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THE HADAMARD VARIATION OF THE GROUND STATE
VALUE OF SOME QUASI-LINEAR ELLIPTIC EQUATIONS

By SusuMuU ROPPONGI

1. Introduction

Let 2 be a bounded domain in RY (N>2) with smooth boundary 02. Let
o(x) be a real smooth function on 02 and v, be the exterior unit normal vector
at x€02. For any sufficiently small ¢=0, let £. be the domain bounded by

02.={x+ep(x).; xE0R}.

Fix pe(l, «) and let ¢ be a fixed number satisfying 0<g<p*—1, where
p¥=co if p=N and p*=Np/(N—p) if p<N. Then we consider the following
problem.

1.1, Xe)= ipf §95|Vu|”dx,

where
X ={ucsW§?(R.); lulrey=1, u=0 a.e.}.

It is easy to see that there exists at least one non-negative solution u. which
attains (1.1). and which satisfies

(1.2) —div (| Vu, | P 2Vu (x))=A(e)ui(x) xeQ,
u(x)=0 x€08.
u(x)=0 a.e. x&80,.

Furthermore u.=C%(Q2,) for some as(0, 1).
In this note we want to show the following.

THEOREM 1. Assume that p=2 and q=p—1. Assume that the minimizer
uy of (1.1), is unique. Then, the following asymptotic behaviour of A(¢) holds.

.9 K= 10=—e(p—1, [ 2(0)|" o(x)do. +ote).

Here 0/0v. denotes the derivative along the exterior normal direction.
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Remarks. When p=2 and ¢=1, the formula (1.3) can be found, for example,
in Hadamard [7], Garabedian-Schiffer [3].

When p=2 and ¢>1, the formula (1.3) can be found in Osawa [11] with
the additional assumption that Ker (A+4(0)qu,?"*)={0}. Therefore the result of
this paper is an improvement of Osawa [11, Theorem 1, pp. 258-259]. Further-
more he treated the Hadamard variation of (1.2) under the Robin boundary
condition and the Neumann boundary condition. As an application of [11], the
problem of asymptotic behaviour of non-linear eigenvalues under singular varia-
tion of domains is studied by Ozawa [12], Ozawa-Roppongi [13].

When p=¢—1, the uniqueness of the minimizer of (1.1), is shown in Lind-

qvist [10]. When p=2, ¢>1 and 2 is a ball, the uniqueness of the minimizer
of (1.1), is shown in Gidas, Ni and Nirenberg [4].

The regularity of the non-negative solution u. of (1.2) is discussed, for
example, in Dibenedetto [1], Guedda-Veron [6], Lieberman [9], Sakaguchi [14],
Tolksdorf [16], [17]. It should be noticed that the solution of (1.2) with p=+2
does not always belong to C%(£.), since the p-Laplacian is degenerate elliptic
when p+2.

The reader who is unfamiliar with Hadamard’s variation may be referred
to Hadamard [7], Garabedian-Schiffer [3], Fujiwara-Ozawa [2], Shimakura [15].

Section 2 contains preliminary material. The asymptotic formula (1.3) is
established in section 3. In Appendix we give some regularity properties of the
solution of (1.2) and give some inequalities. Throughout section 2 and section
3 we assume all the assumption in Theorem 1.

2. Preliminary Lemma

In this section we would like to construct a nice C>-diffeomorphism between
2 and 9. for any sufficiently small e>0. Let U, be a neighbourhood of 32 in
RY such that there exists a unique PeC>(U,, 0Q) satisfying |[x—P(x)|=
dist (x, 0Q) for x€U,. Let O be a neighbourhood of 02 in £ as in Lemma
A.2 in the Appendix. Then u,=C*0). Let £’ (27, respectively) be a bounded
domain with a smooth boundary 092’ = {x—0dv,; xS0} (02" ={x—20v,; xR},
respectively) for any sufficiently small §>0. We fix §>0 so that O\Q"&U,
and INOER"EQ’ER hold. Then 2'&L. holds for any sufficiently small ¢>0.

We take a ¢=C=(2, R) such that 0=¢<1, ¢=0 on 2” and ¢=1 on O Q"

We put
x xs”
Q)g(x)z{ _
14ed(X)p(P(X)vpay  x€Q\Q7,

where vpz, denotes the exterior unit normal vector at P(x)cdf.
Then we can see that @.: 02—, is a surjective diffeomorphism for any
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sufficiently small ¢>0 and that the following properties (2.1), (2.2), (2.3) and
(2.4) hold.

(2.1) We put @.(x)=x4+eS(x) for x=£. Then
SeC~(2, R") and |[S|em@pn<C, (m=0,1,2, )
holds for a constant C, independent of .
(2.2) There exists a t©*=C~(2,, R") satisfying
@, (x)=x+et®(x) for x=Q. and
lt@llem@ov<=Cn  (m=0, 1, 2, ---)

holds for a constant C, independent of ¢. Here @,”! denotes the inverse
function of @..

(2.3) S(x)=p(x)y, x€0f
=0 x€0R” .
(2.4) U CHONQ”) and S(x)=0 for x=Q”.

For a function f on £., we define function 7 on @ by f(x)=f(@(x)) for
x€£. For a function g on £, we define function & on 2, by 4(y)=g(@. ()
for yeQ..

Then we have the following.

LEMMA 2.1. (i) Let J@.(x) be the Jacobian of @(x). Then
(2.5) |JOu(x)| =1+ é g—‘j-’(x)+0(ez)

holds uniformly for x&Q, where Si(x) denotes the i-th element of S(x)eRY
(Ii<N).

(i) ~:WEP(Q)Df—FfEWi?(Q)is a bounded linear operator and its operator
norm is uniformly bounded for any sufficiently small &>0.

The same is true for ~: Wi P(2)2g—gsWi?(Q2.).

(iii)

(2.6) o | TNWIPdy=] |7 H)17dx

ol A1 S S

L X3S, 3F 9F
—ep| IR 7* 3 oo i

2. 8=1

+0(e?)
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holds for any fEWLP?(Q,).
Furthermore, if || fllwy?@,<C holds for a constant C independent of ¢, then

the remainder term in the right hand side of (2.6) is uniform with respect to f.

Proof. (i) and (ii) easily follow from (2.1) and (2.2). Therefore we give a
proof of (iii).

We take an arbitrary feW$§?(2.) and the transformation of co-ordinates;
0.7 Q.2y—-x=0.(y)e. Since x=y+et¥(y) for ye 2., we have

0x, ots® ..
@.7) a; =dukez () (=i, jEN),

where 0;, denotes Kronecker’s delta and t{(y) denotes the i-th element of
t®(y)eR¥. On the other hand, since y=0@.(x)=x+eS(x)=y+¢et®(y)+eS(x)
hold for yeQ., we have

tOM+FSx)=0 (yeQ,, ¢>0).

Thus we get
ot® N ox,0S,, .
(2.8) ay]( »+ § o, -—(x)=0 (1=, k<N).
From (2.7) and (2.8),
axk _ ax aSk
~aT]—aj.k 2 a axl (x)

=3, o ez(az,+ <))3§’:(>

aSk atie aS k

=5],k (x)_ 2

( ) ( x)
hold for 17, k<N. Hence we get

e Fo=F e

(51 — GSk t‘s oS, )3}‘

(x)— E ( ¥) 5y %) (%)

e 3 5 7

gr (e 8 5 g

6 ask f

() ()

for 1<7<N.
From (2.5) and (2.9) we can see that
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(2.10) [(VA@(x)?| JD(x)| = [(VFND(x))|?
+e|(VA)x)|? 2 ——(x)+R(8, x, f)

holds for x=Q, where
IR(e, x, /)| Ce|(VF)x)|".

Here C denotes a positive constant independent of ¢, x and f.
On the other hand, by (2.9) and using Lemma A.3 in the Appendix with
w,=(VF)(x) and w,=(Vf)(»)=(Vf)D.(x)), we have the following.

@11 VAP P=1(V])(x)|P
il af af

k=

+R( x, F)

—ep| (VD)7 3

holds for x& £, where
|R"(e, x, /)l

S p(p—DUV )]+ (VA =V D22 [(VF)(9)— (T F)(x)|?

rerplpmir|, 33 8030 2007

<Ce (Vi) x)|®.

Here C’ denotes a positive constant independent of ¢, x and f .
Since

o | VNWIPdy=] |TH@L2)1?1 (5] dx,

(2.6) follows from (2.10) and (2.11). Furthermore the absolute value of the
remainder term in the right hand side of (2.6) is bounded from above by

(CHCHENFIBrrar=C el f 1, -
Thus the proof is complete. q.e.d.

3. Proof of Theorem 1

For the sake of simplicity we write [|- |- (I 27, respectively) as ||-|,
(I |-, respectively) for r=1.
Since @o/ || @ollgs1,.EXe, We have

-p/(g+1)

(3.1) 10=(], (a0 7dy ([, 181 dy)

Notice that A(0)=|Vull®, [|uoll¢.:=1 and 50=u0 on £. Thus, from (2.5) and
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(2.6), we see

(3.2 o, | a0 1e7dy={ | @(0) 19741 70 () dx
¥ 35,
=l+sS9u8“§_l 5a 40
and
3.3) |, 172017 =20)+¢ | IVu 1233 By
) Q2. 0 Y Q2 0 =10x,

¥ 9S; 0u, 0u, d

=1 0x, 571 0%

_ -2
ep], | Vw0l
+0(eY.

By (3.1), (3.2) and (3.3) we get the following.

LEMMA 3.1. For any sufficiently small ¢>0
3.9 A(&)=2(0)+pe+0(e?)
holds, where

= (Ve 7— 920G+ 3 2 2
© 2 0 0 1=1 axt

—p, Vo1 7-s 33 D0t e

7% 0x, 0x; 0x, dx.

On the other hand, since #./(#.[s1€X0, We have

)—p/(q+1)

(3.5) 20=(], | a1 2dx)(], a0z

Notice that A(e)=||Vu.]|},.<C (independent of ¢) and [u.|g.1,.=1. Thus, from
(2.5) and (2.6), we see

(3.6) 1={ la@ie1 0.1 dx
_—_Sgﬁs‘”‘dx+sggﬂsq“é g—idx+0<52)

and

3.7 Z(e)=Sg|Vﬂ,l”dx-l—eSalVﬁe[”t: g‘ztdx

~ ipep K0S, 04 04
—epgglvu51p 2].%—-1 3xj axj axk

dx+0(e?).
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Since |[|[Vuelp . <C, we can see that ||#.)lq..<C’||Vi.]|,=<C” by (ii) of Lemma 2.1
and the Sobolev embedding : Wi ?(2)c, L9*Y(2). Therefore, from (3.5), (3.6) and
(3.7), we see

3.8) [aanax=1406), | IVi|rdx=ie)+0@)
and A20)<A(e)+0(e). On the other hand, by Lemma 3.1, A(e)<A(0)+0O(e) holds.
Thus we have
(3.9 Ae)=240)+0(e) .
Next we want to show that
(3.10) fie —> u, weakly in W§?(Q) as ¢—0.

Assume that (3.10) does not hold. Then there exist >0, Fe(W§?(2))*, and a
sequence {e,}n=o satisfying ¢, | 0 (n—o0) such that

(3.11) | F(ile,)—F(uo)| 27

holds. Since {#.,} is bounded in W§ ?(2) and the Sobolev embedding: W} ?(2)
¢, L) is compact, there exist a subsequence {i.,} and veW} ?(2) satis-
fying
(3.12) #i., —>v  weakly in W{?(Q)

#.,, —>v  strongly in L")

fle,, —>v a.e. 2.
Since #,,,=0 a.e. 2, v=0 a.e. 2. From (3.8) and (3.9),

e, g —> 1 and (Vi |5 —> [Vuo|5=40) as n'—oo.
Thus, by (3.12), we have ||v]q.;=1 and
IVl < liminf Vi, , | <[Vl ,=40)7 .

Here we used the lower semicontinuity of the Wi ?(Q)-norm. Therefore we
have veX, and A0)=<||Vv[|3=<|Vu,|5=A0). Hence v is a minimizer of (1.1),.
Since the minimizer u, of (1.1), is unique by the assumption, v=u, must hold.
Letting n=n'—c in (3.11), we have 0=|F(v)—F(u,)|=7. This contradicts

7>0. Thus we get (3.10).
From (3.8) and (3.9) we can see that

(3.13) lellwt 2@y —> lsollwi 22 as 0.
By (3.10), (3.13) and the uniform convexity of W ?(Q),
(3.14) #le —> u, strongly in W§?(Q) as e—0
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holds.
We put @#.=u,+v.. Then, v.—0 strongly in W§?(Q) as e—0. We have

0y X3S, 08, O
3.15) SQIVue R 0x; 0x,0x, dx

B L, ¥, 3S, dup Bu,

= Ivwl™ 3, 9%, 9%, 0xy X THETLE),
where

aS, 0l 01,
p-2__ p-2
L= {1Vt~ — V| 7)1 e Ty Tl

N 0uy Ove . Ove 0Uy . Ov. O,
— p- —
I©={, 1Vl ,kz= (ax, TR T T T rad LR
It is easy to see that
(3.16) I(e)=0(1).

On the other hand, by using Lemma A.4 in the Appendix with w,=Vu, and
w,=Vii,, we see

(@I <CY, | Va7 = Vuo| 22| Vi |2dx

CSQIVve[”'zlvmlzdx (if 2<p=<3)

IA

C{ AVuol +1V0 )= Vol 1VaLI%dx (Gt p>3)

CIVo 3 IVaL}  (Gf 2<p<3)

([, vl +101ydz) " T IVn VA G p>3).
Notice that I,(¢)=0 if p=2. Thus we have

(3.17) I(e)=0(1).
From (3.7), (3.14), (3.15), (3.16) and (3.17), we see

. ¥ aS,
(3.18) Sglvuelde=1(5>—eSQ|Vuo[P§aTd

e |Vupire 33 BrTho T 4y

3 %21 0x, 0%, 0%,

Furthermore, since #.—u, strongly in L?*(Q) as &—0, the following follows
easily from (3.6).
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(3.19) Sgil;‘“dxtl—eg uo““Z} 'dx+o(s)
From (3.5), (3.18) and (3.19), we have

A0 1(5)—559| Viu,| Pé %dx

- + U aSt
FepAte)g+1) ‘Sguo‘l Py

aSk auo auo

N
+ep| Vo2 5 T e e o).

J

Using (3.9) in the third term of the right hand side of the above inequality, we
get the following.

LEMMA 3.2. For any sufficiently small ¢>0
(3.20) A0)< A(e)—pe+-o(e)
holds, where y is defined as in Lemma 3.1.

Now we are in a position to prove Theorem 1. Since u,&C%2) and u,=0
on 9f2, we have the following by the divergence theorem.

aSldx‘i’"S uoq(vuo's)dx

(3.21) (q+l)“§ w33
=Sgdiv (@+1)'ug*'S)dx

:jag(q+1)”‘uo”“(5-uz)d(fz=0

We recall (2.3) and (2.4). Then we have the following by the divergence
theorem.

3s,
3.22) JolVal? S 52t dx+(, | S-V(IVugl)dx
=Sg\m div (| Vit | 2S)d %

=, o Vel?(S v)doe=( | 1Vu\7p(x)do.
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(3.23)

Sg\gﬂ(div (IVuo | 272V 1)) (V- S)dx+§g\m( | Vo | P72V, - V(Viu,-S))d x

S div (Vite-S) | Vito | P2V o) d x
N

P
=S69(Vuo-S)[Vuo|”‘2é?da,=§agwuo| p-

g? ‘o(x)da,
It is easy to see that
(3.24) PIVU| PV Uy - V(Vu,-S)
—q. _3 N ask % auo
_'S V(lvuolp)+plvu0|p J,k2=l ax] axj axk
holds in Q\Q”.

From (2.4), (3.4), (3.21), (3.22), (3.23) and (3.24), we can easily get the fol-
lowing.

0u,

=, (1Tl 2=p Vi 72 320

2).O(X)d G5

5 5 0 1V (Vo |V 0)+ 2O N Vit S)d x

Since u#,=0 on 902, |Vu,|=|0u,/0v.| on 0. Furthermore, by (2.4), u, satisfies
_div ( I Vuol p_ZVuo)=Z(0)uoq

in O\Q”
in the strong sense. Hence we have
Uy | P
(3.25) y=-—(p—1)gag S| p(x)da.

From Lemmas 3.1, 3.2 and (3.25) we get the desired Theorem 1.

4. Appendix

In this section we refer to the regularity of a solution u. of (1.2). Further-
more we give some inequalities. At first we have the following.

LEMMA A.l.

Let G be a bounded domain in RY (N=2) with a smooth
boundary 0G. Assume that p>1 and g is continuous in GXR and satisfies

lg(x, )| <C|t|"™+D  (x, )EGXR,
where C and D are real positive constants and r<(0, p*—1). If usWi?(G)
satisfies

(A.1)

—div (|Vu|?2Vu)=g(-, u) in G



224 SUSUMU ROPPONGI
u=0 on 0G,

then usC**(G) for some ac(0, 1).

Proof._ When p>N, ues L(G) follows by the Sobolev embedding : Wi ?(G)
o CNI?(G). Therefore the above assertion easily follows from Corollary 1.1
and Remark 1.2 in Guedda-Veron [6, p. 884]. q.e.d.

From Lemma A.l1 u.cC**(£.) holds for some a=(0, 1). Furthermore we
have the following.

LEMMA A.2. Assume that q=p—1. Then there exists a neighbourhood O of
a2 in Q such that

(A.2) u,eC¥0).
Proof. We recall u,eWi2(2)N\C™**(2) satisfies
(A.3) —div (} Vi, ) 272 Vup)=a(x)u,"! in £
u,=0 on 902
u,=0 a.e. 2,

where a(x)=u,2"?"(x). Thus a(x)e L>(R2). Therefore the following follows
from Harnack’s inequality due to Trudinger [18, Theorem 1.1, p. 724].

(A4 >0 in

From (A.3), (A.4) and Hopf’s lemma due to Sakaguchi [14, Lemma A.3, p.
417], we have

0uy/0y-<0  on 0Q.
Since u,&C'(2), there exist a neighbourhood O of 82 in 2 and #>>0 such that
[Viy|=9p>0 in O.

Therefore (A.2) follows from the regularity theory of the elliptic partial differ-
ential equation (see, for example, Gilbarg-Trudinger [5], Ladyzhenskaja-Ural’-
tseva [8]). q.e.d.

Next we give the following inequalities.
LEMMA A.3. Assume that p=2. Then
(A.5) Hws|?—wi| P~ plw, | P7*w, - (we—w))|

Sp(p—D(wi |+ we—w, )P~ lwe—w, | ®



QUASI-LINEAR ELLIPTIC EQUATIONS

holds for any w;, w,eR".

225

Proof. We fix w,, w,R". At first we assume that w,+#(w,—w,)#0 for

any t<[0, 1]. We put

g)=|w,+t(w,—w,)|? te[0, 17.
Then

g)=g0+g'0+| a-ng"®at,

where
gO=p|lwi+Hw,—wy)| P 2w, +t(w,—w)))- (We—w,)

g'O=plwi+t(ws—w)|?7*|we—w:|®
+p(p—2) | wi+t(we—w)) | P (w1 +H(wa—w1)) - (We—w1))* .
Using Schwarz’s inequality, we have
lg”®)] = p(p—D]wi+t(we—w) | ?7* | wo—w:|*
SpO—D(wi |+t we—w, )P~ | we—wy|*
Sp(—D(wi |+ we—wi )P 7* |we—w |*

for t<[0, 1]. Summing up these facts, we get (A.5).

Next we assume that w,+#(w,—w;)=0 for some t<[0, 1]. When t=0 (i.e.

w,=0), (A.5) is equivalent to 1=<p(p—1). Since p=2, p(p—1)=1 holds. When
te(0, 1], we put s=t"'. Then w,=(1—s)w, and (A.5) is equivalent to
(A.6) (s=1)P+sp—1=p(p—D(1+s)?7%s>  (sz1).
Since s*=(s*+1)/2 for s=1,
(A.7) p(p—1)(1+5)P2s* 2 (p(p—1)/2)(1+5)P7*s’+(p(p—1)/2)1+5)?~*
=2sP4+p—1  (s=1)
hold for p=2. On the other hand,
(A.8) sP+p—1=(s—DP+sp—1  (s=])
holds for p=2, since
sP=(s—14+1DP=(s—1)P+p(s—1) (p=2, s=1).
From (A.7) and (A.8) we get (A.6). Therefore we get (A.5).
Thus the proof is complete. q.e.d.

LEMMA A.4. Assume that p=2. Then
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(A.9) [we| P72 —|w,] P72
s{ lwe—w,|P7* (if 2=p=3)
=2 wi |+ we—w: NP lwe—ws|  Gf p>3)

hold for any w,, w,sR".
Proof. We fix w,, w,sRY. If p=[2, 3], then we see

[w P2 < ((we| + | we—w, [ )PP S | we | P72+ |wo—w, | P72
and
[wo| P2 (Jwy |+ we—w, )P 2SNy | P72 | we—wy | P72

Hence we get (A.9) for p=[2, 3].

Hereafter we assume p>3. When w,+#(w,—w,)=0 for some t<[0, 1], we
can easily get (A.9) as in the proof of Lemma A.3. Therefore we may assume
that w,+t(w,—w,)#0 for any t<[0, 1]. We put

Al)=|w,+t(w,—w,)|?? te[o, 17.
Then

h(1)=h(0)+S:h’(t)dt ,

where
[W®=(p—2)|wi+tw,—w) | >~ [ (wi+Hw,—wy)) - (ws—w))|

S22 (|wyl+|we—w, ] )P | wy—w,|

hold for ¢t<[0, 1]. Summing up these facts, we get (A.9).
Thus the proof is complete. q.e.d.
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