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1. Introduction and main results

This note is related to the following two basic problems in Algebraic Geo-
metry.

PROBLEM A. Topological characterization of the complex affine space Cn.
Let X be an w-dimensional smooth affine variety over C. Is it possible to

impose some topological conditions on X which imply that X is isomorphic to
the affine space Cn as algebraic varieties?

Such isomorphic varieties are denoted in this note by X^Cn.

PROBLEM B. Existence of exotic embeddings of Cn into Cn+1 (The Ab-
hyankar-Sathaye Conjecture).

Assume that X: / = 0 is a smooth hypersurface in Cn+1 such that X^Cn.
Does there exist an algebraic automorphism h : Cn+1^Cn+1 such that f°h is a
linear form? This can be restated as whether any embedding of Cn into Cn+1

is equivalent to a linear embedding.

For Problem A one has the following answers.

LEMMA 1. If X is a smooth affine connected curve with Euler number E{X)
=£(C)=1, then X ^C.

Proof. Any such curve X is obtained from a smooth connected projective
curve of genus g by deleting k points. Since the Euler number can be com-
puted by the formula

E{X)=2-2g-k

it follows that g—0 and k=l.

THEOREM 2. / / X is a smooth affine surface homeomorphic to the affine plane
C\ then X^C\
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Proof. This follows from Ramanujam's main result in [Ra], the property
of simply-connectedness at infinity being clearly invariant under homeomor-
phisms.

Remark 3. As already noticed by Ramanujam, it is not enough to require
that the surface X is contractible. Here is a beautiful example of this pheno-
menon due to torn Dieck-Petrie [DP2].

Let a and d be positive integers such that l<a<d and (a, d)=l.
Consider the surface Vd,a defined in C3 by the equation

fd,a(χ, y, *)—1=0

where

Λ.α(*, y, z)=((xz+l)d-(yz+m/z.

Then Vd,a is a smooth contractible surface with logarithmic Kodaira dimension

* ( 7 d i α ) = l .
Recall that the logarithmic Kodaira dimension is invariant under algebraic

isomorphisms and κ(Cn)= — oo for all n, see [I].

In the case of dimensions n>2 the picture is completely different. A smooth
affine variety X which is diffeomorphic to the affine space Cn but nonisomor-
phic to it algebraically is called an exotic algebraic structure on Cn.

Examples of such exotic structures were constructed by Petrie -torn Dieck
[DP2] (implicitly) and explicitly by Zaidenberg [Z 1-3] and Kaliman [K 1-2].
Moreover, by the work of Flenner-Zaidenberg [FZ] and Kaliman [K2], we have
now families of such exotic structures depending on moduli.

On the other hand there is the interesting algebro-topological characteriza-
tion of the affine 3-dimensional space by Miyanishi [M]. One may ask whether
such 'mixed' characterizations exist in higher dimensions.

Concerning the Problem B our knowledge consists essentially only of the
next result, due to Abhyankar-Moh [AM], saying that the answer is "Yes"
when n—l.

THEOREM 4. Any embedding of the line X=C into the plane C2 is equi-
valent to a linear embedding.

For interesting higher dimensional partial results see [DPI]. There are
also deep relations of Problem B to the Jacobian Conjecture, see for instance
Jelonek [J].

In this note we introduce a (discrete) family of odd dimensional hyper-
surfaces which have interesting properties related to the problems A and B
above.
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THEOREM 5. For positive integers m, d and a such that

m>l, 0<a<d-l and (a, d)=(a, d-l)=l

let Xd.a be the hypersurface in C2m defined by the equation f(χ)=0, where

J\X)'=ZXQXI -\-X\X2. ~h •'• ~}~-^2m-3 ̂ 2m-2H~ ^2m-2~l~ ^ 2 m - l

Then
( i ) X d>a is a smooth hypersurface diffeomorphic to C2m~ι

(ii) for a—I, the polynomial map f: C2m~*C is a topological trivial fibra-
tion. In particular, all the fibers Y t—f~\t) are smooth hyper surf aces diffeo-
morphic to C2m~x

(iii) for a>l, the fibers Yt are not contractible for tφO.

In the 3-fold case, we can strengthen (ii) above.

PROPOSITION 6. For m=2 and a—\, the 3-fold Xd>ι isisomorphic to C3 and
its embedding into C* is equivalent to a linear one.

The following questions are still open.

QUESTION 1. Does Proposition 6. hold for all ra>2?

QUESTION 2. Does there exist a triple (m, d, a) as above with α > l such
that the corresponding hypersurface Xd,a is isomorphic to C2m~ι ?

Such a triple would give a negative answer to Problem B.

QUESTION 3. Determine the exotic algebraic structures on C2m~ι coming
from the hypersurfaces Xd,a ?

We note that Kaliman [Kl] has constructed a larger class of hypersurfaces
diffeomorphic to affine spaces and showed that some of them are not isomorphic
to affine spaces. However, this latter class of hypersurfaces is disjoint from
ours.

Before starting the proofs, we would like to explain why our hypersurfaces
are 'natural', e.g. how we have arrived at the polynomial / in Thm. 5.

Let Z be the closure of the hypersurface X—Xdta in the projective space
P2m. Let V=Z\X be the part at infinity of Z.

Hypersurfaces of type Z and V have been considered in [BD] as examples
of projective hypersurfaces with isolated singularities having the same integral
homology as a projective space. See also [D3], p. 167.

Now, if one looks for such examples in the class of surfaces in P 3 having
in addition a C*-action, then the varieties V above (for m—2) are the only
possible cases [BD]. Indeed, all our hypersurfaces X, Z and V have obvious
C*-actions, coming from diagonal C*-actions on the ambient affine or projective
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spaces (the corresponding weights are both negative and positive!).
Projective hypersurfaces of type Z and V for the special value a—I have

been considered for the first time by Libgober [L], and then rediscovered in
the surface case by Barthel [B] and Choudary-Dimca [CD],

2. The proofs

Proof of Theorem 5. (i) STEP 1. The hypersurface X—Xd>a is acyclic:
Hj(X)=:Q for y^O. Here and in the sequel homology and cohomology are with
integral coefficients.

Using the Alexander-Lefschetz duality, it is enough to show that the mor-
phism

jk: H\Z) —> H\V)

induced by the inclusion / : V~^Z is an isomorphism for &<4m—2. When k<
2m—1 this follows directly from the Lefschetz hyperplane section Theorem, see
for instance [D3], p. 25.

For k>2m—2 and odd, both groups are trivial so there is nothing to prove.
Finally, for k>2m—2 and even, one uses the result (2.11) in [D3], p. 144 (and
of course the fact that V and Z are integral homology projective spaces as
noted above).

STEP 2. The hypersurface X is contractible.
Since X has the homotopy type of a CW-complex, one can apply Whitehead

Theorem, see [Sp], p. 399 and p. 405, and reduce the question to showing that
X is simply-connected. But this follows directly from [D2].

STEP 3. The hypersurface X is diffeomorphic to C2771"1.
Let B be an open, large ball centered at the origin of C 2 m . Then X is

diffeomorphic to the intersection XίλB, see [D3], p. 26. Since this intersection
is the interior of the manifold with boundary M=XΓ\Closure (B), it is enough
to show that M is diffeomorphic to a closed ball. By a result due to Smale,
see [S], Thm. 5.1, it is enough to show that the boundary of M is simply-
connected. This in turn follows from [D3], p. 28 since the hypersurface X is
simply-connected.

(ii) Let Zt be the projective closure of the fibre Yt- Any hypersurface Zt

has exactly one singularity, namely the point £ i = ( l : 0: •••: 0).
Moreover a direct calculation (see the proof of Prop. 6. below) shows that

the family of isolated hypersurface singularities (Z t, pi) is μ*-constant. The
result follows from general properties of polynomial functions, see the proof of
(4.1) in [D3], pp. 20-21. (For the definition of the μk invariants of Teissier one
can see [D3], pp. 11-12.)

(iii) When a>l the projective hypersurfaces Zt have two singularities,
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namely pi and p2=(0 : 1 : 0 : •••: 0). The new family of hypersurface singularities
(Zt, Pz) has a jump in Milnor number for t=0. Using standard formulas relat-
ing Milnor numbers and Euler numbers of hypersurfaces, see for instance [D3],
p. 162, we get that E(Yt)Φl. In particular, Yt is not contractible in this case.

Proof of Proposition 6. To simplify notation, let us denote by x, y, z and
t the coordinates on C\ Hence our 3-fold X is given by the equation

Consider the associated surface S in C3 defined by the equation

x + xd-1y+yd'lz=0

To complete the proof it is enough to establish the following.

LEMMA 7. The surface S is isomorphic to the plane C2 and the embedding
of S into C 3 is equivalent to a linear embedding.

Proof. STEP 1. The surface S is contractible.
To show this, consider the function g: C3-*C given by

g(x, y, z)=x + xd'1y+yd~1z.

Let Ft=g~1(t) be the fibers of g, and Gt be their projective closure in P 3 .
Then the surface Gt has just one singularity, namely # = ( 0 : 0 : 1 : 0 ) .

The family of singularities (Gt, q) has the following local equation.

As in the proof of Theorem 5 (ii), it is enough to show that this is a μ*-
constant family of hypersurface singularities.

First we show that gt is a ^-constant family. For this, note that gt is a
semi weighted homogeneous polynomial relative to the weights

wt(x)={d-l)(d-2), wt(y)=(d-l)2 and wt(u)=d2-3d+3.

In fact, one has άeg (xud-1)=άeg (xd-1y)=άeg (y^'Xάeg (ud).
It follows that (see for instance [Dl], p. 116)

μXgt): =μ(gt)=constant.
On the other hand

μ\gt): ^multiplicity (gt)—l=d — 2—constant.

Hence it remains to look at μ2(gt). To do this, note that a generic plane
section is given by x = Au+By, with A and B nonzero constants.

Since wt(x)<wt(u)<wt(y), it follows that the terms of lowest degree rela-
tive to our weights in gt(Au+By, y, u) are (A—t)ud+yd~1. One may choose
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AΦt and the resulting curve singularity is again semi weighted homogeneous
(relative to new obvious weights). It follows as above that

μ%(gt)=μ(Aud+yd~ι)=(d-'iχd-2)=cσnst.

As a result of all this, S is the fiber of the topological fibration induced by g.
The long exact sequence of homotopy groups of a fibration shows that all the
homotopy groups of S are trivial. Since S has the homotopy type of a CW-
complex, this implies that S is contractible.

STEP 2. The surface S is isomorphic to the affine plane C2.
In addition to being contractible, the surface 5 has the following properties
(a) 5 has an obvious C* action;
(b) S contains two distinct lines, its intersection with the plane x=0.
Anyone of these two conditions together with contractibility imply that S

is isomorphic to the plane, see Rynes [Ry] or Zaidenberg [Zl].

STEP 3. The embedding of 5 into C3 is equivalent to a linear one.
One can apply Theorem 2.3 in Russell [Ru] to complete the proof.

Remarks 8. (i) It can be shown that the surfaces

Sa:

are not contractible for α > l , see [D3], p. 174.
(ii) Nagata has considered in [N], p. 16 an automorphism h—(h\ h2, hz)

of C 3 such that (up to a change in notation)

h\x, y, z)=x+x2y+y2z.

This automorphism h gives therefore an explict linearization of the surface 5
in the case d=3. It would be interesting to have such explicit linearizations
for d>3 as well.

(iii) Note that the (2m—l)-fold Xd>a contains a copy of the affine (2m—2)-
dimensional space, namely the trace of the hyperplane * 2 T O _ 8 =0. This is not
the case with Zaidenberg examples [Z3].

(iv) There is a key difference between our hypersurfaces Xd.a and the
surfaces VdtΛ constructed by torn Dieck-Petrie, see Remark 3 above. In both
cases one looks at the fiber of a weighted homogeneous polynomial. However,
we consider the special fiber over 0, while torn Dieck and Petrie consider the
generic fiber over a nonzero complex number.

Using the Sebastiani-Thom construction due in this context to Oka [0] , see
also [D3], p. 88, one can easily see that the hypersurface in C6 given by the
equation

fd.a(Xι, 3>

where the pairs (d, a) and (e, b) satisfy the conditions from Remark 3 is diffeo-
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morphic to CB.

It would be very interesting to have a Sebastiani-Thom formula for the

logarithmic Kodaira dimension of such hypersurfaces. This would lead in parti-

cular to new ways of constructing exotic algebraic structures on affine spaces.
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