THE HADAMARD VARIATION OF THE GROUND STATE VALUE OF SOME QUASI-LINEAR ELLIPTIC EQUATIONS

By Susumu Roppongi

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^N $(N \ge 2)$ with smooth boundary $\partial \Omega$. Let $\rho(x)$ be a real smooth function on $\partial \Omega$ and ν_x be the exterior unit normal vector at $x \in \partial \Omega$. For any sufficiently small $\varepsilon \ge 0$, let Ω_{ε} be the domain bounded by

$$\partial \Omega_{\varepsilon} = \{ x + \varepsilon \rho(x) \nu_x ; x \in \partial \Omega \}.$$

Fix $p \in (1, \infty)$ and let q be a fixed number satisfying $0 < q < p^* - 1$, where $p^* = \infty$ if $p \ge N$ and $p^* = Np/(N-p)$ if p < N. Then we consider the following problem.

$$(1.1)_{\varepsilon} \qquad \lambda(\varepsilon) = \inf_{X_{\varepsilon}} \int_{\Omega_{\varepsilon}} |\nabla u|^{p} dx,$$

where

$$X_{\varepsilon} = \{ u \in W_0^{1, p}(\Omega_{\varepsilon}) ; \|u\|_{L^{q+1}(\Omega_{\varepsilon})} = 1, u \ge 0 \text{ a. e.} \}.$$

It is easy to see that there exists at least one non-negative solution u_{ε} which attains $(1.1)_{\varepsilon}$ and which satisfies

(1.2)
$$-\operatorname{div}(|\nabla u_{\varepsilon}|^{p-2}\nabla u_{\varepsilon}(x)) = \lambda(\varepsilon)u_{\varepsilon}^{q}(x) \qquad x \in \Omega_{\varepsilon}$$

$$u_{\varepsilon}(x) = 0 \qquad x \in \partial\Omega_{\varepsilon}$$

$$u_{\varepsilon}(x) \ge 0 \quad \text{a. e. } x \in \Omega_{\varepsilon}.$$

Furthermore $u_{\varepsilon} \in C^{1+\alpha}(\bar{\Omega}_{\varepsilon})$ for some $\alpha \in (0, 1)$.

In this note we want to show the following.

THEOREM 1. Assume that $p \ge 2$ and $q \ge p-1$. Assume that the minimizer u_0 of $(1.1)_0$ is unique. Then, the following asymptotic behaviour of $\lambda(\varepsilon)$ holds.

(1.3)
$$\lambda(\varepsilon) - \lambda(0) = -\varepsilon(p-1) \int_{\partial \Omega} \left| \frac{\partial u_0}{\partial \nu_x}(x) \right|^p \rho(x) d\sigma_x + o(\varepsilon).$$

Here $\partial/\partial v_x$ denotes the derivative along the exterior normal direction.

Received February 9, 1993; revised September 20, 1993.

Remarks. When p=2 and q=1, the formula (1.3) can be found, for example, in Hadamard [7], Garabedian-Schiffer [3].

When p=2 and q>1, the formula (1.3) can be found in Osawa [11] with the additional assumption that $\operatorname{Ker}(\Delta+\lambda(0)qu_0^{q-1})=\{0\}$. Therefore the result of this paper is an improvement of Osawa [11, Theorem 1, pp. 258-259]. Furthermore he treated the Hadamard variation of (1.2) under the Robin boundary condition and the Neumann boundary condition. As an application of [11], the problem of asymptotic behaviour of non-linear eigenvalues under singular variation of domains is studied by Ozawa [12], Ozawa-Roppongi [13].

When p=q-1, the uniqueness of the minimizer of $(1.1)_0$ is shown in Lindqvist [10]. When p=2, q>1 and Ω is a ball, the uniqueness of the minimizer of $(1.1)_0$ is shown in Gidas, Ni and Nirenberg [4].

The regularity of the non-negative solution u_{ε} of (1.2) is discussed, for example, in Dibenedetto [1], Guedda-Veron [6], Lieberman [9], Sakaguchi [14], Tolksdorf [16], [17]. It should be noticed that the solution of (1.2) with $p \neq 2$ does not always belong to $C^2(\bar{\Omega}_{\varepsilon})$, since the p-Laplacian is degenerate elliptic when $p \neq 2$.

The reader who is unfamiliar with Hadamard's variation may be referred to Hadamard [7], Garabedian-Schiffer [3], Fujiwara-Ozawa [2], Shimakura [15].

Section 2 contains preliminary material. The asymptotic formula (1.3) is established in section 3. In Appendix we give some regularity properties of the solution of (1.2) and give some inequalities. Throughout section 2 and section 3 we assume all the assumption in Theorem 1.

2. Preliminary Lemma

We take a $\phi \in C^{\infty}(\bar{\Omega}, \mathbf{R})$ such that $0 \le \phi \le 1$, $\phi = 0$ on Ω'' and $\phi = 1$ on $\bar{\Omega} \setminus \Omega'$. We put

$$\Phi_{\varepsilon}(x) = \begin{cases} x & x \in \Omega'' \\ x + \varepsilon \phi(x) \rho(P(x)) \nu_{P(x)} & x \in \bar{\Omega} \setminus \Omega'' \end{cases},$$

where $\nu_{P(x)}$ denotes the exterior unit normal vector at $P(x) \in \partial \Omega$.

Then we can see that $\Phi_{\varepsilon}: \bar{\Omega} \rightarrow \bar{\Omega}_{\varepsilon}$ is a surjective diffeomorphism for any

sufficiently small $\varepsilon > 0$ and that the following properties (2.1), (2.2), (2.3) and (2.4) hold.

(2.1) We put $\Phi_{\varepsilon}(x) = x + \varepsilon S(x)$ for $x \in \bar{\Omega}$. Then

$$S \in C^{\infty}(\bar{\Omega}, \mathbb{R}^N)$$
 and $||S||_{C^m(\bar{\Omega})} N \leq C_m$ $(m=0, 1, 2, \cdots)$

holds for a constant C_m independent of ε .

(2.2) There exists a $t^{(\varepsilon)} \in C^{\infty}(\bar{\Omega}_{\varepsilon}, \mathbb{R}^N)$ satisfying

$$\Phi_{\varepsilon}^{-1}(x) = x + \varepsilon t^{(\varepsilon)}(x)$$
 for $x \in \bar{\Omega}_{\varepsilon}$ and
$$\|t^{(\varepsilon)}\|_{C^{m}(\bar{\Omega}_{\varepsilon})} N \leq C_{m} \qquad (m=0, 1, 2, \cdots)$$

holds for a constant C_m independent of ε . Here Φ_{ε}^{-1} denotes the inverse function of Φ_{ε} .

(2.3)
$$S(x) = \rho(x)\nu_x \qquad x \in \partial \Omega$$
$$= 0 \qquad x \in \partial \Omega''.$$

$$(2.4) u_0 \in C^2(\overline{\Omega \setminus \Omega''}) \text{ and } S(x) = 0 \text{for } x \in \Omega''.$$

For a function f on Ω_{ε} , we define function \tilde{f} on Ω by $\tilde{f}(x)=f(\Phi_{\varepsilon}(x))$ for $x \in \Omega$. For a function g on Ω , we define function \hat{g} on Ω_{ε} by $\hat{g}(y)=g(\Phi_{\varepsilon}^{-1}(y))$ for $y \in \Omega_{\varepsilon}$.

Then we have the following.

LEMMA 2.1. (i) Let $J\Phi_{\varepsilon}(x)$ be the Jacobian of $\Phi_{\varepsilon}(x)$. Then

(2.5)
$$|J\Phi_{\epsilon}(x)| = 1 + \epsilon \sum_{i=1}^{N} \frac{\partial S_{i}}{\partial x_{i}}(x) + O(\epsilon^{2})$$

holds uniformly for $x \in \overline{\Omega}$, where $S_i(x)$ denotes the i-th element of $S(x) \in \mathbb{R}^N$ $(1 \le i \le N)$.

(ii) $\tilde{f} : W_0^{1,p}(\Omega_{\varepsilon}) \ni f \mapsto \tilde{f} \in W_0^{1,p}(\Omega)$ is a bounded linear operator and its operator norm is uniformly bounded for any sufficiently small $\varepsilon > 0$.

The same is true for $\hat{}: W_0^{1, p}(\Omega) \ni g \mapsto \hat{g} \in W_0^{1, p}(\Omega_{\varepsilon})$.

(iii)

$$(2.6) \qquad \int_{\Omega_{\varepsilon}} |(\nabla f)(y)|^{p} dy = \int_{\Omega} |(\nabla \tilde{f})(x)|^{p} dx$$

$$+ \varepsilon \int_{\Omega} |(\nabla \tilde{f})(x)|^{p} \sum_{i=1}^{N} \frac{\partial S_{i}}{\partial x_{i}} dx$$

$$- \varepsilon p \int_{\Omega} |(\nabla \tilde{f})(x)|^{p-2} \sum_{j,k=1}^{N} \frac{\partial S_{k}}{\partial x_{j}} \frac{\partial \tilde{f}}{\partial x_{j}} \frac{\partial \tilde{f}}{\partial x_{k}} dx$$

$$+ O(\varepsilon^{2})$$

holds for any $f \in W_0^{1,p}(\Omega_{\varepsilon})$.

Furthermore, if $||f||_{W_0^{1,p}(Q_{\varepsilon})} \leq C$ holds for a constant C independent of ε , then the remainder term in the right hand side of (2.6) is uniform with respect to f.

Proof. (i) and (ii) easily follow from (2.1) and (2.2). Therefore we give a proof of (iii).

We take an arbitrary $f \in W_0^{1, p}(\Omega_{\varepsilon})$ and the transformation of co-ordinates; $\Phi_{\varepsilon}^{-1}: \Omega_{\varepsilon} \ni y \mapsto x = \Phi_{\varepsilon}^{-1}(y) \in \Omega$. Since $x = y + \varepsilon t^{(\varepsilon)}(y)$ for $y \in \Omega_{\varepsilon}$, we have

(2.7)
$$\frac{\partial x_i}{\partial y_j} = \delta_{i,j} + \varepsilon \frac{\partial t_i^{(\varepsilon)}}{\partial y_j}(y) \qquad (1 \le i, j \le N),$$

where $\delta_{i,j}$ denotes Kronecker's delta and $t_i^{(\varepsilon)}(y)$ denotes the *i*-th element of $t^{(\varepsilon)}(y) \in \mathbb{R}^N$. On the other hand, since $y = \Phi_{\varepsilon}(x) = x + \varepsilon S(x) = y + \varepsilon t^{(\varepsilon)}(y) + \varepsilon S(x)$ hold for $y \in \Omega_{\varepsilon}$, we have

$$t^{(\varepsilon)}(y)+S(x)=0$$
 $(y\in\Omega_{\varepsilon}, \varepsilon>0)$.

Thus we get

(2.8)
$$\frac{\partial t_k^{(\varepsilon)}}{\partial y_j}(y) + \sum_{i=1}^N \frac{\partial x_i}{\partial y_i} \frac{\partial S_k}{\partial x_i}(x) = 0 \qquad (1 \le j, \ k \le N).$$

From (2.7) and (2.8),

$$\begin{split} \frac{\partial x_{k}}{\partial y_{j}} &= \delta_{j,k} - \varepsilon \sum_{i=1}^{N} \frac{\partial x_{i}}{\partial y_{j}} \frac{\partial S_{k}}{\partial x_{i}}(x) \\ &= \delta_{j,k} - \varepsilon \sum_{i=1}^{N} \left(\delta_{i,j} + \varepsilon \frac{\partial t_{i}^{(\varepsilon)}}{\partial y_{j}}(y) \right) \frac{\partial S_{k}}{\partial x_{i}}(x) \\ &= \delta_{j,k} - \varepsilon \frac{\partial S_{k}}{\partial x_{i}}(x) - \varepsilon^{2} \sum_{i=1}^{N} \frac{\partial t_{i}^{(\varepsilon)}}{\partial y_{i}}(y) \frac{\partial S_{k}}{\partial x_{i}}(x) \end{split}$$

hold for $1 \le j$, $k \le N$. Hence we get

$$(2.9) \qquad \frac{\partial f}{\partial y_{j}}(y) = \sum_{k=1}^{N} \frac{\partial x_{k}}{\partial y_{j}} \frac{\partial}{\partial x_{k}} f(\Phi_{\varepsilon}(x))$$

$$= \sum_{k=1}^{N} \left(\delta_{j, k} - \varepsilon \frac{\partial S_{k}}{\partial x_{j}}(x) - \varepsilon^{2} \sum_{i=1}^{N} \frac{\partial t_{i}^{(\varepsilon)}}{\partial y_{j}}(y) \frac{\partial S_{k}}{\partial x_{i}}(x) \right) \frac{\partial \tilde{f}}{\partial x_{k}}(x)$$

$$= \frac{\partial \tilde{f}}{\partial x_{j}}(x) - \varepsilon \sum_{k=1}^{N} \frac{\partial S_{k}}{\partial x_{j}}(x) \frac{\partial \tilde{f}}{\partial x_{k}}(x)$$

$$- \varepsilon^{2} \sum_{i, k=1}^{N} \frac{\partial t_{i}^{(\varepsilon)}}{\partial y_{k}}(y) \frac{\partial S_{k}}{\partial x_{k}}(x) \frac{\partial \tilde{f}}{\partial x_{k}}(x)$$

for $1 \le j \le N$.

From (2.5) and (2.9) we can see that

$$(2.10) |(\nabla f)(\boldsymbol{\Phi}_{\varepsilon}(x))|^{p} |J\boldsymbol{\Phi}_{\varepsilon}(x)| = |(\nabla f)(\boldsymbol{\Phi}_{\varepsilon}(x))|^{p}$$

$$+\varepsilon |(\nabla \widetilde{f})(x)|^p \sum_{i=1}^N \frac{\partial S_i}{\partial x_i}(x) + R(\varepsilon, x, \widetilde{f})$$

holds for $x \in \Omega$, where

$$|R(\varepsilon, x, \tilde{f})| \leq C \varepsilon^2 |(\nabla \tilde{f})(x)|^p$$
.

Here C denotes a positive constant independent of ε , x and \tilde{f} .

On the other hand, by (2.9) and using Lemma A.3 in the Appendix with $w_1=(\nabla \tilde{f})(x)$ and $w_2=(\nabla f)(y)=(\nabla f)(\Phi_{\epsilon}(x))$, we have the following.

$$(2.11) \qquad |(\nabla f)(\boldsymbol{\Phi}_{\varepsilon}(x))|^{p} = |(\nabla \widetilde{f})(x)|^{p}$$

$$-\varepsilon p |(\nabla \widetilde{f})(x)|^{p-2} \sum_{j,k=1}^{N} \frac{\partial S_{k}}{\partial x_{j}}(x) \frac{\partial \widetilde{f}}{\partial x_{k}} \frac{\partial \widetilde{f}}{\partial x_{j}} + R'(\varepsilon, x, \widetilde{f})$$

holds for $x \in \Omega$, where

$$\begin{split} &|R'(\varepsilon, x, \tilde{f})| \\ &\leq p(p-1)(|(\nabla f)(x)| + |(\nabla \tilde{f})(y) - (\nabla \tilde{f})(x)|)^{p-2} |(\nabla f)(y) - (\nabla \tilde{f})(x)|^2 \\ &+ \varepsilon^2 p |(\nabla \tilde{f})(x)|^{p-2} \Big| \sum_{i,j,k=1}^{N} \frac{\partial t_i^{(\varepsilon)}}{\partial y_j}(y) \frac{\partial S_k}{\partial x_i}(x) \frac{\partial \tilde{f}}{\partial x_k} \frac{\partial \tilde{f}}{\partial x_j} \Big| \\ &\leq C' \varepsilon^2 |(\nabla \tilde{f})(x)|^p. \end{split}$$

Here C' denotes a positive constant independent of ε , x and \tilde{f} . Since

$$\int_{Q_{\varepsilon}} |(\nabla f)(y)|^{p} dy = \int_{Q} |(\nabla f)(\boldsymbol{\Phi}_{\varepsilon}(x))|^{p} |J\boldsymbol{\Phi}_{\varepsilon}(x)| dx,$$

(2.6) follows from (2.10) and (2.11). Furthermore the absolute value of the remainder term in the right hand side of (2.6) is bounded from above by

$$(C+C')\varepsilon^2\|\widetilde{f}\|_{W_0^{1,p}(Q)}^p\leq C''\varepsilon^2\|f\|_{W_0^{1,p}(Q_{\varepsilon})}^p.$$

Thus the proof is complete.

q. e. d.

3. Proof of Theorem 1

For the sake of simplicity we write $\|\cdot\|_{L^{\tau}(\Omega)}$ ($\|\cdot\|_{L^{\tau}(\Omega_{\varepsilon})}$, respectively) as $\|\cdot\|_{r}$ ($\|\cdot\|_{r,\varepsilon}$, respectively) for $r \ge 1$.

Since $\hat{u}_0/\|\hat{u}_0\|_{q+1,\epsilon} \in X_{\epsilon}$, we have

$$(3.1) \lambda(\varepsilon) \leq \left(\int_{\Omega_{\varepsilon}} |(\nabla \hat{u}_0)(y)|^p dy \right) \left(\int_{\Omega_{\varepsilon}} |\hat{u}_0(y)|^{q+1} dy \right)^{-p/(q+1)}.$$

Notice that $\lambda(0) = \|\nabla u_0\|_p^p$, $\|u_0\|_{q+1} = 1$ and $\tilde{u}_0 = u_0$ on Ω . Thus, from (2.5) and

(2.6), we see

(3.2)
$$\int_{\mathcal{Q}_{\varepsilon}} |\hat{u}_{0}(y)|^{q+1} dy = \int_{\mathcal{Q}} |\tilde{u}_{0}(x)|^{q+1} |J\Phi_{\varepsilon}(x)| dx$$
$$= 1 + \varepsilon \int_{\mathcal{Q}} u_{0}^{q+1} \sum_{i=1}^{N} \frac{\partial S_{i}}{\partial x_{i}} dx + O(\varepsilon^{2})$$

and

(3.3)
$$\int_{\Omega_{\varepsilon}} |(\nabla \widehat{u}_{0})(y)|^{p} dy = \lambda(0) + \varepsilon \int_{\Omega} |\nabla u_{0}|^{p} \sum_{i=1}^{N} \frac{\partial S_{i}}{\partial x_{i}} dx$$
$$-\varepsilon p \int_{\Omega} |\nabla u_{0}|^{p-2} \sum_{j,k=1}^{N} \frac{\partial S_{k}}{\partial x_{j}} \frac{\partial u_{0}}{\partial x_{j}} \frac{\partial u_{0}}{\partial x_{k}} dx$$
$$+O(\varepsilon^{2}).$$

By (3.1), (3.2) and (3.3) we get the following.

LEMMA 3.1. For any sufficiently small $\varepsilon > 0$

(3.4)
$$\lambda(\varepsilon) \leq \lambda(0) + \mu \varepsilon + O(\varepsilon^2)$$

holds, where

On the other hand, since $\tilde{u}_{\varepsilon}/\|\tilde{u}_{\varepsilon}\|_{q+1} \in X_0$, we have

$$(3.5) \hspace{1cm} \lambda(0) \leq \left(\int_{\mathcal{Q}} | \left(\nabla \tilde{u}_{\varepsilon} \right)(x) |^{p} dx \right) \left(\int_{\mathcal{Q}} | \left. \tilde{u}_{\varepsilon}(x) \right|^{q+1} dx \right)^{-p/(q+1)} \, .$$

Notice that $\lambda(\varepsilon) = \|\nabla u_{\varepsilon}\|_{p,\varepsilon}^{p} \le C$ (independent of ε) and $\|u_{\varepsilon}\|_{q+1,\varepsilon} = 1$. Thus, from (2.5) and (2.6), we see

$$(3.6) 1 = \int_{\Omega} |\tilde{u}_{\varepsilon}(x)|^{q+1} |J\Phi_{\varepsilon}(x)| dx$$
$$= \int_{\Omega} \tilde{u}_{\varepsilon}^{q+1} dx + \varepsilon \int_{\Omega} \tilde{u}_{\varepsilon}^{q+1} \sum_{i=1}^{N} \frac{\partial S_{i}}{\partial x_{i}} dx + O(\varepsilon^{2})$$

and

(3.7)
$$\lambda(\varepsilon) = \int_{\Omega} |\nabla \tilde{u}_{\varepsilon}|^{p} dx + \varepsilon \int_{\Omega} |\nabla \tilde{u}_{\varepsilon}|^{p} \sum_{i=1}^{N} \frac{\partial S_{i}}{\partial x_{i}} dx \\ -\varepsilon p \int_{\Omega} |\nabla \tilde{u}_{\varepsilon}|^{p-2} \sum_{j,k=1}^{N} \frac{\partial S_{k}}{\partial x_{j}} \frac{\partial \tilde{u}_{\varepsilon}}{\partial x_{j}} \frac{\partial \tilde{u}_{\varepsilon}}{\partial x_{k}} dx + O(\varepsilon^{2}).$$

Since $\|\nabla u_{\varepsilon}\|_{p,\varepsilon} \leq C$, we can see that $\|\tilde{u}_{\varepsilon}\|_{q+1} \leq C' \|\nabla \tilde{u}_{\varepsilon}\|_{p} \leq C''$ by (ii) of Lemma 2.1 and the Sobolev embedding: $W_0^{1,p}(\Omega) \subset L^{q+1}(\Omega)$. Therefore, from (3.5), (3.6) and (3.7), we see

(3.8)
$$\int_{\Omega} \tilde{u}_{\varepsilon}^{q+1} dx = 1 + O(\varepsilon), \qquad \int_{\Omega} |\nabla \tilde{u}_{\varepsilon}|^{p} dx = \lambda(\varepsilon) + O(\varepsilon)$$

and $\lambda(0) \leq \lambda(\varepsilon) + O(\varepsilon)$. On the other hand, by Lemma 3.1, $\lambda(\varepsilon) \leq \lambda(0) + O(\varepsilon)$ holds. Thus we have

(3.9)
$$\lambda(\varepsilon) = \lambda(0) + O(\varepsilon).$$

Next we want to show that

$$(3.10) \tilde{u}_{\varepsilon} \longrightarrow u_{0} \text{weakly in } W_{0}^{1, p}(\Omega) \text{as } \varepsilon \to 0.$$

Assume that (3.10) does not hold. Then there exist $\eta > 0$, $F \in (W_0^{1,p}(\Omega))^*$, and a sequence $\{\varepsilon_n\}_{n=0}^{\infty}$ satisfying $\varepsilon_n \downarrow 0$ $(n \to \infty)$ such that

$$(3.11) |F(\tilde{u}_{\varepsilon_n}) - F(u_0)| \ge \eta$$

holds. Since $\{\tilde{u}_{\varepsilon_n}\}$ is bounded in $W_0^{1,\,p}(\Omega)$ and the Sobolev embedding: $W_0^{1,\,p}(\Omega) \subset L^{q+1}(\Omega)$ is compact, there exist a subsequence $\{\tilde{u}_{\varepsilon_n},\}$ and $v \in W_0^{1,\,p}(\Omega)$ satisfying

$$\begin{array}{cccc} \tilde{u}_{\varepsilon_n,} & \longrightarrow v & \text{weakly in } W_0^{1,p}(\varOmega) \\ & & & & & \\ \tilde{u}_{\varepsilon_n,} & \longrightarrow v & \text{strongly in } L^{q+1}(\varOmega) \\ & & & & & \\ \tilde{u}_{\varepsilon_n,} & \longrightarrow v & \text{a. e. } \varOmega \; . \end{array}$$

Since $\tilde{u}_{\varepsilon_n} \ge 0$ a. e. Ω , $v \ge 0$ a. e. Ω . From (3.8) and (3.9),

$$\|\tilde{u}_{\varepsilon_n}\|_{q+1} \longrightarrow 1$$
 and $\|\nabla \tilde{u}_{\varepsilon_n}\|_p^p \longrightarrow \|\nabla u_0\|_p^p = \lambda(0)$ as $n' \to \infty$.

Thus, by (3.12), we have $||v||_{q+1}=1$ and

$$\|\nabla v\|_p \leq \liminf_{n' \to \infty} \|\nabla \tilde{u}_{\varepsilon_{n'}}\|_p \leq \|\nabla u_0\|_p = \lambda(0)^{1/p}.$$

Here we used the lower semicontinuity of the $W_0^{1,p}(\Omega)$ -norm. Therefore we have $v \in X_0$ and $\lambda(0) \le \|\nabla v\|_p^p \le \|\nabla u_0\|_p^p = \lambda(0)$. Hence v is a minimizer of $(1.1)_0$. Since the minimizer u_0 of $(1.1)_0$ is unique by the assumption, $v = u_0$ must hold. Letting $n = n' \to \infty$ in (3.11), we have $0 = |F(v) - F(u_0)| \ge \eta$. This contradicts $\eta > 0$. Thus we get (3.10).

From (3.8) and (3.9) we can see that

By (3.10), (3.13) and the uniform convexity of $W_0^{1,p}(\Omega)$,

$$\tilde{u}_{\varepsilon} \longrightarrow u_0 \quad \text{strongly in } W_0^{1, p}(\Omega) \quad \text{as } \varepsilon \to 0$$

holds.

We put $\tilde{u}_{\varepsilon} = u_0 + v_{\varepsilon}$. Then, $v_{\varepsilon} \to 0$ strongly in $W_0^{1,p}(\Omega)$ as $\varepsilon \to 0$. We have

$$(3.15) \qquad \int_{\Omega} |\nabla \tilde{u}_{\varepsilon}|^{p-2} \sum_{j,k=1}^{N} \frac{\partial S_{k}}{\partial x_{j}} \frac{\partial \tilde{u}_{\varepsilon}}{\partial x_{j}} \frac{\partial \tilde{u}_{\varepsilon}}{\partial x_{k}} dx$$

$$= \int_{\Omega} |\nabla u_{0}|^{p-2} \sum_{j,k=1}^{N} \frac{\partial S_{k}}{\partial x_{j}} \frac{\partial u_{0}}{\partial x_{j}} \frac{\partial u_{0}}{\partial x_{k}} dx + I_{1}(\varepsilon) + I_{2}(\varepsilon),$$

where

$$\begin{split} I_{1}(\varepsilon) &= \int_{\Omega} (|\nabla \widetilde{u}_{\varepsilon}|^{p-2} - |\nabla u_{0}|^{p-2}) \int_{j, k=1}^{N} \frac{\partial S_{k}}{\partial x_{j}} \frac{\partial \widetilde{u}_{\varepsilon}}{\partial x_{j}} \frac{\partial \widetilde{u}_{\varepsilon}}{\partial x_{k}} dx \\ I_{2}(\varepsilon) &= \int_{\Omega} |\nabla u_{0}|^{p-2} \int_{j, k=1}^{N} \frac{\partial S_{k}}{\partial x_{j}} \left(\frac{\partial u_{0}}{\partial x_{j}} \frac{\partial v_{\varepsilon}}{\partial x_{k}} + \frac{\partial v_{\varepsilon}}{\partial x_{j}} \frac{\partial u_{0}}{\partial x_{k}} + \frac{\partial v_{\varepsilon}}{\partial x_{j}} \frac{\partial v_{\varepsilon}}{\partial x_{k}} \right) dx \,. \end{split}$$

It is easy to see that

$$(3.16) I_2(\varepsilon) = o(1).$$

On the other hand, by using Lemma A.4 in the Appendix with $w_1 = \nabla u_0$ and $w_2 = \nabla \tilde{u}_{\epsilon}$, we see

$$\begin{split} |I_{1}(\varepsilon)| & \leq C \int_{\varOmega} \left| \left| \nabla \widetilde{u}_{\varepsilon} \right|^{p-2} - \left| \nabla u_{0} \right|^{p-2} \right| \left| \nabla \widetilde{u}_{\varepsilon} \right|^{2} dx \\ & \leq \left\{ \begin{array}{l} C \int_{\varOmega} \left| \nabla v_{\varepsilon} \right|^{p-2} \left| \nabla \widetilde{u}_{\varepsilon} \right|^{2} dx & \text{(if } 2 3) \\ \\ \leq \left\{ \begin{array}{l} C \| \nabla v_{\varepsilon} \|_{p}^{p-2} \| \nabla \widetilde{u}_{\varepsilon} \|_{p}^{2} & \text{(if } 2 3) . \end{array} \right. \end{split}$$

Notice that $I_1(\varepsilon)=0$ if p=2. Thus we have

$$(3.17) I_1(\varepsilon) = o(1).$$

From (3.7), (3.14), (3.15), (3.16) and (3.17), we see

$$(3.18) \qquad \int_{\Omega} |\nabla \tilde{u}_{\varepsilon}|^{p} dx = \lambda(\varepsilon) - \varepsilon \int_{\Omega} |\nabla u_{0}|^{p} \sum_{i=1}^{N} \frac{\partial S_{i}}{\partial x_{i}} dx + \varepsilon p \int_{\Omega} |\nabla u_{0}|^{p-2} \sum_{j, k=1}^{N} \frac{\partial S_{k}}{\partial x_{j}} \frac{\partial u_{0}}{\partial x_{j}} \frac{\partial u_{0}}{\partial x_{k}} dx + o(\varepsilon).$$

Furthermore, since $\tilde{u}_{\varepsilon} \rightarrow u_0$ strongly in $L^{q+1}(\Omega)$ as $\varepsilon \rightarrow 0$, the following follows easily from (3.6).

(3.19)
$$\int_{\Omega} \tilde{u}_{\varepsilon}^{q+1} dx = 1 - \varepsilon \int_{\Omega} u_{0}^{q+1} \sum_{i=1}^{N} \frac{\partial S_{i}}{\partial x_{i}} dx + o(\varepsilon)$$

From (3.5), (3.18) and (3.19), we have

$$\begin{split} \lambda(0) & \leq \lambda(\varepsilon) - \varepsilon \int_{\varOmega} |\nabla u_0|^p \sum_{i=1}^N \frac{\partial S_i}{\partial x_i} dx \\ & + \varepsilon p \lambda(\varepsilon) (q+1)^{-1} \! \int_{\varOmega} u_0^{q+1} \sum_{i=1}^N \frac{\partial S_i}{\partial x_i} dx \\ & + \varepsilon p \! \int_{\varOmega} |\nabla u_0|^{p-2} \sum_{j:k=1}^N \frac{\partial S_k}{\partial x_j} \frac{\partial u_0}{\partial x_j} \frac{\partial u_0}{\partial x_k} dx + o(\varepsilon) \; . \end{split}$$

Using (3.9) in the third term of the right hand side of the above inequality, we get the following.

LEMMA 3.2. For any sufficiently small $\varepsilon > 0$

(3.20)
$$\lambda(0) \leq \lambda(\varepsilon) - \mu \varepsilon + o(\varepsilon)$$

holds, where μ is defined as in Lemma 3.1.

Now we are in a position to prove Theorem 1. Since $u_0 \in C^1(\bar{\Omega})$ and $u_0 = 0$ on $\partial \Omega$, we have the following by the divergence theorem.

$$(3.21) (q+1)^{-1} \int_{\Omega} u_0^{q+1} \sum_{i=1}^{N} \frac{\partial S_i}{\partial x_i} dx + \int_{\Omega} u_0^{q} (\nabla u_0 \cdot S) dx$$

$$= \int_{\Omega} \operatorname{div} ((q+1)^{-1} u_0^{q+1} S) dx$$

$$= \int_{\partial \Omega} (q+1)^{-1} u_0^{q+1} (S \cdot \nu_x) d\sigma_x = 0$$

We recall (2.3) and (2.4). Then we have the following by the divergence theorem.

$$(3.22) \qquad \int_{\Omega} |\nabla u_{0}|^{p} \sum_{i=1}^{N} \frac{\partial S_{i}}{\partial x_{i}} dx + \int_{\Omega \setminus \Omega^{n}} S \cdot \nabla (|\nabla u_{0}|^{p}) dx$$

$$= \int_{\Omega \setminus \Omega^{n}} \operatorname{div} (|\nabla u_{0}|^{p} S) dx$$

$$= \int_{\partial \Omega} |\nabla u_{0}|^{p} (S \cdot \nu_{x}) d\sigma_{x} = \int_{\partial \Omega} |\nabla u_{0}|^{p} \rho(x) d\sigma_{x}$$

$$(3.23) \qquad \int_{\mathcal{Q}\backslash\mathcal{Q}_{n}} (\operatorname{div}(|\nabla u_{0}|^{p-2}\nabla u_{0}))(\nabla u_{0}\cdot S)dx + \int_{\mathcal{Q}\backslash\mathcal{Q}_{n}} (|\nabla u_{0}|^{p-2}\nabla u_{0}\cdot \nabla(\nabla u_{0}\cdot S))dx$$

$$= \int_{\mathcal{Q}\backslash\mathcal{Q}_{n}} \operatorname{div}((\nabla u_{0}\cdot S)|\nabla u_{0}|^{p-2}\nabla u_{0})dx$$

$$= \int_{\partial\mathcal{Q}} (\nabla u_{0}\cdot S)|\nabla u_{0}|^{p-2}\frac{\partial u_{0}}{\partial v_{n}}d\sigma_{x} = \int_{\partial\mathcal{Q}} |\nabla u_{0}|^{p-2}\left|\frac{\partial u_{0}}{\partial v_{n}}\right|^{2}\rho(x)d\sigma_{x}$$

It is easy to see that

$$(3.24) p |\nabla u_0|^{p-2} \nabla u_0 \cdot \nabla (\nabla u_0 \cdot S)$$

$$= S \cdot \nabla (|\nabla u_0|^p) + p |\nabla u_0|^{p-2} \sum_{l_1, k=1}^N \frac{\partial S_k}{\partial x_1} \frac{\partial u_0}{\partial x_2} \frac{\partial u_0}{\partial x_3} \frac{\partial u_0}{\partial x_4} \frac{\partial u_0}{\partial x_4} \frac{\partial u_0}{\partial x_5} \frac{\partial u_$$

holds in $\Omega \setminus \Omega''$.

From (2.4), (3.4), (3.21), (3.22), (3.23) and (3.24), we can easily get the following.

$$\mu = \int_{\partial\Omega} \left(|\nabla u_0|^p - p |\nabla u_0|^{p-2} \left| \frac{\partial u_0}{\partial \nu_x} \right|^2 \right) \rho(x) d\sigma_x$$

$$+ p \int_{\partial\Omega^p} (\operatorname{div} (|\nabla u_0|^{p-2} \nabla u_0) + \lambda(0) u_0^q) (\nabla u_0 \cdot S) dx$$

Since $u_0=0$ on $\partial\Omega$, $|\nabla u_0|=|\partial u_0/\partial\nu_x|$ on $\partial\Omega$. Furthermore, by (2.4), u_0 satisfies $-\text{div}\,(|\nabla u_0|^{p-2}\nabla u_0)=\lambda(0)u_0^q\quad\text{in }\Omega\smallsetminus\Omega''$

in the strong sense. Hence we have

(3.25)
$$\mu = -(p-1) \int_{\partial \mathcal{Q}} \left| \frac{\partial u_0}{\partial u_z} \right|^p \rho(x) d\sigma_x.$$

From Lemmas 3.1, 3.2 and (3.25) we get the desired Theorem 1.

4. Appendix

In this section we refer to the regularity of a solution u_{ϵ} of (1.2). Furthermore we give some inequalities. At first we have the following.

LEMMA A.1. Let G be a bounded domain in \mathbb{R}^N $(N \ge 2)$ with a smooth boundary ∂G . Assume that p > 1 and g is continuous in $\overline{G} \times \mathbb{R}$ and satisfies

$$|g(x, t)| \leq C|t|^r + D$$
 $(x, t) \in \overline{G} \times \mathbf{R}$,

where C and D are real positive constants and $r \in (0, p^*-1)$. If $u \in W_0^{1, p}(G)$ satisfies

(A.1)
$$-\operatorname{div}(|\nabla u|^{p-2}\nabla u)=g(\cdot, u) \quad in \ G$$

$$u=0$$
 on ∂G ,

then $u \in C^{1+\alpha}(\overline{G})$ for some $\alpha \in (0, 1)$.

Proof. When p>N, $u\in L^{\infty}(G)$ follows by the Sobolev embedding: $W_0^{1-p}(G)$ $\hookrightarrow C^{1-N/p}(\overline{G})$. Therefore the above assertion easily follows from Corollary 1.1 and Remark 1.2 in Guedda-Veron [6, p. 884].

From Lemma A.1 $u_{\varepsilon} \in C^{1+\alpha}(\bar{\Omega}_{\varepsilon})$ holds for some $\alpha \in (0, 1)$. Furthermore we have the following.

LEMMA A.2. Assume that $q \ge p-1$. Then there exists a neighbourhood O of $\partial \Omega$ in Ω such that

$$(A.2) u_0 \in C^2(\bar{O}).$$

Proof. We recall $u_0 \in W_0^{1,p}(\Omega) \cap C^{1+\alpha}(\bar{\Omega})$ satisfies

$$-\operatorname{div}(|\nabla u_0|^{p-2}\nabla u_0) = a(x)u_0^{p-1} \quad \text{in } \Omega$$

$$u_0 = 0 \quad \text{on } \partial\Omega$$

$$u_0 \ge 0 \quad \text{a. e. } \Omega ,$$

where $a(x)=u_0^{q^{-(p-1)}}(x)$. Thus $a(x)\in L^{\infty}(\Omega)$. Therefore the following follows from Harnack's inequality due to Trudinger [18, Theorem 1.1, p. 724].

$$(A.4) u_0 > 0 in \Omega$$

From (A.3), (A.4) and Hopf's lemma due to Sakaguchi [14, Lemma A.3, p. 417], we have

$$\partial u_0/\partial v_x < 0$$
 on $\partial \Omega$.

Since $u_0 \in C^1(\bar{\Omega})$, there exist a neighbourhood O of $\partial \Omega$ in Ω and $\eta > 0$ such that

$$|\nabla u_0| \ge \eta > 0$$
 in \bar{O} .

Therefore (A.2) follows from the regularity theory of the elliptic partial differential equation (see, for example, Gilbarg-Trudinger [5], Ladyzhenskaja-Ural'tseva [8]).

q. e. d.

Next we give the following inequalities.

LEMMA A.3. Assume that $p \ge 2$. Then

(A.5)
$$||w_{2}|^{p} - |w_{1}|^{p} - p|w_{1}|^{p-2}w_{1} \cdot (w_{2} - w_{1})|$$

$$\leq p(p-1)(|w_{1}| + |w_{2} - w_{1}|)^{p-2}|w_{2} - w_{1}|^{2}$$

holds for any $w_1, w_2 \in \mathbb{R}^N$.

Proof. We fix w_1 , $w_2 \in \mathbb{R}^N$. At first we assume that $w_1 + t(w_2 - w_1) \neq 0$ for any $t \in [0, 1]$. We put

$$g(t) = |w_1 + t(w_2 - w_1)|^p$$
 $t \in [0, 1]$.

Then

$$g(1) = g(0) + g'(0) + \int_0^1 (1-t)g''(t)dt$$
,

where

$$\begin{split} g'(t) &= p \mid w_1 + t(w_2 - w_1) \mid^{p-2} (w_1 + t(w_2 - w_1)) \cdot (w_2 - w_1) \\ g''(t) &= p \mid w_1 + t(w_2 - w_1) \mid^{p-2} \mid w_2 - w_1 \mid^2 \\ &+ p(p-2) \mid w_1 + t(w_2 - w_1) \mid^{p-4} ((w_1 + t(w_2 - w_1)) \cdot (w_2 - w_1))^2 \;. \end{split}$$

Using Schwarz's inequality, we have

$$\begin{split} |\,g''(t)| & \leq p(p-1)|\,w_1 + t(w_2 - w_1)|^{\,p-2}|\,w_2 - w_1|^{\,2} \\ & \leq p(p-1)(|\,w_1| + t\,|\,w_2 - w_1|)^{\,p-2}|\,w_2 - w_1|^{\,2} \\ & \leq p(p-1)(|\,w_1| + |\,w_2 - w_1|)^{\,p-2}|\,w_2 - w_1|^{\,2} \end{split}$$

for $t \in [0, 1]$. Summing up these facts, we get (A.5).

Next we assume that $w_1+t(w_2-w_1)=0$ for some $t\in[0,1]$. When t=0 (i. e. $w_1=0$), (A.5) is equivalent to $1\leq p(p-1)$. Since $p\geq 2$, $p(p-1)\geq 1$ holds. When $t\in(0,1]$, we put $s=t^{-1}$. Then $w_2=(1-s)w_1$ and (A.5) is equivalent to

(A.6)
$$(s-1)^p + s \, p - 1 \le p(p-1)(1+s)^{p-2} s^2 \quad (s \ge 1).$$

Since $s^2 \ge (s^2+1)/2$ for $s \ge 1$.

(A.7)
$$p(p-1)(1+s)^{p-2}s^{2} \ge (p(p-1)/2)(1+s)^{p-2}s^{2} + (p(p-1)/2)(1+s)^{p-2}$$
$$\ge s^{p} + p - 1 \qquad (s \ge 1)$$

hold for $p \ge 2$. On the other hand,

(A.8)
$$s^{p}+p-1 \ge (s-1)^{p}+sp-1 \quad (s \ge 1)$$

holds for $p \ge 2$, since

$$s^{p}=(s-1+1)^{p} \ge (s-1)^{p} + p(s-1)$$
 $(p \ge 2, s \ge 1)$.

From (A.7) and (A.8) we get (A.6). Therefore we get (A.5). Thus the proof is complete.

q. e. d.

LEMMA A.4. Assume that $p \ge 2$. Then

$$\begin{split} ||w_2|^{p-2} - |w_1|^{p-2}| \\ & \leq \begin{cases} |w_2 - w_1|^{p-2} & (if \ 2 \leq p \leq 3) \\ (p-2)(|w_1| + |w_2 - w_1|)^{p-3}|w_2 - w_1| & (if \ p > 3) \end{cases} \end{split}$$

hold for any $w_1, w_2 \in \mathbb{R}^N$.

Proof. We fix $w_1, w_2 \in \mathbb{R}^N$. If $p \in [2, 3]$, then we see

$$|w_1|^{p-2} \le (|w_2| + |w_2 - w_1|)^{p-2} \le |w_2|^{p-2} + |w_2 - w_1|^{p-2}$$

and

$$|w_2|^{p-2} \le (|w_1| + |w_2 - w_1|)^{p-2} \le |w_1|^{p-2} + |w_2 - w_1|^{p-2}$$
.

Hence we get (A.9) for $p \in [2, 3]$.

Hereafter we assume p>3. When $w_1+t(w_2-w_1)=0$ for some $t\in[0, 1]$, we can easily get (A.9) as in the proof of Lemma A.3. Therefore we may assume that $w_1+t(w_2-w_1)\neq 0$ for any $t\in[0, 1]$. We put

$$h(t) = |w_1 + t(w_2 - w_1)|^{p-2}$$
 $t \in [0, 1]$.

Then

$$h(1) = h(0) + \int_0^1 h'(t) dt$$
,

where

$$|h'(t)| = (p-2)|w_1 + t(w_2 - w_1)|^{p-4}|(w_1 + t(w_2 - w_1)) \cdot (w_2 - w_1)|$$

$$\leq (p-2)(|w_1| + |w_2 - w_1|)^{p-3}|w_2 - w_1|$$

hold for $t \in [0, 1]$. Summing up these facts, we get (A.9).

Thus the proof is complete.

q. e. d.

REFERENCES

- [1] E. DIBENEDETTO, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850.
- [2] D. FUJIWARA AND S. OZAWA, Hadamard's variational formula for the Green functions of some normal elliptic boundary value problems, Proc. Japan Acad., 54A (1978), 215-220.
- [3] P.R. GARABEDIAN AND M.M. SCHIFFER, Convexity of domain functionals, J. Anal. Math., 2 (1952-53), 281-368.
- [4] B. Gidas, W.M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.
- [5] D. GILBARG AND N.S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, 2nd edn., Springer, Berlin, 1983.
- [6] M. GUEDDA AND L. VERON, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal., 13 (1989), 879-902.

- [7] J. HADAMARD, Mémoire sur le problème d'analyse relatif à l'équilibre des plaques élastiques encastrées, Oeuvres, C.N.R.S., tom. 2 (1968), 515-631.
- [8] O.A. LADYZHENSKAYA AND N.N. URAL'TSEVA, Linear and Quasilinear Elliptic Equations, Academic Press, New York-London, 1968.
- [9] G.M. LIEBERMAN, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.
- [10] P. Lindqvist, On the equation div $(|\nabla u|^{p-2}\nabla u) + \lambda |u|^{p-2}u = 0$, Proc. Amer. Math. Soc., 109 (1990), 157-164.
- [11] T. Osawa, The Hadamard variational formula for the ground state value of $-\Delta u = \lambda |u|^{p-1}u$, Kodai Math. J., 15 (1992), 258-278.
- [12] S. Ozawa, Singular variation of the ground state eigenvalue for a semilinear elliptic equation, Tohoku Math. J., 45 (1993), 359-368.
- [13] S. Ozawa and S. Roppongi, Nonlinear eigenvalues and singular variation of domains—the Neumann condition—, preprint 1992.
- [14] S. Sakaguchi, Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 14 (1987), 403-421.
- [15] N. Shimakura, La première valeur propre du laplacien pour le problème de Dirichlet, J. Math. Pures Appl., 62 (1983), 129-152.
- [16] P. Tolksdorf, On the Dirichlet problem for quasilinear equations in domains with conical boundary points, Comm. Partial Differential Equations, 8 (1983), 773-817.
- [17] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150.
- [18] N.S. TRUDINGER, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math., 20 (1967), 721-747.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE TOKYO INSTITUTE OF TECHNOLOGY OH-OKAYAMA, MEGURO-KU TOKYO, 152, JAPAN