THE COMPLEX OSCILLATION THEORY OF $\boldsymbol{f}^{\prime \prime}+\boldsymbol{A} \boldsymbol{f}^{\prime}+\boldsymbol{B f}=\boldsymbol{f}$, WHERE $A, B, F \neq 0$ ARE TRANSCENDENTAL MEROMORPHIC FUNCTIONS

By Xian-yu Li

Abstract

In this paper, we investigate the complex oscillation of the differential equation $$
f^{\prime \prime}+A f^{\prime}+B f=F
$$ where $A, B, F \neq 0$ are finite order transcendental meromorphic functions. In some cases we obtain estimates of the order of growth and the exponent of convergence of the zero-sequence of solutions for above equation. Theorem 3 and Theorem 4 are the main results among the Theorems in this paper.

§ 1. Introduction and results

In this paper, we will use the standard notations of the Nevanlinna theory (e.g. see [9]). In addition, we will also use the same notations as in [1], i.e. we will use, $\lambda(f)$ and $\bar{\lambda}(f)$ to denote respectively the exponents of convergence of the zero-sequence and the sequence of distinct zeros of $f(z), \sigma(f)$ to denote the order of growth of $f(z)$. The individual notations will be shown when they appear.
G. Gundersen proved in [8]:

Theorem A. If $f \neq 0$ is a solution of

$$
\begin{equation*}
f^{\prime \prime}+A f^{\prime}+B f=0, \tag{1.1}
\end{equation*}
$$

where A, B are entire such that
(i) $\boldsymbol{\sigma}(B)<\boldsymbol{\sigma}(A)<1 / 2$
or

Key words: Non-homogeneous linear differential equation, Transcendental meromorphic function, Zero-sequence, Exponent of convergence, Order of growth.

AMS No. 34A20, 30D35
Received July 19, 1993.
(ii) A is transcendental with $\sigma(A)=0$ and B is a polynomial, then $\sigma(f)=\infty$.

Gao Shi-an proved in [6]
Theorem B. For the equation

$$
\begin{equation*}
f^{\prime \prime}+a_{0} f=p_{1} e^{p_{0}} \tag{1.2}
\end{equation*}
$$

where a_{0}, p_{0}, p_{1} are polynomials, $\operatorname{deg} a_{0}=n, \operatorname{deg} p_{0}<1+(n / 2)$
(a) If $n>1$ and $\operatorname{deg} p_{1}<n$, then every solution f of (1.2) satisfies

$$
\bar{\lambda}(f)=\lambda(f)=\sigma(f)=1+(n / 2)>\operatorname{deg} p_{0} .
$$

(b) If $\operatorname{deg} p_{1} \geqq n \geqq 0$, then the solution f of (1.2) either satisfies $\bar{\lambda}(f)=\lambda(f)=$ $\sigma(f)=1+(n / 2)>\operatorname{deg} p_{0}$, or is of the form $f=Q e^{p_{0}}$, where Q is a polynomial. And if (1.2) has a solution of the form $Q e^{p_{0}}$ with Q polynomial, then (1.2) must have solutions which satisfy $\bar{\lambda}(f)=\lambda(f)=\sigma(f)=1+(n / 2)>\operatorname{deg} p_{0}$.

Chen Zong-xuan and Gao Shi-an investigated the complex oscillation of non-homogeneous linear differential equations with rational coefficients in [4].

In this paper, we will investigate the complex oscillation of the second order non-homogeneous linear differential equation

$$
\begin{equation*}
f^{\prime \prime}+A f^{\prime}+B f=F \tag{1.3}
\end{equation*}
$$

where $A, B, F \neq 0$ are transcendental meromorphic functions. We will prove the following four theorems:

Theorem 1. Suppose that $A, B, F \neq 0$ are finite order meromorphic functions, that either (i) or (ii) below holds:
(i) $\varlimsup_{r \rightarrow \infty} \log m(r, A) / \log r<\varlimsup_{r \rightarrow \infty} \log m(r, B) / \log r$
(ii) $\lim _{r \rightarrow \infty} m(r, B) / \log r=\infty$, and A is rational.

If non-homogeneous linear differential equation (1.3) has meromorphic solution $f(z)$, then
(a) All meromorphic solutions of (1.3) satisfy

$$
\begin{equation*}
\bar{\lambda}(f)=\lambda(f)=\sigma(f)=\infty \tag{1.4}
\end{equation*}
$$

with at most one possible finite order meromorphic solution f_{0}. If all solutions of (1.3) are meromorphic, then (1.3) must have solutions which satisfy (1.4).
(b) If there exists a finite order meromorphic solution of in case (a), then f_{0} satisfies

$$
\boldsymbol{\sigma}\left(f_{0}\right) \leqq \max \left\{\bar{\lambda}\left(f_{0}\right), \boldsymbol{\sigma}(F), \boldsymbol{\sigma}(A), \boldsymbol{\sigma}(B)\right\} .
$$

If $\bar{\lambda}\left(f_{0}\right)<\boldsymbol{\sigma}\left(f_{0}\right)$, and $\boldsymbol{\sigma}(F), \boldsymbol{\sigma}(A), \boldsymbol{\sigma}(B)$, are unequal each other, then

$$
\boldsymbol{\sigma}\left(f_{0}\right)=\max \{\boldsymbol{\sigma}(F), \boldsymbol{\sigma}(A), \boldsymbol{\sigma}(B)\} .
$$

Theorem 2. Suppose that $A, B, F \neq 0$ are finite order meromorphic functions having only finitely many poles, that either (i) or (ii) below holds:
(i) $\sigma(A)<\sigma(B)$,
(ii) B is transcendental, and A is rational.

If the equation (1.3) has meromorphic solutions $f(z)$, then
(a) All meromorphic solutions of (1.3) satisfy (1.4) with at most one possible finite order meromorphic solution f_{0}. If all solutions of (1.3) are meromorphic, then (1.3) must have solutions which satisfy (1.4).
(b) If there exists a finite order meromorphic solution f_{0} in case (a), then f_{0} satisfies

$$
\boldsymbol{\sigma}\left(f_{0}\right) \leqq \max \left\{\bar{\lambda}\left(f_{0}\right), \boldsymbol{\sigma}(B), \boldsymbol{\sigma}(F)\right\}
$$

If $\bar{\lambda}\left(f_{0}\right)<\boldsymbol{\sigma}\left(f_{0}\right), \boldsymbol{\sigma}(F) \neq \boldsymbol{\sigma}(B)$, then $\boldsymbol{\sigma}\left(f_{0}\right)=\max \{\boldsymbol{\sigma}(B), \boldsymbol{\sigma}(F)\}$.
THEOREM 3. Suppose that $A, B, F \neq 0$ are meromorphic functions having only finitely many poles, $F \not \equiv c B$ (c is a constant), that either (i) or (ii) below holds:
(i) $\boldsymbol{\sigma}(B)<\boldsymbol{\sigma}(A)<1 / 2$, and $\sigma(F)<\boldsymbol{\sigma}(A)$
(ii) A is transcendental and $\sigma(A)=0, B$ and F are rational. If $f(z)$ is a meromorphic solution of (1.3) then f satisfies (1.4).

Theorem 4. Suppose that $A, B, F \neq 0$ are finite order meromorphic functions having only finitely many poles, that either (i) or (ii) below holds:
(i) $\quad \sigma(B)<\sigma(A)<1 / 2$ and $\sigma(A) \leqq \sigma(F)$.
(ii) A, F are transcendental and $\sigma(A)=0, B$ is ratzonal.

If the equation (1.3) has meromorphic solution $f(z)$, then:
(a) If $B \equiv 0$, then all meromorphic solutions of (1.3) satisfy (1.4) with some possible finite order solutions $f_{c}=f_{0}+c\left(f_{0}\right.$ is some finite order meromorphic solutoon, C is an arbitrary constant).
(b) If $B \neq 0$, then all meromorphic solutions of (1.3) satisfy (1.4) with at most one finite order meromorphic solution f_{0}.
(c) The finite order meromorphic solution f_{c} of (1.3) satisfies

$$
\boldsymbol{\sigma}\left(f_{c}\right) \leqq \max \left\{\boldsymbol{\sigma}(F), \bar{\lambda}\left(f_{c}\right)\right\}
$$

If $\boldsymbol{\sigma}(A)<\boldsymbol{\sigma}(F), \bar{\lambda}\left(f_{c}\right)<\boldsymbol{\sigma}\left(f_{c}\right)$, then $\boldsymbol{\sigma}\left(f_{c}\right)=\boldsymbol{\sigma}(F)$
(d) If all solutions of (1.3) are meromorphic, then (1.3) must have solutions which satisfy (1.4).

§ 2. Lemmas

Lemma 1. Suppose that $f(z)=g(z) / h(z)$ is transcendental meromorphic function having only finitely many poles, where $g(z)$ is a transcendental entire function, h is a polynomial. Let z be a point with $|z|=r$ at which $|g(z)|=M(r, g)$, $h(z) \neq 0, \nu(r)$ denote the centralindex of the entire function $g(z)$, then

$$
\begin{equation*}
f^{\prime}(z) / f(z)=(\nu(r) / z)(1+o(1)) \tag{2.1}
\end{equation*}
$$

holds for all $|z|=r$ outside a subset E of r of finite logarithmic measure.
Proof. By $f=g / h$, we have

$$
\begin{equation*}
f^{\prime}(z)=\left(g^{\prime}(z) / h(z)\right)-g(z) \cdot\left(h^{\prime}(z) / h^{2}(z)\right) . \tag{2.2}
\end{equation*}
$$

On the other hand, from the Wiman-Valiron theory (see [10, 11, 12]), let z be a point with $|z|=r$, at which $|g(z)|=M(r, g), h(z) \neq 0$, then we have

$$
\begin{equation*}
g^{\prime}(z)=(\nu(r) / z) g(z)(1+o(1)) \quad r \notin E \tag{2.3}
\end{equation*}
$$

where $E \subset(0, \infty)$ has finite logarithmic measure.
Substituting (2.3) into (2.2), we have

$$
\begin{align*}
f^{\prime}(z) & =(\nu(r) / z)(1+o(1))(g(z) / h(z))-g(z)\left(h^{\prime}(z) / h^{2}(z)\right) \\
& =(\nu(r) / z) \cdot(g(z) / h(z))\left[(1+o(1))-(\nu(r) / z)^{-1} h^{\prime} / h\right](r \notin E) . \tag{2.4}
\end{align*}
$$

Since $g(z)$ is transcendental, we have $(\nu(r))^{-1} \rightarrow o(r \rightarrow \infty)$. And $h(z)$ is a polynomial, $\left|z \cdot h^{\prime}(z) / h(z)\right|=O(1)(r \rightarrow \infty)$, so

$$
\begin{equation*}
(\nu(r) / z)^{-1}\left(h^{\prime} / h\right)=o(1)(r \rightarrow \infty)(r \notin E) . \tag{2.5}
\end{equation*}
$$

Therefore, by (2.4) and (2.5), we obtain

$$
f^{\prime}(z)=(\nu(r) / z) \cdot f(z) \cdot(1+o(1)) r \notin E .
$$

This proves Lemma 1.
Lemma 2. Suppose that A, B satisfy the hypotheses of Theorem 1. If $g(z)$ $\not \equiv 0$ is a meromorphic solution of the homogeneous linear differential equation

$$
\begin{equation*}
g^{\prime \prime}+A g^{\prime}+B g=0 \tag{2.6}
\end{equation*}
$$

then $\sigma(g)=\infty$.
Proof. If $\sigma(g)<\infty$, then we have from (2.6)

$$
m(r, B) \leqq m(r, A)+m\left(r, g^{\prime \prime} / g\right)+m\left(r, g^{\prime} / g\right)=m(r, A)+O(\log r)
$$

If A is transcendental, then

$$
\varlimsup_{r \rightarrow \infty} \log m(r, B) / \log r \leqq \varlimsup_{r \rightarrow \infty} \log m(r, A) / \log r
$$

if A is rational, then $\varliminf_{r \rightarrow \infty} m(r, B) / \log r \leqq \varliminf_{r \rightarrow \infty} m(r, A) / \log r<M(M>0$ is some constant), this contradict on the hypotheses A, B.

Lemma 3. Suppose that A, B satisfy hypotheses of Theorem 3 or Theorem 4. If $g(z) \neq 0$ is a meromorphic solution of (2.6), then: if $B \neq 0$, then $\sigma(g)=\infty$;
if $B \equiv 0$, then either $g(z)$ is a constant, or $\sigma(g)=\infty$.
Proof. Assume that $g(z)$ is a transcendental meromorphic solution and $\sigma(g)=\sigma<\infty$. By (2.6) and fact that A, B have only finitely many poles, it is easy to see that $g(z)$ has only finitely many poles.

Now set

$$
\begin{equation*}
g(z)=u(z) / p(z), \quad A(z)=u_{A} / p_{A}(z), \quad B(z)=u_{B}(z) / p_{B}(z) \tag{2.7}
\end{equation*}
$$

where p, p_{A}, p_{B} are polynomials, u, u_{A}, u_{B} are entire functions, u, u_{A} are transcedental, and $\sigma\left(u_{A}\right)=\sigma(A)<1 / 2, \sigma\left(u_{B}\right)=\sigma(B), \sigma(u)=\sigma(g)=\sigma$

From Lemma 1, let z be a point with $|z|=r$ at which $|u(z)|=M(r, u)$, then

$$
\begin{equation*}
g^{\prime}(z) / g(z)=(\nu(r) / z)(1+o(1)) \tag{2.8}
\end{equation*}
$$

holds for all $|z|=r$ outside a set E_{1} of r of finite logarithmic measure, where, $\nu(r)$ denotes the centralindex of the entire function $u(z)$.

On the other hand, by $\sigma(g)=\sigma<\infty$, and Corollary 2 of [7], we have

$$
\begin{equation*}
\left|g^{\prime \prime}(z) / g(z)\right| \leqq|z|^{2 \sigma+1} \tag{2.9}
\end{equation*}
$$

for all $|z|=r \notin E_{2} \cup[0,1], E_{2} \sqsubset(1, \infty)$ has finite logarithmic measure.
From (2.6) and (2.7), we have

$$
\begin{equation*}
\left|u_{A} g^{\prime} / g\right| \leqq\left|p_{A} \cdot g^{\prime \prime} / g\right|+\left|p_{A} u_{B} / p_{B}\right| . \tag{2.10}
\end{equation*}
$$

Now divide the discussion into two cases.
CASE I. Suppose that $\sigma\left(u_{A}\right)=\sigma(A)>0$. Then we take ρ, τ such that

$$
\sigma\left(u_{B}\right)=\sigma(B)<\rho<\tau<\sigma\left(u_{A}\right)<1 / 2 .
$$

From Theorem of $\cos (\pi \sigma)$ type in [2,3], it is easy to know that there exists a subset $H \subset(1,+\infty)$ with infinite logarithmic measure, such that if $|z|=r \in H$, then

$$
\begin{equation*}
\log \left|u_{A}(z)\right|>r^{\tau}, \quad \log \left|u_{B}(z)\right|<r^{\rho} \tag{2.11}
\end{equation*}
$$

By (2.9)-(2.11), for $|z|=r \in H-\left(E_{1} \cup E_{2} \cup[0,1]\right),\left(H-\left(E_{1} \cup E_{2} \cup[0,1]\right)\right.$ has infinite logarithmic measure) we have as $r \rightarrow \infty$,

$$
\begin{gather*}
\left|z^{2}, g^{\prime}(z) / g(z)\right| \leqq|z|^{2}\left[\left|p_{A} \cdot p_{B} \cdot g^{\prime \prime}(z) / g(z)\right|+\left|p_{A} u_{B}\right|\right] / \mid p_{B} u_{A} \tag{2.12}\\
\left|z^{2} \cdot g^{\prime} / g\right| \leqq O\left(r^{M_{1}}\right) \cdot \exp \left(r^{\rho}\right) / \exp \left(r^{\tau}\right) \longrightarrow 0, \tag{2.13}
\end{gather*}
$$

where $M_{1}>0$ is a constant.
CASE II. Suppose that $\sigma\left(u_{A}\right)=\sigma(A)=0, u_{A}$ is transcendental, then also from Theorem of $\cos (\pi \sigma)$ type, there exists a subset $H_{1} \subset(1, \infty)$ with infinite logarithmic measure such that if $|z|=r \in H_{1}$, then.

$$
\begin{equation*}
\min \left\{\log \left|u_{A}(z)\right|:|z|=r\right\} / \log r \longrightarrow \infty \quad(r \rightarrow \infty) \tag{2.14}
\end{equation*}
$$

By (2.9), (2.12) and (2.14), for $|z|=r \in H_{1}-\left(E_{1} \cup E_{2} \cup[0,1]\right)\left(H_{1}-\left(E_{1} \cup E_{2} \cup\right.\right.$ $[0,1]$) has infinite logarithmic measure), we have as $r \rightarrow \infty$

$$
\begin{equation*}
\left|z^{2} \cdot g^{\prime}(z) / g(z)\right| \leqq 0\left(r^{M_{1}}\right) / \min \left|u_{A}(z)\right| \longrightarrow 0 . \tag{2.15}
\end{equation*}
$$

Therefore, for both cases above, by (2.13) or (2.15),

$$
\begin{equation*}
\left|z^{2} \cdot g^{\prime}(z) / g(z)\right| \longrightarrow 0 \quad(r \rightarrow \infty) \tag{2.16}
\end{equation*}
$$

holds for $r \in H-\left(E_{1} \cup E_{2} \cup[0,1]\right)$, or $r \in H_{1}-\left(E_{1} \cup E_{2} \cup[0,1]\right)$.
But by (2.8), for such z satisfying $|z|=r \in H-\left(E_{1} \cup E_{2} \cup[0,1]\right)$ or $r \in H_{1}-$ ($E_{1} \cup E_{2} \cup[0,1]$) and $|u(z)|=M(r, u), r \rightarrow \infty$, we have

$$
\begin{equation*}
z^{2} \cdot g^{\prime}(z) / g(z)=z \cdot \nu(r)(1+o(1)) . \tag{2.17}
\end{equation*}
$$

By (2.16) and (2.17), we have $\nu(r) \rightarrow 0(r \rightarrow \infty)$. This contradicts the fact that u is a transcendental entire function if and only if $\nu(r) \rightarrow \infty$ (as $r \rightarrow \infty)$. Therefore, $u(z)$ either is a polynomial, or satisfies $\sigma(u)=\infty$, i.e. $g(z)$ either is a rational function, or satisfies $\sigma(g)=\infty$.

By (2.6), it is easy to know that if $g(z) \neq 0$ is a nonconstant rational function, then $g^{\prime \prime}+A g^{\prime}+B g$ is a transcendental function with $\sigma\left(g^{\prime \prime}+A g^{\prime}+B g\right)=$ $\sigma(A)$, this is a contradiction; if $B \neq 0$ and $g(z)$ is a constant $C \neq 0$, then $g^{\prime \prime}+$ $A g^{\prime}+B g=C B \equiv 0$, this contradicts (2.6).

Lemma 4. Suppose that $A, B, F \neq 0$ are finite order meromorphic functoons. If $f(z)$ is a meromorphic solution of equation (1.3) with $\sigma(f)=\infty$, then $\bar{\lambda}(f)=$ $\lambda(f)=\sigma(f)=\infty$.

Proof. We can write from (1.3)

$$
\begin{equation*}
\left.1 / f=(1 / F)\left(f^{\prime \prime} / f\right)+A\left(f^{\prime} / f\right)+B\right), \tag{2.18}
\end{equation*}
$$

hence

$$
\begin{equation*}
N(r, 1 / f) \leqq 2 \bar{N}(r, 1 / f)+N(r, 1 / F)+N(r, A)+N(r, B) . \tag{2.19}
\end{equation*}
$$

Applying the Lemma of the logarithmic derivative, from (2.18), we have

$$
\begin{equation*}
m(r, 1 / f) \leqq m(r, 1 / F)+m(r, A)+m(r, B)+0\{\log T(r, f)+\log r\}(r \notin E) \tag{2.20}
\end{equation*}
$$

where a subset $E \subset(0, \infty)$ has finite linear measure, (2.19) and (2.20) give

$$
\begin{align*}
& T(r, f)=T(r, 1 / f)+O(1) \\
& \leqq 2 \bar{N}(r, 1 / f)+T(r, 1 / F)+T(r, A)+T(r, B)+O\{\log T(r, f)+\log r\}(r \notin E) \tag{2.21}
\end{align*}
$$

Since $\sigma(f)=\infty$, there exists $\left\{r_{n}^{\prime}\right\}\left(r_{n}^{\prime} \rightarrow \infty\right)$ such that

$$
\lim _{r_{n}^{\prime} \rightarrow \infty} \log T\left(r_{n}^{\prime}, f\right) / \log r_{n}^{\prime}=\infty .
$$

Setting the linear measure of $E, m E=\delta<\infty$, then there exists a point $r_{n} \in$ $\left[r_{n}^{\prime}, r_{n}^{\prime}+\delta+1\right]-E$. From

$$
\begin{aligned}
\log T\left(r_{n}, f\right) / \log r_{n} & \geqq \log T\left(r_{n}^{\prime}, f\right) / \log \left(r_{n}^{\prime}+\delta+1\right) \\
& =\log T\left(r_{n}^{\prime} f\right) /\left[\log r_{n}^{\prime}+\log \left[1+(\delta+1) / r_{n}^{\prime}\right)\right]
\end{aligned}
$$

we have
(2.22) $\quad \underset{r_{n} \rightarrow \infty}{\lim } \log T\left(r_{n}, f\right) / \log r_{n}$

$$
\geqq \lim _{r_{n}^{\prime} \rightarrow \infty} \log T\left(r_{n}^{\prime}, f\right) /\left[\log r_{n}^{\prime}+\log \left(1+(\delta+1) / r_{n}^{\prime}\right]=\infty\right.
$$

For a given arbitrary large $\beta(\beta>c=\max \{\sigma(A), \sigma(B), \sigma(F)\})$, by (2.22),

$$
\begin{equation*}
T\left(r_{n}, f\right) \geqq r_{n}^{\beta} \tag{2.23}
\end{equation*}
$$

hold for sufficiently large r_{n}.
On the other hand, for a given $\varepsilon(0<\varepsilon<\beta-c)$, for sufficiently large r_{n}, we have

$$
T\left(r_{n}, A\right)<r_{n}^{c+\varepsilon}, \quad T\left(r_{n}, B\right)<r_{n}^{c+\varepsilon}, \quad T\left(r_{n}, F\right)<r_{n}^{c+\varepsilon}
$$

By (2.23) as $r_{n} \rightarrow \infty$, we have

$$
\begin{aligned}
& T\left(r_{n}, A\right) / T\left(r_{n}, f\right)<r_{n}^{c+\varepsilon-\beta} \longrightarrow 0 \\
& T\left(r_{n}, B\right) / T\left(r_{n}, f\right)<r_{n}^{c+\varepsilon-\beta} \longrightarrow 0 \\
& T\left(r_{n}, F\right) / T\left(r_{n}, f\right)<r_{n}^{c+\varepsilon-\beta} \longrightarrow 0
\end{aligned}
$$

Therefore,

$$
\begin{align*}
& T\left(r_{n}, A\right)<(1 / 5) T\left(r_{n}, f\right) \tag{2.24}\\
& T\left(r_{n}, B\right)<(1 / 5) T\left(r_{n}, f\right) \tag{2.25}\\
& T\left(r_{n}, F\right)<(1 / 5) T\left(r_{n}, f\right) \tag{2.26}
\end{align*}
$$

hold for sufficiently large r_{n}. From

$$
O\left\{\log T\left(r_{n}, f\right)+\log r_{n}\right\}=o\left\{T\left(r_{n}, f\right)\right\},
$$

we obtain that

$$
\begin{equation*}
O\left\{\log T\left(r_{n}, f\right)+\log r_{n}\right\} \leqq(1 / 5) T\left(r_{n}, f\right) \tag{2.27}
\end{equation*}
$$

also holds for sufficiently large r_{n}. Substituting (2.24)-(2.27) into (2.21), we obtain

$$
\begin{equation*}
T\left(r_{n}, f\right)<10 \bar{N}(r, 1 / f) \tag{2.28}
\end{equation*}
$$

By (2.22) and (2.28), we have

$$
\infty=\lim _{r_{n} \rightarrow \infty} \log T\left(r_{n}, f\right) / \log r_{n} \leqq \varlimsup_{r_{n} \rightarrow \infty} \log \bar{N}\left(r_{n}, 1 / f\right) / \log r_{n} \leqq \bar{\lambda}(f)
$$

therefore, $\bar{\lambda}(f)=\lambda(f)=\sigma(f)=\infty$.

§ 3. Proofs of theorems

Proof of Theorem 1. (a) Assume that f_{0} is a meromorphic solution of (1.3) with $\boldsymbol{\sigma}\left(f_{0}\right)=\sigma<\infty$. If $f_{1}\left(\neq f_{0}\right)$ is second finite order meromorphic solution of (1.3), then $\sigma\left(f_{1}-f_{0}\right)<\infty$, and $f_{1}-f_{0}$ is a meromorphic solution of the corresponding homogeneous equation (2.6) of (1.3). But $\sigma\left(f_{1}-f_{0}\right)=\infty$ from Lemma 2 , this is a centradiction.

Now assume that $f(z)$ is an infinite order meromorphic solution of (1.3), then $\bar{\lambda}(f)=\lambda(f)=\sigma(f)=\infty$ from Lemma 4.

If all solutions of (1.3) are meromorphic functions, then all solutions of the corresponding homogeneous equation (2.6) of (1.3) are meromorphic functions. Assume $\left\{f_{1}, f_{2}\right\}$ is fundamental solution set of (2.6). By [5, p. 412], we have

$$
m(r, B)=O\left\{\log \left[\max \left(T\left(r, f_{S}\right), s=1,2\right)\right]+O(\log r)\right\}
$$

Since B is transcendental, there exists at least f_{1} or f_{2} with infinite order of growth. If f_{0} is a solution of (1.3), then every solution f of (1.3) can be written in the form

$$
f=c_{1} f_{1}+c_{2} f_{2}+f_{0}
$$

where c_{1}, c_{2} are arbitrary constants. Hence (1.3) must have infinite order solutions, and all infinite order solutions satisfy (1.4) from Lemma 4.
(b) For the finite order meromorphic solution f_{0} of (1.3), using the analogous proof as in Lemma 4, and remarking $m\left(r, f^{(\jmath)} / f\right)=O\{\log r\}(j=1,2)$ from $\sigma\left(f_{0}\right)=\sigma<\infty$, we easily know that

$$
\begin{equation*}
T\left(r, f_{0}\right) \leqq 2 \bar{N}\left(r, 1 / f_{0}\right)+T(r, F)+T(r, A)+T(r, B)+O\{\log r\} \tag{3.1}
\end{equation*}
$$

holds for all r. Hence

$$
\begin{equation*}
\boldsymbol{\sigma}\left(f_{0}\right) \leqq \max \left\{\bar{\lambda}\left(f_{0}\right), \boldsymbol{\sigma}(F), \boldsymbol{\sigma}(A), \boldsymbol{\sigma}(B)\right\} \tag{3.2}
\end{equation*}
$$

If $\bar{\lambda}\left(f_{0}\right)<\boldsymbol{\sigma}\left(f_{0}\right)$, and $\sigma(F), \sigma(A), \sigma(B)$ are different from each other, then from (1.3), we have

$$
\begin{equation*}
\boldsymbol{\sigma}\left(f_{0}\right) \geqq \max \{\boldsymbol{\sigma}(F), \boldsymbol{\sigma}(A), \boldsymbol{\sigma}(B)\} \tag{3.3}
\end{equation*}
$$

Therefore, (3.2) and (3.3) give

$$
\begin{equation*}
\boldsymbol{\sigma}\left(f_{0}\right)=\max \{\boldsymbol{\sigma}(F), \boldsymbol{\sigma}(A), \boldsymbol{\sigma}(B)\} \tag{3.4}
\end{equation*}
$$

Proof of Theorem 2. Theorem 2 immediately follows from Theorem 1.
Proof of Theorem 3. From $F \neq c B$, we know that (1.3) has no constant solutions. If f is a nonconstant rational function, then for case (i), we have $\sigma\left(f^{\prime \prime}+A f^{\prime}+B f\right)=\sigma(A)>\sigma(F)$; for case (ii), we have $f^{\prime \prime}+A f^{\prime}+B f$ is trans-
cendental, but F is a rational function. Hence (1.3) has no rational solutions, i.e. f must be a transcendental meromorphic solution.

Now assume that f is a transcendental meromorphic solution with $\sigma(f)=$ $\sigma<\infty$. From (1.3) and fact that A, B, F have only finitely many poles, we know that f has only finitely many poles.

Set

$$
\begin{equation*}
f(z)=u(z) / p(z), A(z)=u_{A} / p_{A}, B=u_{B} / p_{B}, F=u_{F} / p_{F} \tag{3.5}
\end{equation*}
$$

where u, u_{A}, u_{B}, u_{F} are entire and u, u_{A} are transcendental p, p_{A}, p_{B}, p_{F} are polynomials, $\sigma(u)=\sigma(f)=\sigma, \sigma\left(u_{A}\right)=\sigma(u), \sigma\left(u_{B}\right)=\sigma(B), \sigma\left(u_{F}\right)=\sigma(F)$.

For f, using the same reasoning as in Lemma 3, by Lemma 1, we have

$$
\begin{equation*}
f^{\prime}(z) / f(z)=(\nu(r) / z)(1+o(1)) \quad r \notin E_{1}, \tag{3.6}
\end{equation*}
$$

where $|z|=r,|u(z)|=M(r, u), E_{1} \subset(1, \infty)$ has finite logarithmic measure, $\nu(r)$ denotes the centralindex of $u(z)$. From Corollary 2 of [7], we have

$$
\begin{equation*}
\left|f^{\prime \prime}(z) / f(z)\right| \leqq|z|^{2 \sigma+1} \quad r \oplus E_{2} \cup[0,1] \tag{3.7}
\end{equation*}
$$

where $E_{2} \sqsubset(1, \infty)$ has finite logarithmic measure. By (3.5) and (1.3), we obtain

$$
\begin{equation*}
\left|u_{A} f^{\prime} / f\right| \leqq\left[\left|p_{A} \cdot p_{B} \cdot f^{\prime \prime} / f\right|+\left|p_{A} u_{B}\right|\right] /\left|p_{B}\right|+\left|u_{F} p p_{A}\right| /\left|p_{F} u\right| . \tag{3.8}
\end{equation*}
$$

From $u(z)$ is a transcendental entire function, we take z satisfying $|z|=r$, $|u(z)|=M(r, u)$, then for sufficiently large $|z|$, we have $|u(z)|>1$ and $\left|u_{F} p p_{A}\right| /$ $\left|p_{F} u\right|<\left|u_{F} \phi p_{A}\right| /\left|p_{F}\right|$. By (3.8), we have

$$
\begin{equation*}
\left|u_{A} f^{\prime} / f\right| \leqq\left[\left|p_{A} p_{B} f^{\prime \prime} / f\right|+\left|p_{A} u_{B}\right|\right] /\left|p_{B}\right|+\left|u_{F} p p_{A}\right| /\left|p_{F}\right| \tag{3.9}
\end{equation*}
$$

for sufficiently large $|z|$, and z satisfying $|z|=r,|u(z)|=M(r, u)$.
Divide the discussion into two cases.
CaSE I. Suppose that $\sigma\left(u_{A}\right)=\sigma(A)>0$, then we take ρ, τ, such that

$$
\max \left\{\sigma\left(u_{B}\right), \sigma\left(u_{F}\right)\right\}<\rho<\tau<\sigma\left(u_{A}\right)<1 / 2 .
$$

From theorem of $\cos (\pi \sigma)$ type [2,3], it is easy to know that there exists a subset $H \subset(1, \infty)$ with infinite logarithmic measure such that if $|z|=r \in H$, then

$$
\begin{equation*}
\log \left|u_{A}(z)\right|>r^{2}, \log \left|u_{B}(z)\right|<r^{\rho}, \log \left|u_{F}(z)\right|<r^{\rho} . \tag{3.10}
\end{equation*}
$$

By (3.6)-(3.10), for $|z|=r \in H-\left(E_{1} \cup E_{2} \cup[0,1]\right)$ and z satifying $|u(z)|=$ $M(r, u), r \rightarrow \infty$, we have

$$
\begin{align*}
& \left|z^{2} \cdot f^{\prime}(z) / f(z)\right| \leqq\left[\left|z^{2} p_{A} p_{B} p_{F} f^{\prime \prime} / f\right|+\left|z^{2} p_{A} p_{F} u_{B}\right|\right. \\
& \left.\quad+\left|z^{2} u_{F} p p_{A} p_{B}\right|\right] /\left|p_{F} p_{B} u_{A}\right|<O\left(r^{M_{1}}\right) \exp \left(r^{\rho}\right) / \exp \left(r^{\tau}\right) \longrightarrow 0 \tag{3.11}
\end{align*}
$$

where $M_{1}>0$ is a constant.
CASE II. Suppose that $\sigma\left(u_{A}\right)=\sigma(A)=0, u_{A}$ is transcendental, then also from

Theorem of $\cos (\pi \sigma)$ type, there exists a subset $H_{1} \subset(1, \infty)$ with infinite logarithmic, measure such that if $|z|=r \in H_{1}$, then

$$
\begin{equation*}
\min \left\{\log \left|u_{A}(z)\right|:|z|=r\right\} / \log r \longrightarrow \infty \quad(r \rightarrow \infty) \tag{3.12}
\end{equation*}
$$

By (3.6)-(3.9), (3.12), and the fact that B, F are rational function, for $|z|=$ $r \in H_{1}-\left(E_{1} U E_{2} U[0.1]\right)$, and z satisfying $|u(z)|=M(r, u), r \rightarrow \infty$, we have

$$
\begin{equation*}
\left|z^{2} \cdot f^{\prime}(z) / f(z)\right| \leqq O\left(r^{M_{1}}\right) / \min \left|u_{A}(z)\right| \longrightarrow 0 \tag{3.13}
\end{equation*}
$$

Therefore, for both cases above, by (3.11) or (3.13), for $r \in H-\left(E_{1} \cup E_{2} \cup[0.1]\right)$ (or $r \in H_{1}-\left(E_{1} \cup E_{2} \cup[0,1]\right.$) and z satisfying $|u(z)|=M(r, u), r \rightarrow \infty$, we have

$$
\begin{equation*}
\left|z^{2} f^{\prime}(z) / f(z)\right| \longrightarrow 0 \tag{3.14}
\end{equation*}
$$

On the other hand, for $r \in H-\left(E_{1} \cup E_{2} \cup[0,1]\right)$ (or $r \in H_{1}-\left(E_{1} \cup E_{2} \cup[0,1]\right)$ and z satisfying $|z|=r,|u(z)|=M(r, u)$, by (3.6) as $r \rightarrow \infty$, we heve

$$
\begin{equation*}
z^{2} f^{\prime}(z) / f(z) \sim z \cdot \nu(r) \tag{3.15}
\end{equation*}
$$

(3.15) and (3.14) give $\nu(r) \rightarrow 0(r \rightarrow \infty)$, this contradicts the fact that u is a transcendental entire function if and only if $\nu(r) \rightarrow \infty(r \rightarrow \infty)$. Therefore, we have $\sigma(f)=\infty$. From Lemma 4, we know that f satisfies (1.4).

Proof of Theorem 4. (a) If $B \equiv 0$, then arbitrary constant c is a solution of the corresponding homogeneous equation (2.6) of (1.3). Assume f_{0} is a finite order meromorphic solution of (1.3), then $f_{c}=f_{0}+c$ are also solutions of (1.3). If $f_{1}\left(\nexists f_{0}\right)$ is second finite order meromorphic solution of (1.3), then $f_{1}-f_{0}$ is a constant solution of the corresponding homogeneous equation (2.6) of (1.3). From Lemma 3 and $\boldsymbol{\sigma}\left(f_{1}-f_{0}\right)<\infty$, all finite order meromorphic solutions of (1.3) are of the form $f_{c}=f_{0}+c$.

If f is a meromorphic solution of (1.3) with $\sigma(f)=\infty$, then $\bar{\lambda}(f)=\lambda(f)=\sigma(f)$ $=\infty$ from Lemma 4.
(b) If $B \neq 0$, using the same reasoning as in Theorem 1 by Lemma 3, we know that (1.3) has at most one finite order meromorphic solution f_{0}. If f is a meromorphic solution of (1.3) with $\sigma(f)=\infty$, then $\bar{\lambda}(f)=\lambda(f)=\sigma(f)=\infty$ from Lemma 4.
(c) For the finite order meromorphic solution f_{c} of (1.3), using the same reasoning as in Theorem 1, and remarking $\sigma(A) \leqq \sigma(F)$, we can obtain

$$
\begin{equation*}
\boldsymbol{\sigma}\left(f_{c}\right) \leqq \max \left\{\bar{\lambda}\left(f_{c}\right), \boldsymbol{\sigma}(F)\right\} \tag{3.16}
\end{equation*}
$$

If $\bar{\lambda}\left(f_{c}\right)<\boldsymbol{\sigma}\left(f_{c}\right)$ and $\boldsymbol{\sigma}(A)<\boldsymbol{\sigma}(F)$, then $\boldsymbol{\sigma}\left(f_{c}\right) \geqq \boldsymbol{\sigma}(F)$ from (1.3), combining (3.4), we have $\sigma\left(f_{c}\right)=\sigma(F)$.
(d) We can use the same proof as in Theorem 1 (a).

§4. Examples for having finite order solutions

Example 1. The equation

$$
f^{\prime \prime}-2 z f^{\prime}+(\sin z-2) f=\exp \left(z^{2}\right) \cdot \sin z
$$

satisfies hypothses of Theorem 1 or Theorem 2, it has a finite order solution $f=\exp \left(z^{2}\right)$.

Example 2. Suppose A is a transcendental meromorphic function satisfying the additional hypothesis of A in Theorem 4, then the equation

$$
f^{\prime \prime}+A f^{\prime}+z f=(A+z+1) e^{2}
$$

has finite order solution $f_{0}=e^{2}$.
Acknowledgment. The author thank the referees for valuable suggestions that improved our paper.

References

[1] S. Bank and 1. Laine, On the oscillation theory of $f^{\prime \prime}+A f=0$, where A is entine, Trars. Amer. Math. Soc., 273 (1982), 351-363.
[2] P.D. Barry, On a theorem of Besicoivitch, Quart. J. Math, Oxford (2), 14 (1963), 293-302.
[3] P.D. Barry, Some theorems related to the $\cos (\pi \rho)$ theorem, Proc. London Math. Soc. (3), 21 (1970), 334-360.
[4] Zong-xuan Chen and Shi-an Gao, On the complex oscillation of non-homogeneous linear differential equations with meromorphic coefficients, Kodaı Math. J., 15 (1992), 65-78.
[5] G. Frank and S. Hellerstein, On the meromorphic solutions of non-homogeneous linear differential equations with polynomial coefficients, Proc. London Math. Soc. (3), 53 (1986), 407-428.
[6] Shi-an Gao, On the complex oscillation of solution of non-homogeneous linear differential equations with polynomial coefficients, Comment. Math. Univ. St. Pauli, 38 (1989), 11-20.
[7] G. Gundersen, Estimates for the logarithmic derivative of a meromorphic functıon, plus similar estımates, J. London Math. Soc. (2), 37 (1988), 88-104.
[8] G. Gundersen, Finite order solutions of second order linear differential equations, Trans. Amer. Math. Soc., 305 (1988), 415-429.
[9] W. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[10] W. Hayman, The local growth of power series: a survey of the Wiman-Valiron method, Canad. Math. Bull., 17 (1974), 317-358.
[11] Yu-zan He and Xiu-zhi Xiao, Algebroid Functions and Ordinary Differential Equations, Science Press, 1988 (in Chinese).
[12] G. Valiron, Functions Analytiques, Presses Universitaires de France, Paris, 1954.

Department of Mathematics
Jiangxi Normal University
Nanchang
P.R. China

