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Abstract

Let PΩ(z)\dz\ be the Poincare metric element with the constant Gauss
curvature —4 of a hyperbolic domain Ω in the complex plane C. We find
some boundary properties of the Poincare density PΩ and its complex partial
derivatives (Po)z> (P®)zz and (PΩ*)zz, in terms of the distance do(z} of z^Ω
and the boundary of Ω in C. For the proof we make use of the sharp, lower
estimates of PΩw> of a domain Ω(K)c.C such that K=C\Ω(K) is a non-
degenerate continuum. Several properties of the function p(z, K), z € Ξ Ω ( K ) ,
are proposed.

1. Introduction

A domain Ω in the complex plane C={|z |< + oo} is called hyperbolic if
its boundary dΩ in C contains at least two points. Each hyperbolic domain Ω
has the Poincare metric element Pβ(z)\dz\, z<^Ω, that is, if / is an analytic,
universal-covering projection from the disk D— { z\<l} onto Ω, /eProj(β) in
notation, then

l/P0(z)=(l-\w\*)\f'(w)\

for the Poincare density P#>0 at z—f(w), w^D. The choice of / and w is
immaterial as far as z—f(w) is satisfied.

It is familiar that PΩ(Z) tends to +00 as z tends to each point ζ of dΩ [J,
p. 116]. This also follows from a more precise property:

(1.1) lim inf[^ω log(l/ί^))]ft?(z)^l/2,
z^ζ

where SQ(Z) is the distance of z^Ω and dΩ a proof is contained in Section 8
for completeness. In general, OΩ(Z)PΩ(Z)^I at each point z^Ω see [Kr, p. 45]
and [Y2, p. 104, (IP)] for example. In the forthcoming paper [Y4] we shall
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BOUNDARY BEHAVIORS OF THE POINCARE DENSITY 143

mainly study behaviors of PΩ, (PΩ\—(PΩ)-Z, (PΩ),»=(PΩ)SS and (PΩ)ZZ=4:-
1APΩ in

the vicinity of an isolated boundary point b in terms of δΩ(z) which is \z—b\

near b. Here, ψz=dφ/dz=(l/2){(dφ/dx)-i(dφ/dy)}, φ-z^(jYZ) φzz=dzφ/dz2, φz-z=
d2φ/dzdz, etc., are complex partial derivatives with respect to z~x-\-^y and z=
x—iy. In the present paper we investigate behaviors of them near a general
or a nonisolated boundary point. We begin with

THEOREM 1. Let Ω^C be a hyperbolic domain and let ζeδί?. Suppose that
there exists a connected component K of C\Ω which contains ζ and another point.
Suppose further that there exists an open disk U of center ζ such that U Γ\(C\Ω)
=UΓ\K. Then,

(1) lir^

Note that the following fact

(1.2) (Pa),,=

in Ω is derived from the Gauss curvature identity

Δ log Pβ=4P02 in Ω.

THEOREM 2. Let ΩdC be a hyperbolic domain and set

tfβ(ζ)—lim inf δo(z)Pβ(z)

for each ζeδίλ Then,

( 2 ) lim mfδΩ(zY\(PΩ)z(z)\ <A(aΩ(ζ))^l/2,

where A(x)=2(x — xz\ 0^x^*1;

(3 ) lim inf δΩ(zY \ (Pfl),,(z) I ̂  B(aa(Q)£ β,

where B(x)=5x*-16x2+llx, O^x^l and

( 4 ) lim inf d
2-»ζ

where

For our proof of Theorem 1 we need a detailed study of PΩ in case C\Ω
is a nondegenerate continuum, that is, a closed and connected set in C contain-
ing at least two points. For this purpose we introduce a function p(z, K) of
z^C\K, where K is a bounded, nondegenerate continuum and C\K is connected.
The function p itself has some properties which would be worth proposing,
and will be given mainly in the long Section 6 and in Section 7. Our investiga-
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tion of p culminates in Theorem 4.
The existence condition of a disk U described in Theorem 1 cannot be

dropped to obtain (1) see Remark 2 in Section 5. The absolute constant 1/4
in (1) is best possible. Actually let Ω0 be the complement of the nonpositive
real axis (—00, 0] with respect to C. Then for r>0 and for real #, |α |<π,
we have the expression:

(1.3) δΩn(re")PΩ9(re**)=l/{4cos(a/2)}, if \a ̂

=(l/2)sin(|α|/2), if π/2<\a\<π.

In particular, d00(*)Pfle(jt)=l/4 for *>0, so that the lower limit in (1) at ζ=0
for the present Ω0 is just 1/4.

If C\Ω is unbounded and it consists of a finite number of nondegenerate
continua, then (1) is valid at each ζedβ. In particular we know further that
Ί nfteΩδΩ(z)PΩ(z)>Q [M, Lemma 2], or Ω is of finite type [Yl, Y2].

Let Ω be a hyperbolic domain in C. In the course of the proof of Theorem
2 we actually have the following at each

The constants in the right-hand sides may not be sharp, yet the powers
k—2y 3 of δo(z)* are sharp. Actually,

2-»ζ

2. Simply or doubly connected domains

Given a nondegenerate continuum K in C we set

δκ(z)= inf \z—w\ and Δκ(z)= sup \z—w\

for zeC. Then 0^δ^^Δx^ + oo. If ^^(z)^A^(^) at z<=C\K, then X lies on
{w; w—z\=δκ(z)} and has the length δκ(z)θκ(z) with 0<0^(z)^2^.

By Ω(K) we always mean a domain in (7 such that C\Ω(K}—K is a non-
degenerate continuum. Thus, Ω(K) is hyperbolic, and further, Ω(K) is simply
connected (doubly connected, respectively) if and only if K is unbounded
(bounded, respectively). We have δΩ(K)(z)=δκ(z)>Q at each z^Ω(K).
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THEOREM 3. For Ω(K) defined in the preceding paragraph we have the
following propositions (I) and (II) :
( I ) If K of Ω(K) ^s unbounded, then

(2.1) a*(*)ft<jo(*)^l/4 for all z^Ω(K).

(II) Suppose that K of Ω(K) is bounded and let z^Ω(K).
(II.1) // δκ(z)<Aκ(z), then

'=4

where arctanh *=(l/2) log[(l+*)/(l—*-)], 0^

(2.3)

Actually Proposition ( I ) is well known because Ω(K) is simply connected
see [Kr, p. 45] and [Y2, p. 104, (IIP)] for example. As we have seen in Sec-
tion 1, the equality in (2.1) holds at all points *>0 in Ω0=Ω((-°°, 0]). The
"limiting" case where Δ*(z)= + oo, that is, K is unbounded, "in" (2.2) is (2.1).
An example of a pair z} K for which the equality in (2.2) holds will be proposed.

Fix <5>Oand^<Ξ(7. Let V(z, δ)={w; \w-z\<δ\ and let K be a closed arc
on the circle dV(z, δ) with Θκ(z)<2π. Then, it follows from (2.3) that

(2.4) PΩW(Z) —> l/3=Pr(.,«)W

as 0^(z)->2^. Namely, at the very moment when K separates z from oo, we
have a continuous "change" (2.4). On the other hand, Pβ(^>(^)->0 as Θκ(z)—>0.
Namely, at the very moment when Ω(K} becomes nonhyperbolic, we "lose"

3. Lemmata

Let &(p} for 0<p<l be the family of meromorphic and univalent functions
/ in D with their common pole at p and /(0)=/f(0)— 1=0. A typical member
of &(p) is

which maps, in particular, the punctured disk

D(p)=D\\p\

onto the domain Ω(K(p)), where

is the closed real interval. Another typical one is k* explained later in the
proofs of Lemma 2 and Theorem 4. We begin with
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LEMMA 1. For /e &(p\ 0<ρ<l,

(3.1) (Cw{oo})\/(β)c{*; P/(l+PY<\z\

Both bounds p/(l±pY in (3.1) are attained by kp. Lemma 1 is due to W.
Fenchel, W. E. Kirwan and G. Schober see [F KS] and [Go, p. 249, Theorem
41].

Suppose that K of Ω(K) is bounded. Then, for each z<=Ω(K) there exists
a meromorphic function g in D which maps D univalently onto Ω(K)\J{<*>}
with g(0) = z, #(/>)= oo, 0<ί<l. Suppose that gl is another with gι(0) = z,
g1(q)=zoo} 0<<?<1. Applying the Schwarz lemma to g~logι and gΓl°g one can
easily observe that p—q and hence g— gv. Thus, g and p both are unique.
We shall call g canonical for z and K and write p=p(z, K). We may regard
(g—z)/g'(V)^ ^(P} for the canonical g for z and K. Here we consider a geo-
metrical bound for p(z, K) in (3.2) below.

LEMMA 2. ^4ί 0αc/ι point z of Ω(K) with bounded K we have

(32) P(= K)-(3 } * ' '-

(3.3) p(z, K)=sm(θκ(z)/4).

Proof. Apply Lemma 1 to (g—z)/g'(0)^ &(P) for the canonical g for
and K with £=/>(z, K). Then,

(3.4)

(3.5)

so that

shows (3.2). To see the sharpness let a constant p with 0<p<l be given.
Then, &p is canonical for 0 and K(p\ and δκ(Q)=p/(l+p)2 and Δ^(0)=ί/(l-^)2.
Now the equality in (3.2) holds for the pair z— 0 and K=K(p).

In case δ=δκ(z)=Aκ(z) we let £+d0lα and z+δeiβ be the initial and terminal
points of the arc K, so that β—a=Θκ(z)<2π. Set

c=tan(θ*(*)/4) and ft=((ca+l)^a-l)/c.

Let ζ=:

<g (ι^) be the composed function of the following four:

w<=D
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Then g is canonical for z and K with g(b)=z—δet(a+β"2 and £(/>)= °°, where

p= p(z, K )=2&/0>2+l)=sin(@*(*)/4) .

To be more explicit, we define for general p, Q<p<l, the function

(3.6) k$(z)=pz(l-pz)/(p-z),

Then &$e S7(p), and, for the specified p=sm((β— α)/4), we have the exact form
of g:

(3.7) g=z-(p-Wa+f»'*)kt in D.

4. Proof of Theorem 3

If K of £?(#) is bounded, then

(4.1) dκ(z)PΩ<κ>(zfe(p-ϊ)/(2(l+P') log ί)

at each z^Ω(K) with p=p(zf K). For the proof we let g be canonical for z
and #, and further, /eProj (£(/>)) with /(0)=0. Then 5r /eProj(β(ίf)) with
z=g f(0). Hence

(4.2) l//W>ω= I ̂ '(O)/'^) I - 1 ̂ (0) I /Pzx^ίO) ,

so that

Since

one obtains (4.1) with the aid of (3.4). By the way, (3.5) yields for p—p(z, K)
that

An exact form of / e Pro j (!>(£)) with /(0)=0 is, for example, f(w)
φp(w+wp)/(l+ιϋ^w))f where

(4.3) 0p(W)

with

The function ^ will be considered again.

Proof of (II. 1). We now have (2.2) by (4.1) and (3.2) because the right-
hand side of (4.1) is an increasing function of p, 0< _/><!.

The function kp is canonical for 0 and K(p) with fej,(0)=l, so that (4.2)
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yields:

It is not difficult to prove that the equality in (2.2) holds for K—K(p} and z=Q.

Proof of (II. 2). Let g be the function of (3.7) considered in the proof of
(3.3). Again, g φpGPτo'](Ω(K))> where />=sin(0*(*)/4) by (3.3) and

Hence

yields (2.3).

Remark. Suppose that Ω is hyperbolic, unbounded, and dΩ is bounded.
A typical example of Ω is Ω(K) with bounded K. Fix αedβ. Then, 0 is
an isolated boundary point of

β*= {!/(*- α);

and for z<^Ω,

(\z-a\

Since the left-hand side of the above equality tends to 1/2 as |z— α|->+oo (see
the end of Section 8), the right-hand side has the limit 1/2 as |z|-»+oo. Since
δQ(z)/\z—a\-*l as z|-»H-oo it follows that

(4.4) lim
|2|-» + oo

In particular,

(4.5) lim
|Z|-» + oβ

We cannot drop the boundedness of dΩ to have (4.4). Actually, with the aid
of (1.3) one observes that

(δflβ(*) logδflβ(z))Pflβ(*) — > +00

as |^|->+oo along each half line in Ω0 emanating from the origin. Furthermore,
(4.5) is false for Ω0.

5. Proofs of Theorems 1 and 2

Proof of (1). For U we may further assume that

ί/={*; l*-CK3β} (ε>0)

satisfies (C\U)Γ\K*0. Then, for each * of
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ί/(ζ, ε)={*efl; z-ζ|<ε}
we have

Here we remember that if fliCfig then PΩ^PΩz in £?ι see [Gl, p. 337]. Thus,
Pβ(*)^Pa<x>(*) at each z<=Ω.

If /£ is unbounded, then it immediately follows from (2.1) that

at all *eΞί/(ζ, ε). Hence (1).
Suppose next that K is bounded. Since

)^ |*-ζ| /(2ε) — > 0

as z->ζ in ί/(ζ, ε), it follows from (2.2) that

lim inf δβ(2r)Pfl(z)^li
«-c *-*ζ

This is (1).

(2). We remember that for generel £?,

see [Y2, p. 116, (7.3)]. It then follows that

(5.1) &2 1 (PΛ I ^2(dΩPΩ-δΩ

2PΩ

z)=Λ(δΩPΩ)

in β. We now have (2) by Λ(x)^l/2.

Proof of (3). For /eProj(β) with z=f(w) we have

- w

see [Yl, p. 168, (3.3) Y2, p. 113, (6.2)]. Hence in fl,

Combining this with (5.1) one observes that the right-hand side is not greater
than B(δΩPΩ)^β. Hence (3).

Proof of (4). It follows from (1.2) that

8Q\pQ).ι=\δΩ\pQ).\ δΩ-ιP0-*+(δΩPoγ .
The right-hand side is not greater than C(δΩPΩ)^l. Hence (4).
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Remark 1. The forthcoming property (6.12), together with (4.1), also proves
(1) in case K is bounded.

Remark 2. For n^9 we set an— 1 — n~l, rn—2~n, and we denote the closed
real intervals by In=[an— rn, αn+rn]. Then

Ω = D\(\JIn)
\n=9 /

is a hyperbolic domain and for w^9,

AnΞ={z; rn<\z-an\<an+ί-an-rn+1}c:Ω

with

mod An=(2π)~l \og((an+l-an-rn+1)/rn) — > +00

as n^+oo. It then follows from [BP, p. 478, Corollary 1] that

At each ζe9β\{l} we may apply Theorem 1 to have (1). Hence

(5.2) lim inf δΩ(z)PΩ(z)=Q .
2-»l

There exists no U described in Theorem 1 for led£?, where K is the circle
3D. Here we further note that

(5.3) lim inf |z-l I PΩ(z)^\/(2cH}

see [Y4, Example 1 in Section 3]. The inequality da(z}< z—l\ for each
near 1 with some unknown factors might yield this delicate difference between
(5.2) and (5.3).

6. Further about p(z, K)

The disk D is a metric space with the distance (a bad terminology is the
pseudodistance) :

see [T, p. 511] for the proof of the triangle inequality. Each conformal map-
ping from D onto D preserves the distance d. Throughout in the present
section we assume that K of Ω(K) is bounded. We set

(6.1) </*(*, u;)=£/(/(z), f(w))

for z, w(=Ω*(K)=Ω(K)U{°°}> where / is a conformal mapping from Ω*(K)
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onto D. The right-hand side of (6.1) is independent of the specified choice of
/. In particular, for g canonical for z and K, we have

p(z)=p(z, /O=</(0, P(zϊ)=d(g'\z\ g-\<*>y)=d*(z, oo).

Since lim^ p(z) = 0, we set />(oo) = 0. Hence, p is a C°° function in Ω(K);
actually as will be observed, p is real-analytic. Furthermore,

(6.2) \p(z)-p(w)\^d*(z,w) for z, w(ΞΩ*(K).

In other words, p is a contraction from the metric space (Ω*(K), d*) into the
real interval [0, 1). The Poincare distance of z and w in Ω*(K) is

*(z, w}.

Again, (Ω*(K), d^(Kγ) is a metric space. Hence, for z,

(6.3) larctanh £(z) — arctanh p(w)\<dQ*(Kϊ(z, w}.

Fix zo<=Ω(K) and let £0 be canonical for ZQ and /ί. Then,

(6.4) p(z)

Setting h0=g^1 in Ω*(K) and then partially differentiating (6.4) with respect
to z in Ω(K), together with some calculations, we have

(6.5) 2 1 />,(*) I /(I- £(z)8)= I AJW I /(I- I AO(*) 1 2), ^^ Ω(K ) .

Note that \graάφ\=2\φz\ for a real function φ. Letting z-*zQ in (6.5) we
then have

Igrad ί(2rβ)l/(l"^β)*)=l/l^β(0)|, or

(6.6) Igrad p(z)\/(l-p(z)*)=l/\g'(0)\,

where g in (6.6), this time, is canonical for z and K.

PROPOSITION 1. For each z^Ω(K} we have

(6.7) ί(l-/0/((l+/θa*)^ Igrad /> I ^Λl+ />)/((!- ί)Δ*),

where p=p(z\ δκ=δκ(z\ Δκ=Δκ(z).

Proof. We have (6.7) from (6.6), (3.4) and (3.5). Consider

for w&D and 0<#<1, which is canonical for 0 and the closed real interval
K(q). It then follows from (6.4) with gϋ=kq and ^0— 0 that
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Hence,

/>(0)=0 and |grad XO)|=l-<?2;

the latter follows from (6.6). It is now easy to prove that the equalities in
(6.7) hold at z=Q for K=K(q). Q. E. D.

An application of (6.7) will be described in the remark after Corollary 1
to Theorem 4.

PROPOSITION 2. For each z^Ω(K) we have

(6.8) Pa (*,(*)=(l/2) I grad {log(- log />)} I = I grad p\/(-2p log p) ,

where p=p(z).

Proof. Remember (4.2): P0cjo(*)=βκj»>(0)/|£'(0)|, where g is canonical
for z and K. This, together with (6.6), yields (6.8). Q. E. D.

PROPOSITION 3. Let f : D^Ω(K) be analytic. Then

(6.9) (1- 1 * I ') I (3/3* W(*)) I < - £(/(*)) log #/(*))

αί 0α£/i z^D.

Note that (3/3z)Λ/(z))=ίc(C)//(Λ C=/(*)

We choose FeProj(fl(/iO) with F(0)=/(z). Apply the Schwarz
lemma: |/ιx(0)|^l to a branch A(M ), with A(0)=0, of the function F~l«f((w+
z)/(l+zw)) of w^D. Then, since 1/|F'(0)|=P0(*)(/(*)X it follows that

(6.ιo) (iH*i2)i/'wifiw/ω)^ι,
which, combined with (6.8), shows (6.9). The equality in (6.9) at z (actually,
then at all z^D) holds if and only if h(w)=εw, ε&dD, and hence, if and only
if /eProj (£?(/£")). Q.E.D.

It immediately follows from (6.9) that,

2|(3/3*)log(-logX/(z)))|

for analytic /: D-»Ω(K). Hence for z,

|^2 arctanh d(z, w).

Another consequence of (6.8) is that

\^g(\logp(z)}/{logp(w)})\^2dΩ(K)(z> w)

for z, w^Ω(K), where
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γ ranging over all recctifiable curves connecting z and w in Ω(K). We re-
member that ύ?β(jπ is the Poincare distance in Ω(K). There exists a not
necessarily unique curve JO— ΐo(z, w)dΩ(K) connecting z and w with zφw in
Ω(K) such that

ro

Note that log(— log £) is superharmonic in Ω(K). In fact, for p=p(z),

Δ log(- log />)= - 1 grad /> 1 2/(p log jW2= -4P0(jr>(*)2 .

Since the derivative of g^1 in (6.4) never vanishes in Ω(K\ the function
log I grad/) I is harmonic in Ω(K). Consider the metric λQ(K)(z)\dz\ with the
density

λ?c*>=lgrad p \ /(I -pz}= \ grad arctanh p\t />=/>(*),

in fl(ΛΓ). In view of (6.5), λΩ(K)(z)\dz\ is actually the restriction to Ω(K) of
the Poincare metric element of β*(ΛΓ). In particular, with the aid of (6.5)
one observes that

->W)C?)~2Δ log λsnκ)(z)= -4 ,

or the Gauss curvature of λQ^K)(z)\dz\ at each z^Ω(K) is constantly —4.
Remember that the Gauss curvature of Pβ(K)(z)\dz\ is also constantly —4.

PROPOSITION 4. F0r ^^w^ m

(6.11) |arctanh p(z) — arctanh

Proof. Since Ω(K)dΩ*(K) we have λsnκ)<Pouu in fl(/f), so that (6.11)
is immediate. However, we shall give a self-contained proof. First,

n
Hence,

I arctanh /?(z) — arctanh

dQM(z9 w).

Q. E. D.

Now, we have δκ(z)/Δκ(z)-*Q as z-^b<EΞdΩ(K) in Ω(K). For, ^^) is
bounded away from zero as z->b. Hence (3.2) with p<l yields that

(6.12) \ίmp(z)=l,
z-*b

Suppose that there exists a rectifiable curve γdΩ(K) with a starting point
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w(=Ω(K) and an ending point b^dΩ(K). Then,

(6.13)

For the proof we let γ(z) be a subarc of γ with the starting point w and an
ending point z^γ. Then, the estimate:

larctanh p(z) - arctanh
Jr(*>

together with (6.12), proves (6.13). The situation is different for λj(#) and
for a curve in Ω(K) ending at oo. For each z^Ω(K) we have an analytic
curve Λ(z)C.Ω(K) starting at z^Ω(K) and ending at oo such that

(6.14) f λQ<κ>(0\dζ\
JΛ(z)

For the proof we remember (6.5). Let Γ(z) be the geodesic line segment be-
tween Λ0(z) and p(zQ). Then for Λ(z)=g(Γ(z)) we have

This is (6.14).
Let Λ0(z)dΩ(K) be a locally rectifiable curve starting at z^Ω(K) and

ending at oo. Then,

(6.15) f /fc (*>(OI<ίζ|= + oo.
Jvί0(2)

For the proof we have only to let w-»oo along Λ0(z) in

Since p(w)-*Q we have (6.15).
An important consequence of (6.4) is that log p is harmonic in Ω(K) and

Δ/>=4|] f r β |V/> in β(/O; in fact, -logί(^ + oo at oo) in Ω*(K) is the Green
function [N, p. 28 et seq., p. 123] of Ω*(K) with its pole at oo. Another con-
sequence of (6.4) is that the level set jC(p, c)={z^Ω(K); p(z)=c} (0<c<l) is
the analytic Jordan curve which is the image by g0, canonical for zϋ and K,
of the Apollonius circle :

{w; d(w, p(zj)=c}.

It follows from (6.12) that jC(p, c) "separates" oo and K: For each c, 0<c<l,
{z^Ω(K); p(z)^c] is unbounded.

Set 3)(p, c) =^{z^Ω(K}\ p(z)<c\ for 0<c<l, and let h0 be the inverse of
£0 in (6.4). Then, hQ(3)(p, c))= {w 0<d(w, P(z0))<c} has the non-Euclidean
area πc2/(l— c2). It then follows from (6.5) that
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Since in <D(p, c),

it follows that

J3H.P.C)

In particular,

limiminf (l-c)ff
c-+l J J ^ ( P . c )

note that 3)(p, c) | Ω(K) as c\l.
Similarly,

and

on £(p, c), so that

J-C (P,

whence

=2πc/(l-c*)

This section now ends with a theorem and its corollaries.

THEOREM 4. Suppose that K of Ω(K) is bounded and let C(K) be the capacity
[N, p. 123] of K. Then,

(6.16)

where p=p(z, K), z^Ω(K).

Proof. Let g be canonical for z and K. Since —l
p(z)} is the Green function of Ω*(K) with its pole at oo, it follows on setting

, p)-\imw^p(w-p)g(w), p=p(z}, that

ζ-^oo

is the Robin constant [N, p. 123] of Ω*(K), so that C(K)=e-Ά<κ>=\Res(g, p)\/
(1—p2) by definition; in particular, |Res(#, p(z)}\/(l—p(zY) is independent of
z^Ω(K). Since (g-z)/g'(0)t= &(p\ it follows from [Ko, p. 278, (4.4)] (see also
[Go, p. 263]) that
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I *'(0)| p\l-p2)
Hence

which, combined with (6.6), yields (6.16). Consider kq canonical for 0 and K(q),
0<<7<1, for which we have p(ϋ)=q and Igrad p(0)\ — 1— q2. Since Res(£g, <?)—
q2(q2-l)~\ it follows that C(K(q))=q\l-q2Γ2. This also follows from the fact
that a rectilinear segment of length a has the capacity α/4; see [L, p. 172].
Hence the right equality in (6.16) holds at z=Q in Ω(K(q)). We next consider
the function &* of ^(?), 0<<?<1; see (3.6). The function &* is then canonical
for 0 and the circular arc

#*(?)= {-<?*"; \t\£2θq],

where θg = arcsin q e (0, π/2) in fact, θχ*(ί)(0) = 4θί. Then, />(0) = g and
Igrad />(0)|=1-^2 by (6.6). Since Res(&*, ^)=^2-lX it follows that C(K*(q))
=q2. Thus, the left-hand side equality in (6.16) holds at Oe £?(/£" *(^)). Q. E. D.

COROLLARY 1. Let C(K) be the capacity of K and set />(ζ)= ί(ζ, K\ ζ
Then, p+p'1 is Lipschitz continuous:

(6.17) \(P(z)+P(zrι)-(P(w)+p(wrι)\^C(Krί z-w ,

z, w^Ω(K).

Proof. For φ = p+p~l in Ω(K) the upper estimate of Igrad p\ in (6.16)
yields that

(6.18) IgradΦl^C/O- 1 .

For z, w(=Ω(K), z±Wy we consider the directed line from w to z :

Suppose first that l(w, z)Γ\Kφ0 and then let

and /(2)

be the connected components of l(w, z)Γ\Ω(K) containing w and z, respectively.
Since Φ(ζ)-»2 as ζeβ(/O tends to a point of dΩ(K) by (6.12), it follows that

2 as ί~»^ along /(/), /=!, 2. Hence,

where ζ=ξ-\~iη. In view of (6.18) one now obtains
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|gradΦ(ζ)| dζ\<C(Krι \ d ζ \ ,
) J l ( W , « )

whence (6.17). The case l(w, z]Γ\K — φ is now obvious. Q. E. D.

Let w-*b<=dΩ(K) in (6.17). It then follows from the resulting estimate that

dκ(z)^R(z\ or

z<=Ω(K); the right-hand side is positive and tends to 1 as z tends to a point
of d(Ω(Ky). The equality holds at z=0 for K=K(q), Q<q<l, because 3*(β)(0)

and C(K(q))=q*/(l-q*)*.

Remark. It is not difficult to prove that

= inf

The upper estimate in (6.7) then yields that grad W\ ^ΔC/O"1 in β(/O, where
). We now have

by the similar manner as in the paragraph just after the proof of Corollary 1.
It is not difficult to have

whence

where Q(z)= exp^/fΓ^/Kz)), z^Ω(K)\ the right-hand side is positive and tends
to 1 as z tends to a point of dΩ(K\

COROLLARY 2. At each z^Ω(K) with p—p(z, K\ we have

2-V(2 log pYl^P0ικM<C(Kγιp(ϊ(P*-V log PY1 -

Proof. This follows from (6.8) and (6.16). The right-hand side equality
holds at 0 for K—K(q} and the equality in the left holds at 0 for K*(q).

Q. E. D.

Remark. If K of Ω(K) is further, convex, then the lower estimate in (6.16)
can be replaced by

(6.19) C(KYlp\l+p*Yl^\&ιΔ p\,
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where p=p(z, K\ z^Ω(K). It is open whether or not the equality holds in
(6.19). For the proof of (6.19), as in the proof of Theorem 4, we have only
to make use of the estimate

(6.20) ί'α+ίT^IResCf, p } \ ,

where (Cu{°o})\/CD) for f^^(p\ 0<£<1, is supposed to be convex (in the
usual sense in RZ=C) and again Res (/, p)—\\m^p(z—p)f(z}. Set M=Res(/, />)
and consider the function:

in D. Then (CW{°o})\F(D) is again convex. It then follows from [PP, p.
128, Corollary 5.1] (or [Go, p. 235, (45)] for F(l/z)) that

zeZN{0}. Setting z=p we now have \M\~l^l+p~* or (6.20).

7. Once more on p(z, K}

Again in this section we suppose that K of Ω(K) is bounded. We prove
the strict inequality

(7.1) δκ(.

where

(7.2)

with p=p(z, K).
For the proof we let g be canonical for z and K, and we remember φp of

(4.3) for p=p(zf K). Then f=g°ψp<ΞProj(Ω(K)) with f(Wp)=z. The supremum
σκ(z) of r, 0<r<l, for which / is univalent in

{w, \ w-wp\/\l-WpW\<r}

is just that of r, 0<r<l, for which the function e^ is univalent in an Apol-
lonius disk:

{ζ; \t-\ogp-πi\/\ζ+logp-πi\<r]

whose Euclidean diameter is

(4rlog/>)/(r2-l).

Equating this with 2π one has (7.2). The estimate (7.1) is just [Y2, p. 116,
(7.4) for pΩ(K)(z)—σκ(z)~] which is strict in the present case.

It follows from [Y3, Theorem] that, for each / analytic and univalent in
Ω(K\ the strict inequality holds:
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Combining this with (6.8) we have

(7.3) τ κ ( z ) \ f * ( z ) / f ' ( z ) \ < 8 9 z<=Ω(K),

where
τκ(z)=(-2p log /OClog P +(*2+(log £)2)1/2]/ 1 π grad p \

=(- /> log ί)[log /> +(τr2+(log /O2

with />=/>(*, /O, z<=Ω(K).
For #o in (6.4) we set

in fl(/C). Then / is univalent and nonvanishing in Ω(K) with j & = | / | . Con-
sequently,

f'/f=2p,/P, f*/f'-f'/f=P,,/P.-P./P,

so that, we may consider (7.3) for

f * / f ' = P.,/P.+ P./P
to have

τκ(z)\p.,(z, K}/pz(z, K)+pz(z, K}/p(z, K)\<8, z^Ω(K).

Furthermore, it follows from [B, Corollary 3] (note : The last inequality
in [B, Corollary 3] & [Hj, Theorem 1] =} [BG, Theorem 1] =Φ The last in-
equality in [B, Corollary 3]) that

for all z^Ω(K). A simple calculation, together with (6.8), now yields that,
at each z

I ρ,,./ρ.-&/2){(pu/ply+(p./pγ} \^i2\pz\*/(p log />)2,
where p—p(z, K).

We finish our study of p(z)=p(zf K) with a proposition.

PROPOSITION 5. Suppose that K of Ω(K) is bounded. Then,

(7.4)

et each b£ΞdΩ(K);

(7.5) \i
2-»oo

(7.6) lira sup (1- p(z))< \ (PΩ(K,\(z) \
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at each b^dΩ(K);

(7.7) lim sup P(zY\-\

Proof. Both (7.4) and (7.5) are consequences of Corollary 2 to Theorem 4.
It follows from [Y2, p. 116, (7.1)] that

which, combined with (6.8), yields that

I (Pflc*>).(*) I <2-' I grad p \ \p log pY*σκ(zY\ P=

Thus, from the upper estimate in (6.16), the strict inequality follows:

I (P0c*>).(*) I <2-^C(K)-*p\p*-ir\\og ί)-2[log ί+(ττ2+(log ί)2)1'2]-1

Both (7.6) and (7.7) now follow from this estimate. Q. E. D.

8. Behavior of PQ without any restriction on dΩ

In this section we prove (1.1) for a hyperbolic domain Ω in C. Let α, 6e
3Ω, aφb, and let w=Φ(z)=(b-a)/(z-a). Then Φ(Ω)dR=C\{0, 1}. It then
follows from J. A. HempeΓs result [Hml, p. 443, (4.1)]:

where CH is defined in (5.3), together with

l/Pβ(z)= I *- α 1 2/( I b- a \ P,(fl,(u;)), P#(Λ( w)^ PΛ(u;) ,

that

(8.1)

at each
For the proof of (1.1) we choose b<=dΩ\{ζ}. Let

Then for each z<Ξ.V2 there exists a — a(z)^Vlr\dΩ (possibly ζ itself) such that

Since

it follows that
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which, combined with (8.1), shows that

for z(ΞV2. Hence (1.1).
We have no reasonable estimate for the partial derivatives of
As we have seen in [Y4], if ζedβ is isolated, then

See [Ha, Section 9.4.3] and [Hm2, p. 104, Lemma 5.2] the present author
regrets overlooking the cited article [Hm2] in [Y4].
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