigma=(X, g \circ \sigma)$, so that, by integration

$$
g \circ \sigma=k Y+h(X)
$$

where h is a complex polynomial function. Hence $F \circ \sigma$ is an automorphism of the complex plane, which implies that F is also an automorphism of the complex plane, as announced.

As a consequence, the Jacobian conjecture will be proved, if one can show that:
Conjecture. Suppose that $f: \mathbf{C}^{2} \rightarrow \mathbf{C}$ is not a locally trivaal topological fibration on C. Then, for any complex polynomial functıon g, the Jacobıan $J(f, g)$ cannot be a non-zero constant.

We have seen that $f: \mathbf{C}^{2} \rightarrow \mathbf{C}$ is not locally trivial topological fibration on \mathbf{C}, if and only if $A(f)$ is non-empty. If the set of critical values is non-empty, our conjecture is obviously true. Therefore we shall assume that the polynomial f has no critical point. We are led to understand the meaning of $I(f) \neq \emptyset$. In [H-L], we give a way to calculate $I(f)$. Now we describe how to do it.

Let $f(x, y)$ be the complex polynomial of degree d which defines f :

$$
f(x, y)=\sum_{\alpha+\beta \leq d} c_{\alpha, \beta} x^{\alpha} y^{\beta}
$$

The homogeneization of $f(X, Y)$ is the homogeneous complex polynomial $F(X, Y, T)$ of degree d :

$$
F(X, Y, T)=\sum_{\alpha+\beta \leqq d} c_{\alpha, \beta} X^{\alpha} Y^{\beta} T^{d-\alpha-\beta}
$$

The compactification of the fibers $f=\lambda$ in the complex projective plane \mathbf{P}^{2} are the projective curves C_{λ} with projective equations $F-\lambda T^{d}=0$. These curves pass through the same points on the line at infinity $T=0$, namely through:

$$
\left\{x_{1}, \ldots, x_{r}\right\}=\left\{F=T^{d}=0\right\}
$$

which corresponds to the asymptotic directions of the level curves $f=\lambda$.
For each $x_{i}, 1 \leqq i \leqq r$, there is an integer

$$
\mu_{i}:=\inf _{\{\lambda \in \mathbf{C}\}} \mu\left(C_{\lambda}, x_{i}\right)
$$

where $\mu\left(C_{\lambda}, x_{i}\right)$ is the Milnor number of the curve C_{λ} at the point x_{i}. Now we can state:
Theorem (Hà-Lê). We have

$$
I(f)=\left\{\lambda \in \mathbf{C} \mid \text { there } \text { ss } 1 \leqq i \leqq r \text { such that, } \mu\left(C_{\lambda}, x_{i}\right) \neq \mu_{i}\right\}
$$

For example, consider $f(X, Y)=X-X^{2} Y$. Then

$$
F(X, Y, T)=X T^{2}-X^{2} Y
$$

and the asymptotic directions of the level curves $f=\lambda$ are the points $x_{1}:=(1: 0: 0)$ and $x_{2}:=(0: 1: 0)$. At x_{1}, we have $\mu_{1}=0$ and the Milnor number of all the curves C_{λ} is 0 , for all $\lambda \in \mathbf{C}$. At x_{2}, we have $\mu_{2}=2$ and the Milnor number of C_{0} at x_{2} is 3 . In this case $A(f)=I(f)=\{0\}$.

Compactification of polynomial functions.

In general it is easier to deal with proper maps. In the case of complex polynomial functions in two variables, there is a natural way to compactify the function. We consider the rational function F / T^{d} on the complex projective plane \mathbf{P}^{2}. The set where $F=T^{d}=$ 0 is the set of indeterminacy of the rational function F / T^{d}. By blowing-up points, one can remove the indeterminacy of the rational function F / T^{d}. We shall describe a minimal way to do it.
. First fix $\lambda_{0} \notin A(f)$. Let $q: \mathcal{Y} \rightarrow \mathbf{P}^{2}$ be the embedded resolution of the projective curve $C_{\lambda_{0}}$. Let L be a linear form which does not vanish at the points x_{1}, \ldots, x_{r}. For each component D of the divisor

$$
D_{\infty}(\mathcal{Y}):=q^{-1}(T=0)
$$

we denote by $\nu_{D}\left(F / L^{d}\right)$ the multiplicity of $F / L^{d} \circ q$ along D. Now consider the points of indeterminacy of $F / T^{d} \circ q$ which might remain on \mathcal{Y}. Each of these points ξ belongs to a component D_{ξ} of the divisor $D_{\infty}(\mathcal{Y})$. Now at every point ξ of indeterminacy of $F / T^{d} \circ q$ on \mathcal{Y}, perform point blowing-ups so that to separate non-singular branches having an intersection number equal to $\nu_{D_{\xi}}\left(T^{d} / L^{d}\right)-\nu_{D_{\xi}}\left(F / L^{d}\right)$ at ξ. In this way we obtain a map $p: \mathcal{X} \rightarrow \mathcal{Y}$. Denote $D_{\infty}(\mathcal{X}):=(q \circ p)^{-1}(T=0)$. We have:

Theorem. On $\mathcal{X}, F / T^{d} \circ q \circ p$ defines a rational map onto \mathbf{P}^{1}. The restrictıon of thes map to $\mathcal{X}-D_{\infty}(\mathcal{X})$ induces a map into \mathbf{C} isomorphic to f by $\pi:=q \circ p$.

The map π is minimal in the following sense:

Observation. The only components of the divisor $D_{\infty}(\mathcal{X}):=\pi^{-1}(T=0)$ which may have self-intersection -1 are some of the components D such that the restriction of $F / T^{d} \circ \pi$ to D is not constant and, possibly, the strict transform of $T=0$ by π in \mathcal{X}.

Note that Vitushkin (see [V] Introduction) has used the existence of a non-singular compactification of f in relation with the Jacobian conjecture when $n=2$.

For convenience, we shall call π the minimal compactification of f. In fact the modification π has interesting properties. First the intersection graph of the divisor $D_{\infty}(\mathcal{X})$ is a tree \mathcal{A}. Furthermore a careful study (using results of [L-M-W]) leads to the following key result:

Connectedness Theorem. The space $\left(F / T^{d} \circ \pi\right)^{-1}(\infty)$ is connected.
In other words the divisor $\left(F / T^{d} \circ \pi\right)^{-1}(\infty)$ defines a strict connected subtree \mathcal{A}_{∞} of \mathcal{A}. If the general fiber of $F / T^{d} \circ \pi$ is connected, this theorem is actually an immediate consequence of Zariski Main Theorem (cf [Mu] Theorem 3.24 and the footnote p. 52).

Let $\varphi:=F / T^{d} \circ \pi$. We shall call the divisor $D_{\infty}(\mathcal{X})$, the divisor at infinity of \mathcal{X}, and a component of $D_{\infty}(\mathcal{X})$ on which φ is not constant is called dicritical.

The proof of the existence theorem for the minimal embedded resolution of a projective plane curve implies the following theorem:

Theorem. Each connected component of $\mathcal{A}-\mathcal{A}_{\infty}$ is a bamboo which contains a unıque dicritical component of φ and this dicritıcal component is the only urreducible component of the bamboo which meets \mathcal{A}_{∞}.

According to Orevkov (see [O] Lemma 2.1), this last theorem was already observed by Vitushkin.

Remark. Let \mathcal{B} be a bamboo of $\mathcal{A}-\mathcal{A}_{\infty}$ and let $D_{\mathcal{B}}$ be its dicritical component. If \mathcal{B} has more than one component, the components of \mathcal{B} other than $D_{\mathcal{B}}$ define a sub-bamboo \mathcal{B}^{\prime} of \mathcal{B}. The restricition to \mathcal{B}^{\prime} of the function φ is a finite constant. This value will be called the atypical value of the bamboo \mathcal{B}.

Results.

Consider a polynomial function f of degree d defined on \mathbf{C}^{2}. We assume that f has no critical point. We shall call Jacobian pair a pair (f, g) of polynomial functions defined on \mathbf{C}^{2} for which the Jacobian is a non-zero constant. We shall say that f is a Jacobian polynomial, if there is a polynomial g such that (f, g) is a Jacobian pair.

The conjecture stated above can be reformulated as follows. It is equivalent to the Jacobian conjecture:

Conjecture. If f is not a locally trivzal topological fibration (on \mathbf{C}), at cannot be a Jacobıan polynomıal.

The Theorem of Hà and Lê can be translated in the following way:

$$
\begin{aligned}
I(f)= & \{\text { critical values } \neq \infty \text { of the restriction of } \varphi \text { to dicritical components }\} \cup \\
& \text { \{atypical values of } \left.\varphi \text { on each bamboos of } \mathcal{A}-\mathcal{A}_{\infty} \text { with at least two vertices }\right\}
\end{aligned}
$$

This new formulation of the Theorem of Hà and Lê implies the following theorem:
Theorem. Let f be a complex polynomal function on \mathbf{C}^{2} and let φ be the minımal compactificatıon of f. Assume that f has no critıcal point. Then, f is not a locally trivaal fibration on \mathbf{C} if and only if, etther there is a bamboo of $\mathcal{A}-\mathcal{A}_{\infty}$ with at least two components or all bamboos in $\mathcal{A}-\mathcal{A}_{\infty}$ only contain one component and the restriction of φ to at least one of them has critical points.

Therefore in an attempt to prove our conjecture above, we shall consider two cases:
Case 1. In the graph $\mathcal{A}-\mathcal{A}_{\infty}$ there is at least one connected component with two vertices;

CASE 2. In the graph $\mathcal{A}-\mathcal{A}_{\infty}$ all the connected components have only one vertex (which is a dicritical component of φ) and the restriction of φ on at least one dicritical component has degree strictly greater than one.

Examples. The function $X-X^{2} Y$ corresponds to the case 1. The function $X-X^{4} Y^{4}$ belongs to the case 2 .

Now let g be another complex polynomial function of degree d^{\prime}. Denote by G the homogenized polynomial associated to g. Then, in order to prove our conjecture, the cases 1 and 2 subdivide in subcases, depending on the behaviour of the rational function $G / T^{d^{\prime}}$.

Case 1. Let us call $D_{0}, D_{1}, \ldots, D_{r}$ the ordered components in a bamboo of $\mathcal{A}-\mathcal{A}_{\infty}$ with at least two vertices $(r \geqq 1), D_{0}$ being the dicritical component.

The case 1 subdivides in the following subcases:
a) The rational function $G / T^{d^{\prime}}$ is defined in some neighbourhood \mathcal{U} of $D_{1} \cup \ldots \cup D_{r}$:
i) The rational function $G / T^{d^{\prime}}$ is constant on D_{1}, \ldots, D_{r} and $D \cap \mathcal{U}$;
ii) There is a D_{i}, with $1 \leqq i \leqq r-1$, which is dicritical for $G / T^{d^{\prime}}$;
iii) The component D_{r} is dicritical for $G / T^{d^{\prime}}$;
iv) The component D_{0} is dicritical for $G / T^{d^{\prime}}$;
b) There are points x_{1}, \ldots, x_{s} in $D_{1} \cup \ldots \cup D_{r}$ where $G / T^{d^{\prime}}$ is not defined:
i) $s \geqq 2$;
ii) $s=1$ and x_{1} is not on $D_{r}-\cup_{j=1}^{r-1} D_{j}$;
iii) $s=1$ and x_{1} is on $D_{r}-\cup_{j=1}^{r-1} D_{j}$;

Case 2. We first have the following result:
Proposition. Assume that f has no critical point and that f is not a locally trivial fibration. If all the connected components of $\mathcal{A}-\mathcal{A}_{\infty}$ contain only one vertex, there is at least one dicritical component D of φ on which φ has a critucal point.

Proof. If f is not a locally trivial fibration, the translation of the Theorem of Hà and Lê given above shows that under the assumptions of the proposition, the restriction of φ to one of the dicritical components of φ is critical at some point of this dicritical component. The proposition asserts that there is at least one dicritical component of φ which carries a critical point of φ itself and not its restriction.

Assume that φ has no critical point. Then, Ehresmann Lemma implies that φ is a locally trivial fibration on \mathbf{C}. This would imply that the Euler characteristic of the general fiber of φ equals $1+\ell$, where ℓ is the number of dicritical components of φ. Therefore necessarily $\ell=1$. A result by T.T. Moh ([Mo]) interpreted in our setting implies that the restriction of φ to this unique component must be of degree 1 , which would contradict the fact that this restriction has a critical point on this component.

Indeed, a direct proof of this theorem of T.T. Moh is possible using the connectedness theorem and a little topological argument.

Now consider a dicritical component D_{0} of φ on which φ has a critical point x.
The case 2 subdivides in the following subcases:
a) The rational function $G / T^{d^{\prime}}$ is defined in some neighbourhood \mathcal{U} of D_{0} :
i) The rational function $G / T^{d^{\prime}}$ is constant on D_{0};
ii) The component D_{0} is dicritical for $G / T^{d^{d^{\prime}}}$;
b) There are points x_{1}, \ldots, x_{s} in D_{0} where $G / T^{d^{\prime}}$ is not defined:
i) none of these points are equal to x;
ii) one of them, say x_{1} is actually x.

We can prove that, if f has no critical point and is not a locally trivial fibration, for any polynomial function g on \mathbf{C}^{2}, the pair (f, g) is not a Jacobian pair in all the preceeding cases except the cases, case 1 a iv) and case 2 a ii). In the unsolved case 1 a iv), we can conclude if we know that one of the restrictions of φ or $\psi:=G / T^{d^{\prime}}$ on the dicritical component D_{0} has degree one.

We now express our results differently. Let us say that a dicritical component of φ is non-equisingular if D_{0} belongs to a bamboo in $\mathcal{A}-\mathcal{A}_{\infty}$ of length at least two or if the restriction of φ to D_{0} has at least one critical point. Let us say that D_{0} is strongly non-equisingular if D_{0} belongs to a bamboo in $\mathcal{A}-\mathcal{A}_{\infty}$ of length at least two or if φ has a critical point on D_{0}.

The above proposition says that if $C(f)=\emptyset$ and $I(f) \neq \emptyset$, then φ has at least one strongly non-equisingular component.

The results we obtained so far in our attempt to prove the Jacobian Conjecture can be summarize as follows:

Main Theorem. Let f be a polynomial such that $C(f)=\emptyset$ and $I(f) \neq \emptyset$. Let g be a polynomıal with $C(g)=\emptyset$. Then the paır (f, g) cannot be a Jacobıan pair if at least one of the following conditions as fulfilled:

1. There exists a strongly non-equisingular component of φ which is not dicritical for ψ;
2. There exists a strongly non-equisingular dicritical component D_{0} for φ for which the restruction $\varphi \mid D_{0}$ or $\psi \mid D_{0}$ has degree one.

The following proposition is not difficult but very useful -

Proposition. Let (f, g) be a Jacobian pair. Let $\varpi: \mathcal{Z} \rightarrow \mathbf{P}^{2}$ be the composition of a finite sequence of point blowing-ups centered above the line at infintty $T=0$, such that $F / T^{d} \circ \varpi$ and $G / T^{d^{\prime}} \circ \varpi$ define morphisms φ and ψ from \mathcal{Z} to \mathbf{P}^{1}. Then, the support of the divisor of the 2 -form $d \varphi \wedge d \psi$ is contained in $D_{\infty}(\mathcal{Z})=\varpi^{-1}(T=0)$.

In other words, the divisor of $d \varphi \wedge d \psi$ is a canonical divisor for \mathcal{Z} which is confined at infinity (i.e. on $D_{\infty}(\mathcal{Z})$). The multiplicities of such a canonical divisor are well defined and can be computed from the sequence of blowing-ups. They do not depend on φ and ψ.

For instance, this proposition implies that, in the case 1 above, if the dicritical component D_{0} of φ in \mathcal{X} has a negative multiplicity in the canonical divisor of \mathcal{X} concentrated at infinity, its strict transform D_{0}^{\prime} in \mathcal{Z} has the same negative multiplicity in the canonical divisor of \mathcal{Z} concentrated at infinity. This implies that ψ has a pole along D_{0}^{\prime}. Therefore D_{0} cannot be a common dicritical component of φ and ψ, which means that we are in one of the cases where our conjecture is true.

As an example, these observations applied to the case of $f(X, Y)=X-X^{2} Y$ show that it is not a Jacobian polynomial. The same argument works to show that many polynomials with no critical points cannot be Jacobian polynomials.

This leads to the following corollary of the Main Theorem:
Corollary. Let $f: \mathbf{C}^{2} \rightarrow \mathbf{C}$ be a polynomial function without critical point. Then f cannot be a Jacobian polynomial if there exists a dicritical component D_{0} of φ in \mathcal{X} which is strongly non-equisingular and such that the multiplicity of D_{0} in the canonical divisor of \mathcal{X} confined at infinity eather 1) is strictly negative or 2) is positive and the restriction of $\varphi \mid D_{0}$ is of degree one.

References

[A] E. Artal, Une démonstration Géométrique du théorème d'Abhyankar-Moh, Preprint.
[A-M] S. Abhyankar, T.T. Moh, Embeddings of the line in the plane, Jr. Angw. Reine Math. 276 (1975), 148-166.
[B-C-W] H. Bass, E. H. Connell, D. Wright, The Jacobian Conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7, (1982), 287-330.
[B] S.A. Broughton, Milnor numbers and the topology of polynomial hypersurfaces, Inv. Math. 92 (1988), 217-241.
[H-L] Hà Huy Vui, Lê Dũng Tráng, Sur la topologie des polynômes complexes, Acta Math. Vietn. 9 (1984), 21-32.
[L-M-W] Lê Dũng Tráng, F. Michel, C. Weber, Sur le comportement des polaires associées aux germes de courbes planes, Comp. Math. 72 (1989), 87-113.
[Mo] T.T. Moh, On analytic irreducibility at ∞ of a pencil of curves, Proc. Amer. Math. Soc. 44 (1974), 22-24.
[Mu] D. Mumford, Algebraic Geometry I, Complex Algebraic Varieties, Grundlehren der math. Wissenschaften 221, Springer Verlag (1976).
[O] S. Yu. Orevkov, On three-sheeted polynomial mappings of \mathbf{C}^{2}, Math. USSR Izvestiya, 29 (1987), 587-596.
[V] A. G. Vitushkin, Certain examples in connections with problems about polynomial transfor-
mations of \mathbf{C}^{n}, Math. USSR Izvestiya, 5 (1971), 278-288.
Lê Dũng Tráng
UFR de Mathématiques et Informatique
Université de Provence
F-13003 Marseille, France
C. Weber

Institut de Mathématiques
2-4 Rue du Lièvre
Case Postale 240
CH-1211 GenÈve 24, Suisse

