J. HONG KODAI MATH. J. 17 (1994), 341-350

TIMELIKE SURFACES WITH MEAN CURVATURE ONE IN ANTI-DE SITTER 3-SPACE

By Jianqiao Hong

1. Introduction

It is well-known that the classical Weierstrass-Enneper representation formula describes minimal surfaces in Euclidean 3-space R^3 in terms of their Gauss maps and auxiliary holomorphic functions [7]. This representation formula plays a very important role in constructing and studying minimal surfaces in R^3 . Later, D. A. Hoffman and R. Osserman obtained the higher dimensional version of the classical Weierstrass-Enneper representation formula for minimal surfaces in Euclidean *n*-space R^n [3]. A natural question is how to generalize the above results to the surfaces in space forms of other constant curvature. In 1987, R. L. Bryant gave a representation formula for surfaces of mean curvature one in hyperbolic 3-space H^3 [1]. In his paper, he also pointed out that the surfaces of constant mean curvature in S^3 have no representation in terms of holomorphic data.

While considering the surfaces in Lorentz space forms, O. Kobayashi represented spacelike maximal surfaces in Lorentz-Minkowski 3-space R_1^3 in terms of holomorphic data [5]. Also C. H. Gu obtained the representation formula for the timelike and mixed type extremal surfaces in R_1^3 [2].

Motivated by these results, in this paper we obtain a representation formula for timelike surfaces with mean curvature one in 3-dimensional anti-de Sitter H_1^s . By this formula, we get some timelike surfaces with mean curvature one in H_1^s .

This paper is organized as follows. In section 2, we introduce the standard model of H_1^s , and set up another model of H_1^s which is quite useful for computation. In section 3, we will prove the main theorems (Theorem 3.1 and Theorem 3.3) which describe the timelike surfaces of mean curvature one in H_1^s in terms of two simple mappings. At last, in section 4, after writing the representation formula into a suitable form, we will give some examples.

2. Models for H_1^3

On the 4-dimensional real vecter space E^4 , we consider the symmetric form Received June 30, 1993; revised November 24, 1993.

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 - x_3 y_3 - x_4 y_4,$$

 $x = (x_1, \dots, x_4) \in E^4, \quad y = (y_1, \dots, y_4) \in E^4.$

The pair $(E^4, \langle \cdot, \cdot \rangle)$ will be denoted by R_2^4 . Define H_1^3 as follows:

(2.1)
$$H_1^3 = \{x \in R_2^4; \langle x, x \rangle = -1\}.$$

When we consider H_1^3 with the induced pseudo-metric from R_2^4 , it is easily shown that H_1^3 is a complete 3-dimensional, pseudo-Riemannian manifold of constant sectional curvature -1 and has signature (+, +, -). One may refer to [8] for more detail to understand the completeness and other properties of anti-de Sitter 3-space.

Besides the above standard model for H_1^3 , there is another way of describing H_1^3 which will be quite useful in our calculations. We identify R_2^4 with the space of 2×2 real matrices by identifying (x_1, x_2, x_3, x_4) with the matrix

(2.2)
$$\begin{pmatrix} x_1 + x_4 & x_2 - x_3 \\ x_2 + x_3 & -x_1 + x_4 \end{pmatrix}.$$

The real Lie group, $SL(2, R) \times SL(2, R)$, two copies of 2×2 real matrices with determinant 1, acts naturally on R_2^4 by the representation

$$(2.3) (g_1, g_2) \cdot v = g_1 v g_2^t$$

where we regard v as a 2×2 real matrix by (2.2). Under this identification, we clearly have $\langle v, v \rangle = -\det v$. Thus $SL(2, R) \times SL(2, R)$ preserves $\langle \cdot, \cdot \rangle$ and H_1^s can be recognized as the space SL(2, R)

(2.4)
$$H_1^3 = \{g \in gl(2, R) : \det g = 1\}.$$

Let \mathcal{F} be the oriented orthonormal frame bundle of R_2^4 which consists of the bases (e_1, e_2, e_3, e_4) of R_2^4 satisfying conditions:

$$e_1 \wedge e_2 \wedge e_3 \wedge e_4 > 0$$
,
 $\langle e_{\alpha}, e_{\beta} \rangle = \varepsilon_{\alpha} \delta_{\alpha\beta}$

where $\varepsilon_1 = \varepsilon_2 = 1$ and $\varepsilon_3 = \varepsilon_4 = -1$. We can use $SL(2, R) \times SL(2, R)$ to parametrize \mathcal{F} as follows.

Assume that

(2.5)
$$e_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, e_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, e_3 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, e_4 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

and let $e_{\alpha}(g_1, g_2) = (g_1, g_2) \cdot e_{\alpha} = g_1 e_{\alpha} g_2^t$. Then the map $(g_1, g_2) \mapsto (e_1(g_1, g_2), \dots, e_4(g_1, g_2))$ is a 2-1 covering map of $SL(2, R) \times SL(2, R)$ onto \mathcal{F} .

By submersion $e_4: \mathfrak{F} \to H_1^3$, we may regard \mathfrak{F} as the oriented orthonormal frame bundle of H_1^3 such that $e_1, e_2, e_3 \in T_{e_4}H_1^3$ is an orthonormal frame of $T_{e_4}H_1^3$. Denoting its dual frame fields by $\{\boldsymbol{\omega}^1, \boldsymbol{\omega}^2, \boldsymbol{\omega}^3\}$. Then there exist unique 1-forms

on H_{1}^{3} , $\{\omega_{j}^{i}|i, j=1, 2, 3\}$ so that

(2.6)
$$de_{4} = \sum \omega^{i} e_{i},$$
$$de_{i} = \sum \omega^{j}_{i} e_{j} + \omega^{i} e_{4}$$
$$\omega^{j}_{i} \varepsilon_{j} + \omega^{j}_{j} \varepsilon_{i} = 0.$$

Denoting the metric on H_1^3 by ds^2 , we have

(2.7)
$$ds^{2} = \langle de_{4}, de_{4} \rangle = (\boldsymbol{\omega}^{1})^{2} + (\boldsymbol{\omega}^{2})^{2} - (\boldsymbol{\omega}^{3})^{2}.$$

For an orthonormal frame on H_1^3 given by $\{e_i(g_1, g_2) | i = 1, 2, 3\}$. The canonical forms $\{\omega^i, \omega_j^i | i, j=1, 2, 3\}$ can be expressed by Maurer-Cartan forms of g_1 and g_2 .

LEMMA 2.1. Let $\{\boldsymbol{\omega}^i, \boldsymbol{\omega}^j | i, j=1, 2, 3\}$ be the canonical forms associated with the frame $\{e_i = g_1 e_i g_2^t | i=1, 2, 3\}$. Then we have

(2.8a)
$$g_{1}^{-1}dg_{1} = \frac{1}{2} \begin{pmatrix} \boldsymbol{\omega}^{1} - \boldsymbol{\omega}_{2}^{3} & \boldsymbol{\omega}_{2}^{1} + \boldsymbol{\omega}_{3}^{1} + \boldsymbol{\omega}^{2} - \boldsymbol{\omega}^{3} \\ -\boldsymbol{\omega}_{2}^{1} + \boldsymbol{\omega}_{3}^{1} + \boldsymbol{\omega}^{2} + \boldsymbol{\omega}^{3} & -\boldsymbol{\omega}^{1} + \boldsymbol{\omega}_{2}^{3} \end{pmatrix}$$

(2.8b)
$$g_{2}^{-1}dg_{2} = \frac{1}{2} \begin{pmatrix} \omega^{1} + \omega_{2}^{3} & \omega_{2}^{1} - \omega_{3}^{1} + \omega^{2} + \omega^{3} \\ -\omega_{2}^{1} - \omega_{3}^{1} + \omega^{2} - \omega^{3} & -\omega^{1} - \omega_{2}^{3} \end{pmatrix},$$

Proof. From $e_{\alpha} = g_1 \varrho_{\alpha} g_2^t$, we get

$$de_{\alpha} = g_1 [g_1^{-1} dg_1 e_{\alpha} + e_{\alpha} (g_2^{-1} dg_2)^t] g_2^t.$$

On the other hand, by (2.6) we have

$$de_{\alpha} = \sum \omega_{\alpha}^{\beta} e_{\beta} = \sum g_1(\omega_{\alpha}^{\beta} e_{\beta}) g_2^t.$$

From these two equations and noting that $\omega_4^i = \omega^i = \omega_i^i \varepsilon_i$, we can easily verify the lemma by direct computation.

3. Timelike surface theory in H_1^3 and the case H=1

Throughout this section, M will denote an oriented connected smooth 2dimensional manifold, and $f: M \rightarrow H_1^3$ will be a timelike smooth immersion.

We let $\mathcal{F}_{f}^{(1)} \subset M \times \mathcal{F}$ denote the first order frame bundle of f. Thus $(m; e_1, e_2, e_3, e_4) \in \mathcal{F}_{f}^{(1)}$ if $e_4 = f(m)$ and $e_2 \wedge e_3 = f_*(T_m M)$ as oriented 2-plane. We restrict all forms and maps to $\mathcal{F}_{f}^{(1)}$. It follows that $e_1 \in T_{f(m)} H_1^3$ is the oriented united normal to $f_*(T_m M)$ and hence, we may regard e_1 as well-defined as a map $e_1: M \to R_2^4$.

We have $\langle e_1, df \rangle = \omega^1 = 0$, so the induced metric by f on M is $ds_f^2 = (\omega^2)^2 - (\omega^3)^2$, and the structure equations for immersion f are given as follows:

(3.1)
$$d\boldsymbol{\omega}^{2} = -\boldsymbol{\omega}_{3}^{2} \wedge \boldsymbol{\omega}^{3},$$
$$d\boldsymbol{\omega}^{3} = -\boldsymbol{\omega}_{2}^{3} \wedge \boldsymbol{\omega}^{2},$$
$$d\boldsymbol{\omega}_{3}^{2} = \boldsymbol{\omega}^{2} \wedge \boldsymbol{\omega}^{3} + \boldsymbol{\omega}_{2}^{1} \wedge \boldsymbol{\omega}_{3}^{1}.$$

Since $d\omega^1 = \omega^2 \wedge \omega_2^1 + \omega^3 \wedge \omega_3^1 = 0$, it follows that there exist smooth functions $h_{ij} = h_{ji}(i, j=2, 3)$ so that

(3.2)
$$\boldsymbol{\omega}_{2}^{1} = h_{22}\boldsymbol{\omega}^{2} - h_{23}\boldsymbol{\omega}^{3},$$
$$\boldsymbol{\omega}_{3}^{1} = -h_{32}\boldsymbol{\omega}^{2} + h_{33}\boldsymbol{\omega}^{3}.$$

One easily checks that $II = h_{22}(\omega^2)^2 - 2h_{23}\omega^2\omega^3 + h_{33}(\omega^3)^2$ is a well-defined smooth quadratic form on M, which is called the second fundamental form. Its trace with respect to ds_f^2 denoted by $H = (h_{22} - h_{33})/2$ is defined as mean curvature of immersion f. It's easily checked that the function H is a well-defined smooth function on M.

After the above preparation, we now set up to establish our main theorems.

THEOREM 3.1. Let $U \subseteq R^{1,1}$ be a domain in 2-dimensional Lorentz-Minkowski space $R^{1,1}$ and $\{\eta, \xi\}$ be the global oriented null coordinates on $R^{1,1}$. Let $g_1, g_2: U \rightarrow SL(2, R)$ be two maps satisfying the following three conditions:

- (1) $\frac{\partial g_1}{\partial \xi} = \frac{\partial g_2}{\partial \eta} = 0$,
- (2) $\det(g_1^{-1}dg_1) = \det(g_2^{-1}dg_2) = 0$,
- (3) det $(g_1^{-1}dg_1 + (g_2^{-1}dg_2)^t) \neq 0$.

Then the map $f = g_1 g_2^t : U \subseteq R^{1,1} \to H_1^3$ is a conformal (timelike) immersion with the mean curvature one.

Proof. Let $(e_i = g_1 e_i g_2^i)$ be the orthonormal frame associated to g_1, g_2 . Under this frame, we have canonical 1-forms $\{\boldsymbol{\omega}^i, \boldsymbol{\omega}^j_i | i, j=1, 2, 3\}$.

Denote by

$$\pi_1 = \omega_3^1 - \omega_2^1 + \omega^2 + \omega^3,$$

$$\pi_2 = \omega_3^1 + \omega_2^1 - \omega^2 + \omega^3,$$

$$\omega^+ = \omega^2 + \omega^3,$$

$$\omega^- = \omega^2 - \omega^3.$$

By Lemma 2.1, we have

$$g_{1}^{-1}dg_{1} = \frac{1}{2} \begin{pmatrix} \omega^{1} - \omega_{2}^{3} & \pi_{2} + 2\omega^{-} \\ \pi_{1} & -\omega^{1} + \omega_{2}^{3} \end{pmatrix},$$

and

$$g_{2}^{-1}dg_{2} = \frac{1}{2} \begin{pmatrix} \boldsymbol{\omega}^{1} + \boldsymbol{\omega}_{2}^{3} & -\pi_{1} + 2\boldsymbol{\omega}^{+} \\ -\pi_{2} & -\boldsymbol{\omega}^{1} - \boldsymbol{\omega}_{2}^{3} \end{pmatrix}.$$

TIMELIKE SURFACES

By condition (1), we assume that

$$\begin{split} \omega_1^4 - \omega_2^3 &= 2\alpha_1 = 2A_1(\eta) d\eta, \qquad \omega_1^4 + \omega_2^3 = 2\alpha_2 = 2A_2(\xi) d\xi, \\ \pi_1 &= 2\gamma_1 = 2C_1(\eta) d\eta, \qquad -\pi_2 = 2\gamma_2 = 2C_2(\xi) d\xi, \\ \pi_2 + 2\omega^- &= 2\beta_1 = 2B_1(\eta) d\eta, \qquad -\pi_1 + 2\omega^+ = 2\beta_2 = 2B_2(\xi) d\xi. \end{split}$$

Condition (2) means

 $\alpha_1^2 + \beta_1 \gamma_1 = \alpha_2^2 + \beta_2 \gamma_2 = 0.$

So the induced metric ds_f^2 on U is

$$ds_f^2 = \langle df, df \rangle = \langle d(g_1g_2^t), d(g_1g_2^t) \rangle = -\det(g_1^{-1}dg_1 + (g_2^{-1}dg_2)^t) \neq 0.$$

More precisely,

$$(3.4) ds_f^2 = 2\alpha_1\alpha_2 + \beta_1\beta_2 + \gamma_1\gamma_2 = (2A_1A_2 + B_1B_2 + C_1C_2)d\eta d\xi.$$

It then follows that $f = g_1 g_2^t : U \to H_1^s$ is a conformal (timelike) immersion.

We will now show that for this immersion H=1 by computing H in a first order adapted frame. Without lose its generity, we assume that $2A_1A_2+B_1B_2$ $+C_1C_2>0$, then we can write down that $ds_f^2=\lambda^2 d\eta d\xi$ on U, for some smooth function $\lambda>0$ on U. From (3.3) and (3.4), we have

$$(3.5) A_i^2 + B_i C_i = 0,$$

for i=1, 2 and

(3.6)
$$2A_1A_2 + B_1B_2 + C_1C_2 = \lambda^2.$$

First we will prove an assertion.

ASSERTION. For any $p \in U$, if there exist a neighborhood V of p in U and some smooth functions p_i , q_i (i=1, 2) on V so that

$$A_{i} = \lambda p_{i}q_{i}$$

$$B_{i} = \operatorname{sign}(B_{i})\lambda p_{i}^{2}$$

$$C_{i} = \operatorname{sign}(C_{i})\lambda q_{i}^{2}$$

for i=1, 2, then H(p)=1.

Note that $B_iC_i = -A_i^2 \leq 0$, and hence $\operatorname{sign}(B_i) \operatorname{sign}(C_i) = -1$. For simplicity, we assume that $\operatorname{sign}(B_i) = 1$, $\operatorname{sign}(C_i) = -1$ and $p_1p_2 + q_1q_2 = 1$ from (3.6) and (3.7). Let $h: V \to SL(2, R)$ be defined by

$$h = \begin{pmatrix} p_1 & q_2 \\ -q_1 & p_2 \end{pmatrix},$$

then $e_4(g_1h, g_2(h^t)^{-1}) = e_4(g_1, g_2) = g_1g_2^t$. Moreover we compute that

$$(g_1h)^{-1}d(g_1h) = h^{-1}(g_1^{-1}dg_1)h + h^{-1}dh$$

= $\begin{bmatrix} q_2dq_1 + p_2dp_1 & -q_2dp_2 + p_2dq_2 + \lambda d\eta \\ -p_1dq_1 + q_1dp_1 & p_1dp_2 + q_1dq_2 \end{bmatrix}$,

and

$$(g_{2}(h^{-1})^{t})^{-1}d(g_{2}(h^{-1})^{t}) = h^{t}(g_{2}^{-1}dg_{2})(h^{t})^{-1} - (h^{-1}dh)^{t}$$
$$= -\begin{bmatrix} q_{2}dq_{1} + p_{2}dp_{1} & -p_{1}dq_{1} + q_{1}dp_{1} - \lambda d\xi \\ -q_{2}dp_{2} + p_{2}dq_{2} & p_{1}dp_{2} + q_{1}dq_{2} \end{bmatrix}.$$

Also denote the 1-forms $\{\omega^i, \omega^i\}|i, j=1, 2, 3\}$ be the canonical 1-forms associated to the frame $\{e_a(g_1h, g_2(h^{-1})^t)|a=1, \dots, 4\}$. By Lemma 2.1, it follows that

$$\omega^1=0, \quad \omega^-=\omega^2-\omega^3=\lambda d\eta, \quad \omega^+=\omega^2+\omega^3=\lambda d\xi$$

and

$$\pi_1 = -\omega_2^1 + \omega_3^1 + \omega^2 + \omega^3 = 2(-p_1 dq_1 + q_1 dp_1)$$

Thus $\{e_{\alpha}(g_1h, g_2(h^{-1})^t) | \alpha = 1, \dots, 4\}$ is an oriented adapted frame field on V for immersion $f = g_1 g_2^t$. The 1-form $-p_1 dq_1 + q_1 dp_1$ must have the form $\Phi d\eta$ for some function Φ on V, since we have the representations

$$-p_1 dq_1 + q_1 dp_1 = \begin{cases} -p_1^2 d \frac{q_1}{p_1} = -p_1^2 d \left(\frac{A_1(\eta)}{B_1(\eta)} \right) & \text{where } p_1 \neq 0 , \\ \\ q_1^2 d \frac{p_1}{q_1} = -q_1^2 d \left(\frac{A_1(\eta)}{C_1(\eta)} \right) & \text{where } q_1 \neq 0 . \end{cases}$$

By the following Lemma 3.2, we conclude that assertion holds.

Now we continue to prove our theorem. Let

$$U_{i} = \{ p \in U \mid B_{i}(p) \neq 0 \}$$
$$V_{i} = \{ p \in U \mid C_{i}(p) \neq 0 \}$$

and

for i=1, 2.

For $p \in U_1 \cap U_2 \cap V_1 \cap V_2$, we can choose a neighborhood V of p such that $B_i|_V \neq 0$ and $C_i|_V \neq 0$, for i=1, 2. Let $p_i = \operatorname{sign}(A_i)\sqrt{|B_i|/\lambda}$ and $q_i = \sqrt{|C_i|/\lambda}$ by assertion we conclude that H=1 holds on $U_1 \cap U_2 \cap V_1 \cap V_2$.

Next by the continuity of the mean curvature function H, we have that H=1 holds on $\overline{U}_1 \cap U_2 \cap V_1 \cap V_2 \subseteq \overline{U_1 \cap U_2 \cap V_1 \cap V_2}$. On the other hand, for $p \in (U \setminus \overline{U}_1) \cap U_2 \cap V_1 \cap V_2$, we can choose a neighborhood V of p such that $B_1|_V=0$, $B_2|_V \neq 0$ and $C_i|_V \neq 0$ for i=1, 2. Let $p_1=0, p_2=\operatorname{sign}(A_2)\sqrt{|B_2|/\lambda}$ and $q_i=\sqrt{|C_i|/\lambda}$, by assertion we conclude that H=1 holds on $(U \setminus \overline{U}_1) \cap U_2 \cap V_1 \cap V_2$. So we see that H=1 holds on $U_2 \cap V_1 \cap V_2$.

Repeat the above discussion, we conclude that H=1 holds on $V_1 \cap V_2$, on V_2 and finally on U.

LEMMA 3.2. Let $f: U \subseteq \mathbb{R}^{1,1} \to H_1^s$ be an conformal (timelike) immession and

TIMELIKE SURFACES

 $\{\eta, \xi\}$ be the global oriented null coordinates on $\mathbb{R}^{1,1}$. Let $\{\omega^i, \omega^i\}|i, j=1, 2, 3\}$ be the canonical 1-forms associated with an oriented adapted frame field $\{e_i|i=1, 2, 3\}$. Then the immersion f has mean curvature one if and only if $-\omega_2^1+\omega_3^1+\omega^2+\omega^3$ has the form $\Phi d\eta$ for some function Φ on U.

Proof. Let $ds_f = \lambda^2 d\eta d\xi$ denote the induced metric on U, so we have $\omega^2 - \omega^3 = \lambda d\eta$ and $\omega^2 + \omega^3 = \lambda d\xi$. We compute that

$$-\omega_{2}^{1}+\omega_{3}^{1}=-(h_{22}\omega^{2}-h_{23}\omega^{3})+(-h_{23}\omega^{2}+h_{33}\omega^{3})$$
$$=-2H\omega^{3}-(h_{23}+h_{33})(\omega^{2}-\omega^{3}),$$

and

$$\begin{aligned} -\omega_2^1 + \omega_3^1 + \omega^2 + \omega^3 &= -2(H-1)\omega^3 - (-1+h_{33}+h_{23})(\omega^2 - \omega^3) \\ &= -2(H-1)\omega^3 - \lambda(-1+h_{33}+h_{23})d\eta \,. \end{aligned}$$

So it then follows that lemma holds.

To complete the representation for the timelike surfaces with mean curvature one in H_1^3 , we shall prove the following theorem.

THEOREM 3.3. Let $U \subseteq R^{1,1}$ be a simply connected domain and $f: U \to H_1^s$ be a conformal (timelike) immersion with mean curvature one. Then there exist two maps $F_1, F_2: U \to SL(2, R)$ satisfying condition (1), (2) and (3) such that

 $f = F_1 F_2^t$.

Proof. Let $ds_f^2 = \lambda^2 d\eta d\xi$ be the induced metric on U, and e_1, e_2, e_3 be the adapted frame fields on U such that e_1 is the unit normal vector field of f in H_1^3 . Then $\{e_1, e_2, e_3, e_4=f\}$ is a frame field of R_2^4 . By the fact that U is simply connected, we have the lifting maps $g_1, g_2: U \rightarrow SL(2, R)$ such that $e_i(g_1, g_2) = e_i$ for i=1, 2, 3 and $f = g_1g_2^t$. Again let $\{\omega^i, \omega^i_j | i, j=1, 2, 3\}$ be the canonical 1-forms associated to the frame field $\{e_i | i=1, 2, 3\}$. By Lemma 2.1 and $\omega^1=0$, we have

$$g_{1}^{-1}dg_{1} = \frac{1}{2} \begin{pmatrix} -\omega_{2}^{3} & \omega_{1}^{1} + \omega_{3}^{1} + \omega^{2} - \omega^{3} \\ -\omega_{1}^{1} + \omega_{3}^{1} + \omega^{2} + \omega^{3} & \omega_{2}^{3} \end{pmatrix},$$

$$g_{2}^{-1}dg_{2} = \frac{1}{2} \begin{pmatrix} \omega_{2}^{3} & \omega_{2}^{1} - \omega_{3}^{1} + \omega^{2} + \omega^{3} \\ -\omega_{1}^{1} - \omega_{3}^{1} + \omega^{2} - \omega^{3} & -\omega_{2}^{3} \end{pmatrix}.$$

Consider the $\mathfrak{Sl}(2, R)$ -valued 1-form μ on U:

$$\mu = \frac{1}{2} \begin{pmatrix} -\omega_2^3 & \omega_2^1 + \omega_3^1 - \omega^2 + \omega^3 \\ -\omega_2^1 + \omega_3^1 + \omega^2 + \omega^3 & \omega_2^3 \end{pmatrix}.$$

It is easy to see that μ satisfies $d\mu = -\mu \wedge \mu$ (since f has mean curvature one). It follows by the Frobenuis theorem that there exists a smooth map $h: U \rightarrow SL(2, R)$ so that $\mu = h^{-1}dh$. Let us write

 $h = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$

for smooth functions a, b, c and d on U. Then if we set $F_1=g_1h^{-1}$ and $F_2=g_2h^t$, by the fact that $\omega^2-\omega^3=\lambda d\eta$ and $\omega^2+\omega^3=\lambda d\xi$, we easily compute

$$F_{1}^{-1}dF_{1} = \begin{pmatrix} -ac & a^{2} \\ -c^{2} & ac \end{pmatrix} \lambda d\eta,$$

$$F_{2}^{-1}dF_{2} = \begin{pmatrix} bd & d^{2} \\ -b^{2} & -bd \end{pmatrix} \lambda d\xi.$$

Since $dF_1(\text{resp. } dF_2)$ has the form $\oint d\eta$ (resp. $\Psi d\xi$) for $\mathfrak{gl}(2, R)$ -valued function \oint (resp. Ψ), we must have that F_1 and F_2 satisfy the condition (1). Clearly, F_1 and F_2 also satisfy condition (2), (3) and

$$F_1F_2^t = g_1g_2^t = f$$
.

This completes our proof.

4. Representation formula and examples

.

Let $U \subseteq R^{1,1}$ be a simply connected domain and $\{\eta, \xi\}$ be the global null coordinates on $R^{1,1}$. For given smooth functions $\alpha_i(\eta)$, $\beta_i(\xi)$ (i=1, 2, 3) on U, satisfying

$$(i) \qquad \qquad \alpha_1\alpha_2 + \alpha_3^2 = 0$$

(ii)
$$\beta_1\beta_2+\beta_3^2=0$$
,

by Frobenuis theorem, there exist two maps

$$A(\eta): U \longrightarrow SL(2, R),$$
$$B(\xi): U \longrightarrow SL(2, R),$$

such that

(4.1)
$$A(\eta)^{-1}dA(\eta) = \begin{pmatrix} \alpha_3 & \alpha_1 \\ \alpha_2 & -\alpha_3 \end{pmatrix} d\eta$$

(4.2)
$$B(\xi)^{-1}dB(\xi) = \begin{pmatrix} \beta_3 & \beta_1 \\ \beta_2 & -\beta_3 \end{pmatrix} d\xi.$$

Then we obtain that a mapping given by

$$f(\xi, \eta) = A(\eta)B(\xi)^t : U \longrightarrow H_1^3$$

is a branched conformal (timelike) immersion with mean curvature one.

The mapping f is an immersion if the functions $\alpha_i(\eta)$ and $\beta_i(\xi)$ (i=1, 2, 3)

satisfy

(iii)
$$\alpha_1\beta_1 + \alpha_2\beta_2 + 2\alpha_3\beta_3 \neq 0.$$

At last we shall give here some examples.

Examples. 1) Let $\alpha_1 = \beta_1 = -1$, $\alpha_2 = \alpha_3 = \beta_2 = \beta_3 = 1$. By solving (4.1) and (4.2), it follows that

$$A(\eta) = \begin{pmatrix} \eta + 1 & -\eta \\ \eta & -\eta + 1 \end{pmatrix},$$
$$B(\xi) = \begin{pmatrix} \xi + 1 & -\xi \\ \xi & -\xi + 1 \end{pmatrix}.$$

Hence an entire timelike immersion $f: R^{1,1} \rightarrow H_1^3$ with mean curvature one is given by

$$f(\boldsymbol{\xi}, \boldsymbol{\eta}) = (\boldsymbol{\xi} + \boldsymbol{\eta}, 2\boldsymbol{\xi}\boldsymbol{\eta}, \boldsymbol{\eta} - \boldsymbol{\xi}, 2\boldsymbol{\xi}\boldsymbol{\eta} + 1).$$

2) Let $\alpha_1 = \beta_1 = -1$, $\alpha_3 = \eta$, $\beta_3 = \xi$ and $\alpha_2 = \eta^2$, $\beta_2 = \xi^2$. We have by (4.1) and (4.2):

$$A(\eta) = \begin{pmatrix} \sin \eta - \eta \cos \eta & \cos \eta \\ -\cos \eta - \eta \sin \eta & \sin \eta \end{pmatrix},$$
$$B(\xi) = \begin{pmatrix} \sin \xi - \xi \cos \xi & \cos \xi \\ -\cos \xi - \xi \sin \xi & \sin \xi \end{pmatrix}.$$

Then we have a branched immersion $f: \mathbb{R}^{1,1} \rightarrow H_1^3$ with mean curvature one:

$$f(u, v) = \frac{1}{2} \left(-u \sin u + \frac{u^2 - v^2}{4} \cos u, \ u \cos u + \frac{u^2 - v^2}{4} \sin u, \\ 2 \sin v - v \cos v + \frac{u^2 - v^2}{4} \sin v, \ 2 \cos v + v \sin v + \frac{u^2 - v^2}{4} \cos v \right)$$

where $u = \eta + \xi$, $v = \eta - \xi$. And f is an immersion on domain

$$U = \{(u, v) \in R^{1,1}: u^2 - v^2 + 4 \neq 0\}.$$

3) Let $\alpha_1 = \beta_1 = -1$, $\beta_2 = \beta_3 = 1$ and $\alpha_2 = \eta^2$, $\alpha_3 = \eta$. By (4.1) and (4.2), we get that

$$A(\eta) = \begin{pmatrix} \sin \eta - \eta \cos \eta & \cos \eta \\ -\cos \eta - \eta \sin \eta & \sin \eta \end{pmatrix},$$
$$B(\xi) = \begin{pmatrix} \xi + 1 & -\xi \\ \xi & -\xi + 1 \end{pmatrix}.$$

Then we have a branched immersion $f: \mathbb{R}^{1,1} \to H_1^3$ with mean curvature one given by $f(\eta, \xi) = (1/2)(x_1, \dots, x_4)$, where

$$\begin{aligned} x_1 &= 2\xi \sin \eta - \eta \cos \eta + \xi \eta (\sin \eta - \cos \eta), \\ x_2 &= -2\xi \cos \eta - \eta \sin \eta - \xi \eta (\sin \eta + \cos \eta), \\ x_3 &= -2 \cos \eta - (2\xi + \eta) \sin \eta + \xi \eta (\cos \eta - \sin \eta), \\ x_4 &= 2 \sin \eta - (2\xi + \eta) \cos \eta - \xi \eta (\sin \eta + \cos \eta). \end{aligned}$$

And f is an immersion on domain $U = \{(\xi, \eta) \in \mathbb{R}^{1,1}; \eta \neq -1\}$.

Acknowledgement. The author wishes to express his gratitude to Professors C.H. Gu, H.S. Hu and Y.L. Xin for their helpful advices and encouragements.

References

- R.L. BRYANT, Surfaces of mean curvature one in hyperbolic space, Asterisque, 154-155 (1987), 321-347.
- [2] C.H. GU, The extremal surfaces in the 3-dimensional Mikowski space, Acta Math. Sinica (N.S.), 1 (1985), 173-180.
- [3] D.A. HOFFMAN AND R. OSSERMAN, The geometry of the generalized Gauss map, Mem. Amer. Math. Soc., 236 (1980).
- [4] K. KENMOTSU, Weierstrass formula for surfaces of prescribed mean curvature, Math. Ann., 245 (1979), 89-99.
- [5] O. KOBAYASHI, Maximal surfaces in the 3-dimensional space L³, Tokyo J. Math.
 6 (1983), 297-309.
- [6] B. PALMER, Spacelike constant mean curvature surfaces in pseudo-Riemannian space forms, Ann. Global Anal. Geom., 8 (1990), 217-226.
- [7] M. SPIVAK, A Comprehensive Introduction to Differential Geometry, Publish or Perish, Berkeley, 1979.
- [8] J.A. WOLF, Spaces of Constant Curvature, 3rd ed, McGraw-Hill, 1974.

Accounting Department School of Manegement Fudan University Shanghai, 200433, P.R. China