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ON SPECTRAL CHARACTERIZATIONS OF MINIMAL
HYPERSURFACES IN A SPHERE
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Abstract

Let M be a closed minimal hypersurface in an Euclidean sphere Sw+1(l).
We first prove that a minimal isoparametric hypersurface M in a 4-dimensional
sphere is completely determined by its spectrum Specp(M), here p€Ξ {0,1,2,3}.
In higher dimensional sphere, we prove that if Sρecp(Af)=:Specp(Mm>n_m) for
p=0,1, where

is a Clifford torus, then M is Mm>n_m. Furthermore, we prove that Mn

4) i s a l s o characterized by Spec*(Λ/n,n) for some P=P(n).

§ 1. Introduction

For a smooth compact, oriented Riemannian manifold M of dimension n,
let ΛP(M) denote the space of C°° differential forms of degree ί = 0 , 1, •••, w
with real coefficients. The Laplace operator Δ of M acting on functions has a
natural generalization to ΛV{M). In the theory of spectrum of Laplace operator
on ΛP{M), one can see that the interplay among analysis, topology and geometry
is even striking (e.g., see [6]). We denote by Specp(M) the spectrum of Laplace
operator on ΛP(M).

It is interesting to see the relation of Specp(M) and the geometry on M,
which gives rise to the following old question: Does Specp(M) determine the
geometry of Riemannian manifold M? The answer to this problem in general
case is negative. This is a consequence of the counter example which is given
by Milnor in [10]. So the problem is divided into two directions. One direc-
tion is to find new counter examples. A series studies along this line have
been done by Vigneras [13], Ikeda [8] and others. Another direction is to give
an affirmative answer for a special Riemannian manifold. The studies of this
direction have also been done by Berger [1], Patodi [11], Tanno [12] and many
others.
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In this paper, we will deal with the latter problem on minimal hypersur-
faces in an Euclidean sphere. In his paper [5], Donnelly gave a spectral cha-
racterization of the totally geodesic minimal submanifold in a sphere. A further
study of this aspect was done by Hasegawa, he characterized some concrete
minimal submanifolds in a sphere by the spectrum, particularly Veronese ma-
nifolds. And he also characterized Clifford tori by their spectrum with some
additional geometric conditions (see [7] for details). On the other hand, from
the recent work of Chang [2] (or of Cheng and Wan [3]), we know that the
totally geodesic 3-sphere, Clifford torus and Cartan's minimal hypersurface are
the only closed minimal hypersurfaces of 4-sphere S4(l) with constant scalar
curvature. For these minimal isoparametric hypersurfaces in S4(l), we can
give a spectral characterization as follows.

THEOREM 1. Let M be a closed minimal hypersurface in S4(l). // Specp(M)
=Specp(M0) for a given p(Q<p£3), where Mo is the totally geodesic 3-space, or
Clifford torus S\VΪ73)χS2(V2/3), or Cartan's minimal hypersurface. Then M
is nothing but Mo.

We also know that the Clifford tori Mm,n_m=Sm(Vm/n)XSn~m(\/n—m/n)
(l<Lm<n—1) are the only closed minimal hypersurfaces of Sn + 1(l) with the
scalar curvature — n(n — l)—n (see [4]). For these minimal hypersurfaces, we
like to give a spectral characterization without any additional geometric condi-
tions. Namely, we have

THEOREM 2. Let M be a closed minimal hypersurface in Sn + 1(l). //
Sρecp(Af)=Specp(Mm,n_m) for p=0 and 1, then M is Mm > r ι_m.

Among the all Clifford tori, we will pay a special attention to Sn(Vl/2)x
Sn(Vΐj2)=Mn>n in S2n+\1). Berger et al. [1] proved that S'xS1 is completely
determined by S p e c ^ x S 1 ) or SpecWxS 1 ) . Hasegawa [7] proved that if M
is a minimal hypersurface in S5(l) satisfying Spec0 (M)=Spec0 (M2>2) and its
Euler number Z(M)^4=Z(Afa,a), then M=M2>2. Tanno and Masuda [12] proved
that if Spec°(MxΛO=Sρec°(S3xS3), then M (or N) is isometric to S3. For
w^4, we obtain the following.

THEOREM 3. Let M be a closed minimal hypersurface in S 2 r ι + 1(l)(n^4) with
Specp(M)=Svecp(Mn,n) for some p=p(n) (e.g., p is chosen in (3.23), (3.24) below).
Then M is Mn>n.

We will first set up notations and present some formulas and basic results
of minimal hypersurfaces in a sphere in §2, and the proofs of the above the-
orems will be given in § 3.



322 QING DING

§ 2. Preliminaries

Throughout this paper unless otherwise stated, let M be an n dimensional
hypersurface in an Euclidean sphere Sn+\l) to have no boundary and to be
compact, connected, and of class C°°. Let R, R and p be respectively the
Riemann curvature tensor, Ricci curvature tensor and scalar curvature of M.
We denote by Rιjkι (or a similar way to R) the components of R. The Gauss
equation asserts that:

(2.1) Rijki—δikδji—δiiδjk + hikhji—huhjk

where δij is the Kronecker symbol and (htJ) the components of the second
fundamental form of M in Sn+\1).

For any fixed point xo(=M, we can choose a frame field eu •••, en such that
(htJ) is diagonalized at that point, say

Let Λ=Σ?-iλ«=Σ?-iΛ be the mean curvature of M and S = Σ ? . j Λϊj—Σ?=
the square of the length of the second fundamental form. Then we have

(2.2) Rijki

(2.3) &i

(2.4) p=n(n-l)+h*-S.

Therefore, the squares of the length of R and R are

(2.5) IR1 2 =2S 2 -2 Σ ^ + 4 / ι 2 - 4 S + 2 n ( n - l ) ,
1 = 1

(2.6) \R\2=h2S+ Σ λί+n(n-l)2-2hΣι λ\+2(n-l)hz-2{n-l)S
1 l

where Σ?=i^f and Σ?=i^{ a r ^ globally defined functions on M.
Since M is compact, for p=0, 1, •••, w, we set

Spec p (M)={0^Λ,^Λ > p ^ ί +00}.

For those discrete eigenvalues, we have the Minakshisundaram-PleijeΓs asymp-
totic expansion formula as follows:

here the coefficients ak,P, k=0, 1, 2 were calculated by Patodi in [11] as follows :

(2.7) α0>p
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(2.9) α, . p =( {Cι{n, p)p*+cz{n, p)\kV+c3{n, p)\R\*)dv.

where di; denotes the volume element of M and

— 2\ 1/71—4

l/n—2

1/n—2\ 1/n—4\

δ ί Ϊ 2 ( ί - 1 )+^"V p-2)'

here ( ) is understood to be zero when /<0 or q<0 or ί<q.

Now, we are going to recall some fundamental results in the theory of
minimal hypersurfaces in an Euclidean Sphere.

THEOREM A (Chern, Do Carmo and Kobayashi [4] or Lawson [9]). The

Clifford tori Mm,n.m=Sm(Vm/n)xSn-m(Vn-m/n), m = l , •••, n~\ are the only

closed minimal hypersurfaces in S n + 1 ( l ) satisfying S — n.

THEOREM B (Chang [2] or also Cheng and Wan [3]). A closed minimal
hypersurface with constant scalar curvature in S4(l) is either an equatorial 3-
sphere, a Clifford torus, or a Car tan's minimal hypersurface.

§3. Proof of the theorems

In this section, we turn to prove the theorems.

Proof of Theorem 1. Since M is a minimal hypersurface (i.e., /z=0) in
S4(l), thus from (2.4)-(2.6) we have

(3.1) p=6-S,

(3.2) IR12=2S2-2ΣΛ4:-4S+12,

(3.3) | # | 2

Let Mo denote either the totally geodesic 3-sphere, or Clifford torus S1(v/ϊ/3)X
S2(Λ/2/3), or Cartan's minimal hypersurface in S4(l). We know that Mo has
the constant principal curvatures Λ?(l^z^3). Let p0, Ro> Ro and So denote
respectively the scalar curvature, Ricci curvature tensor, Curvature tensor and
the square of the length of the second fundamental form of Mo. Then ^0=
β-So, l#ol2=ΣW?)4+12-4So, |#|2=2So2-2ΣU?)4-4So-ί-12 and S 0 = Σ ( « 2 Let
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aktP and a\tV be the coefficients of the asymptotic expansion of Minakshisun-
daram-Pleijel corresponding to Mand Mo respectively. Since Specp(M)=Specp(M0)
for a given p(0^p^3), we have aktP~ao

kίP for k—0, 1, 2 from the asymptotic
expansion formula. Thus, by (2.7)-(2.9), we have

(3.4) vol(M)=vol(Mo),

(3.5) I pdv—\ podvo,

ci(3, P)p*+c2(3, p)\R\2+cs(3, p)\R\2)dv

(3.6) = ( (Cι(3, p)pt

M+c& p)\Ro\2+c,(3, p)\Rt\*)dvt.

Here we have used ^M^^ipLi) f o r a n y ί=°> ^ 2^ 3 i n ( 3 5 ) Substituting

(3.1)-(3.3) into (3.6) and making use of (3.4), (3.5), we have

(3.7) f ((Cl(3, ί)+2c3(3, />))S2+(^2(3, p)-2cΆ(3,
J M

((ci(3, P)+2cz(3,

Since M and Mo are 3-dimensional minimal hypersurfaces in S4(l), we have
ΣUt=U/2)S2 and Σ(^?)4=(l/2)Sϊ. Hence (3.7) becomes

(3.8)

Because for any /> e {0, 1, 2, 3}, d(3, ί ) + (l/2)c8(3, />) + c8(3, p) Φ 0. So (3.8)
implies that

(3.9) \ S2dv=[ S2

0dvo=Stvo\(Mo).

On the other hand, (3.5) implies that

Thus, by Schwarz inequality, we get

So vol (Mo) = j ^ Sdv£(^MS2dv)U2(^M dv)112 =SQ vol (Mo).

Hence
O—Oo ,

i.e. M is a minimal hypersurface in S4(l) with constant scalar curvature. From
Theorem B, we obtain that M is either the totally geodesic 3-space (when S =
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So=0), or Clifford torus (when S—50=3), and or Cartan's minimal hypersurface
(when S=S0=6). This proves M=M0. D

Proof of Theorem 2. Since M is a minimal hypersurface in vSw+1(l), we
have

(3.10 p=n(n-ΐ)-S,

(3.20 IR12=2S2-2ΣUt-4S+2rc(?2-l),

(3.30 \R\2=Σ>λί+n(n-iy-2(n-l)S.

Specially, for Mm,n-m=Sm(Vm/n)xSn-m(Vn-m/n)(l ^ m ̂  n-1), it is well
known that 5 0 = n and S(^S)4=(w—ra)3+ra7n(n — ra), where Λ? are the principal
curvature of MW ) W_m. Since Specp(M)=Specp(Mm > 7 l_m) for p=0, 1. By the
same arguments as in the proof of Theorem 1, we have

(3.11)

(3.12) f pdv = [ podvo,
j M J Mm> n-m

and for p=0, 1,

(3.13) [ ( C l ( n , P)p2+Un, p)\RV+cz{n, p)\R\2)dv
J M

, p)\R0\
2+c3(n, p)\Rt\*)dv0.

Substituting (3.1Ή3.3') and (3.11) (3.12) into (3.13), we get that, for p=0, 1,

(3.14) ( [(Cl(«, P)+2c3(n, />))S +(c t(«, ί)-2c,(», ί))ΣAί]dw

=(ci(n, /»)+2c,(n, p))n* vol(Mm,B_m)

^™^™ , n _ m ) .

We regard (3.14) as the linear equations I S2<ίυ and \ Σ4rfυ Since
J M j M

/ C l ( n , 0)+2cs(nf 0) c a ( n , 0 ) - 2 c 8 ( n , 0) \ 1 _
e t V C l ( n , l ) + 2 c 8 ( n , 1) Un, l ) - 2 c , ( n , 1) / 90"^" '

(3.14) has the unique solutions:

S2dv=n2vo\(Mm,n_m),[
j M

Γ __,. , ( n — m ) 3 + m 3

 1 / ί l > f N

JΛΓ n{n—m)n{n—m)

On the other hand, from (3.12) w e have
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(3.16) ( Sdv=nvol(Mm,π-m).
M

(
J M

Thus, from Schwarz inequality, the first equation of (3.15) and (3.16) imply that

S=n.

i.e. M is a closed minimal hypersurface in Sn+1(l) satisfying S=n. From

Theorem A, we obtain that M is one of {Sk(Vk/n)xSn-k(Vn-k/n)}^=1K Among

those Clifford tori only Mm>n-m=:Sm(Vm/n)xSn~m(Vn—m/n) satisfying the

second equation of (3.15). Therefore M is nothing but Mm,n_w. D

Proof of Theorem 3. Let M be a minimal hypersurface in S2n+ί(

and Specp(M)=Specp(Aίn,TO) for some p. For Clifford torus Mn.n=Sn(vT72)X

Sn(VΊj2)~^S2n+1(l), by a direct calculation, we know that the square of the

length of the second fundamental form equals to 2n and the principal curvatures

λQ

t=l for l ^ ί ^ n , λ\=-l for n+l^i<2n, which lead to Σ,l=MY=2n. There-

fore, with the same arguments as in the proof of Theorem 2, we have:

(3.17) vol(M)=vol(Mn>n)

. (l/2n\ /2n-2\\C /1 / 2n

(3.18) ί— ί )—ί )\ δαi ^ί-TΓl ^

and

(3.19) [ (Cl(2n, p)p2+c2(2n, p)\R\2+cs(2n, p)\R\2)dv
J M

The crucial point in this case is to show that there is at least a p—p{n) such
that

n, />)+2c,(2n, p)+jL(c*(2n9 p)-2cz(2n, p))<0,

(3.20) c2(2n, ί)-2c8(2n

l/2n\ /2n-2

if (3.20) holds for some />, we get, from (3.18)-(3.20),

(3.180 f Sdv=2n vol (Mn,n)
J M

and
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(3.21) (ci+2c8)ί (S2-4n2)dv=-(c2-2cΛ i^X\-
j M J M

Here we have used the inequality Σ?=iΛί^((ΣΛ5)2/2n)=(SY2n) in (3.21). It is
easy to see that (3.21) is equivalent to

(3.22) f S2dv^[ 4n2dv,

from the first equation of (3.20). Making use of (3.22), (3.180 and Schwarz
inequality, we obtain S—2n. By Theorem A, we know that M must be one
of the Clifford tori {ΛfTOt2n-m}isms2n-i. But from (3.21) we also know that M

must satisfy \ ^λ\dv—2n vol(M). Among the Clifford tori {Mm>2n_m}, only
JM

Mn,n=Sn(VT/2)xSn(VT72) satisfies the restriction. This proves M=Mn,n.
It remains to indicate that there exists at least a p — p(n) satisfying (3.20).

When 8^3/=2rc5^40, we put

2 when /=8, 10,

3 when /=12,

1 when

(3.23) /> = />(*)=

Obviously, for a pair (/, p) given in (3.23) the third equation of (3.20) is satisfied.
However, it is interesting to note that c^l, p)+2cz(l, p)>0, ca(/, p)—2c3(l, p)>0
except for /=10. For /=10, there is only p—2 (or 8) satisfying d(10, 2)+
2c8(10, 2)=-0.0416 , ca(10, 2)-2c8(10, 2)=1.583 , which imply that d(10, 2)+
2c8(10, 2)+(l/10)(ca(10, 2)-2c8(10, 2))=0.116 >0. Therefore, any/) given in
(3.23) satisfies (3.20) in this case. When /=2n^40, from (2.10) we have

3γ
2 A p-2 /'
Y /-4 \

ό)\p-2)'Y
βθp(i-p) (p-D(l-p-l) ό)\p-2

Taking
(3 24) p = \ » » v / - " • ^ - ^ ι/or r/+V(7/10)/2+(3/10)/1 [ ^

L tJ J ^ L Li A '

where \x~\ denotes the biggest integer which is not larger than x, by a direct
calculation, we conclude

d(Z, p)+2c$, />)>0, ell, p)-2cll, p)>0, -Q{P/-\ p_γ

i.e., (3.20) holds for the p. The proof of Theorem 3 is completed. •
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Remark. We can also give an analogue discussion in complex version.
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