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§ 1. Introduction

The notion of Picard constant of a Riemann surface R was introduced in
[3]. Let <3&(R) be the family of non-constant meromorphic functions on R.
Let P(f) be the number of values which are not taken by / in Jli(R\ Now put

P(Λ)= sup P(/).

This P(R) is called the Picard constant of R. If R is open, then
Further if R is an n-sheeted algebroid surface, which is the proper existence
domain of an n-valued algebroid function, then P(R)<^2n by Selberg's theory
of algebroid functions [7].

We now list up two results for the case of three-sheeted algebroid surfaces.
The first one is the following: Let R be a regularly branched three-sheeted
algebroid surface, that is, R is defined by y*=g(x), where g(x) is an entire
function with infinitely many simple or double zeros. Then P(R)—6, if and
only if £(*)= (eH— ά)(eH— β)2, aβ(a—β)--£Q, where H is a non-constant entire
function with //(O)— 0 and a, β are constants. Further there is no regularly
branched three-sheeted surface R with P(R)=5 [1].

The second one is the following: Let R be a general three-sheeted alge-
broid surface. Then there are two kinds of surfaces R with P(R)=6. One is
defined by

where xύ is a non-zero constant, *ι = α24-fl3+04, #2= ̂ fls-f a ̂ a^a^a^ and *3—
82^304 with non-zero different complex numbers a ί f a2, α3, α4 and H is a non-
constant entire function with //(O)— 0. The other is defined by

(2) y3-(x0e
H+xί)y*+{(aί + az)x0e

H+x2}y-a1a2x0e
H=Q,

where XQ is a non-zero constant, Xι — a3-\-a4f xz—asa4 with non-zero different
complex numbers aίf az, α3, α4 and H is a non-constant entire function with
g(0)=0 [5].
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In general it is very difficult to decide the exact value of P(R) of any
given surface R. Our problem is the following one: Is there any method to
prove P(R)=5 for three-sheeted algebroid surfaces? In the first place we shall
determine several three-sheeted algebroid surfaces R:

with P(y)=5. Then we shall give a method to prove really P(R)—5.

§2. Surfaces with P(|f)=5

Let us put
F(z, y)=y*—Sίy

2-\-S2y—S3.

By Remoundos' theorem [6] we may consider firstly

'F(*,0) j

^(2, α2)
or

F(z, o3)

F(z, α4),

where d, /3ι, /32, jS3 are non-zero constants and Hίf H2, Hs are non-constant
entire functions satisfying Hι(Q) = H2(Q)=Hs(Q)=Q. The first one is the same
as the following simultaneous equation:

Then by Borel's unicity theorem [2]

and

Further

α2α4(04— a2)β2— a2as(az— a — a^}βl— 0.

at+a

0.30.4(0,4—0.3)
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Let us compute F(z, A). Then

F(z, A>=A -A> - -

103

Suppose that F(z, A) does not reduce to a non-zero constant for any non-zero
constant A Then there is no non-zero constant A for which ^(03/33—<24/32)=
03

2/33—04

2/32. Hence we have either 03/33=04β2 or a3

2βB=a4

2β2. In the former
case

04 03 02

and in the latter case

/ R N & _ β* _ βί
\ JD ) £~— £~— ^~

Case (A). Then

with y0=βz/(is' Let us consider the discriminant of R: y*— Sίy
2jτS2y — S3=Q.

Let us denote it by Δ, then

where ζ2=12;y2— 3Ί2, d = 12^2

2— 183^1^3— 2^ι23;2 and ζ0=43;1

+4;y2

3-}-27;y3

2, which is equal to — (α2— α3)
2(α3— a^a^— a

surface by RA.
Case (B). Then with the same notations ylf yz, yz as in (A)

3;ι23;22—
. We denote this

In this case the discriminant Δ of R is

where ζ2 = and ζ0 = 43/1

33;3-3;1

23;2

2-
2, which is equal to -(a2-a3)

2(a,-a4)\a2-a,)2 ^0. We
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denote this surface by RB.
The second one is the same as the following simultaneous equation:

By Borel's unicity theorem

cί=a2(az— α3)(α2

JΓZ i = //2 — JΪ. 3 Ξ //

and

Then we have

Now we pose the following condition : There is no non-zero constant A, being
different from a2, such that F(z, A) reduces to a non-zero constant. In this
case

- 2 2 2 3
— 0,3)

a^β,} -\-A(A-az)(A-a,}

dose not reduce to a non-zero constant excepting A— a2.
Case (C). -A2(α2j82-(α2-α3)]81) + A(a2

zβ2-(a2

2-as

2)β1) +
a(A—a2y with some constant α^O. Then

which implies

Then

F(z9 A)=

In this case we have
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Then the discriminant Δ of y3—Sίy
2-\-S2y-S3=Q is

where

yι— α2

3— a2y2)= — 4a2(a2—

We denote this surface by Rc.
Case (D). -A\a2β2-(a2-a,)β,} + Λ(a2

2β2-(a2

2-a,2)βί) + a2a,(az-a,)βl =
a(A— α2) with some non-zero constant α: being independent of ^4. Then a2β2=
(az—a^βi firstly and hence the above expression is equal to —as(a2—a3)βι(A—a2).
Then we have

F(z, A)=
CL2

In this case we have

Then the discriminant A of yz— Sιy2+S2y— S3=0 is

where

We denote this surface by RD.
We now consider
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( P ( z , v )

F(z, a,)

F(z, α.)

F(z, a,),

—

' Cι

C2

βιβHl

or

H2 \

βie l

Cί

C2

β*e»* ,

The first one is the following simultaneous equation:

By BoreΓs unicity theorem Bi—H^H,

Then

and

(α2+fl«)cι

S,=-c,.

Now we pose the following condition: There is no non-zero constant B, being
different from a2 and αs, such that F(z, B) reduces to the form aex, where

and X: non-constant entire function.

Case (E). CιJτBa2a^=^a2a3(B — a2). Then cl — — a2

2az and c2—~(aB—a1Xa2

-αO8. Further

a2(a2—diY
S2—a2

2+2a2as+aίy0e
H ,

In this case the discriminant Δ of y3— S1y
2+S2y — S3— 0 is

where
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We denote this surface by RE.
Case (F). d-\-Ba2aB=a2az(B — αs). Then Cι — -~ a2az

2 and c2— — (α3— α02(α2

— fli). Further

In this case the discriminant A of yz— Sιy2+S2y— 53=0 is

where

— 4αι3~2(α2+2α3)αι2— 2(2α2-f α3

^I0r=— 4623(0! — α3)(α2— flg)3 9^0.

We denote this surface by RF.
The second one is the following simultaneous equation :

a1

3—S1aί

2-\-S2a1—Ss—cί ,

By BoreΓs unicity theorem we have Hι=H2=H,

Then

and

2~"
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Now we pose the following condition: There is no non-zero constant B, being
different from α3, such that F(zt B} reduces to the form aex, where α^O and
X: non-constant entire function. We have

Case (G). (B — al)al(a9—aί)—cί=γB with a non-zero constant 7, which is
independent of B. Then cί= — a1

2(aB—al) and cz= — α2

2(α s— α8). Further

Then the discriminant Δ of R is

where

We denote this surface by RG

Case (H). (£ — α1)α1(αs— αj— d= r(B — α8). Then
α2(α3— fls)2. Further

ι = flι(α8— fli)2 and ^2—

The discriminant Δ of R is

where
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ΛQ=— 4α8

3(α3— βj

We denote this surface by RH.

§3. Riemann surfaces of

In introduction we have listed up two kinds of Riemann surfaces of six
Picard constant. We briefly introduce how to construct them. Let R be the
Riemann surface defined by

F(2, ^y-Siy + Stf-SsrrrO,

where S l f S2, S8 are entire functions. Suppose that P(R)=6. By Remoundos'
theorem [6] we may consider the following two cases:

( i ) (ϋ)
F(z, 0) ]

F(z, bi) c2

F(z, bs

, F(z, bt

i F(z, b4

Here d, c2, j3t, jSs, j88 are non-zero constants. L, are non-constant entire func-
tions with Z,/0)=0 for y=l, 2, 3. Further bγ, bt, bs, bt are different non-zero
complex numbers.

Case ( i). L^—Lz—Li—L follows easily. Then

with Xo=βι/b2(bl—b2'), Xί=b2-{-bz-{-b4, Xz— bzb3 +b3b4

the surface is defined by

Its discriminant D is

where

b^ and xs—bzb3b4. Hence
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7] z= 12*i#8

This surface is denoted by Xι.
Case (ii). Ll — L2^=L^—L follows easily. Then

with xϋ=—βι/b1b2, Xί—bs+bt, x2—b^b^. Hence the surface is defined by

Its discriminant D is

where

+ !S(bl+b2)blb2x1-(ml

2+6blb2+12b2

2)x2-27b1

2b2

2,

This surface is denoted by X2.

§4. A lemma

It is necessary to give an explicit proof of the following.

LEMMA. Let R be the Riemann surface RA defined by

yt-S^+Sty-S^

with Sι — %1, S2=xQeH+x2, S^=xs, where x0, x l f x2 and xs are constants,
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Xi — o2+o3+α4, ;c2=α2o3+α3α4+α2θ4, x3— α2o3o4. Let F be a regular function
on RA. Then F is represent able as

where flf /2 and /3 are meromorphzc functions in \z\<oo, all of which are
regular at any points z satisfying H'(z)Φΰ.

Proof. Let ZQ be a point satisfying H'(Zo)ΦQ.

Case 1). There are two different points of RA over z0. Of course one is
a branch point and the other is an ordinary point. Then y has two branches
j>! and ;y2 for which

with AΛ^O and

with J30#ι^0. ^U^o^O, since y does not vanish. If />^3, then
(%0^

ίΓ(2)+Λ:2)3;ι — *3=0 gives

with eι^=0. This gives s1A:0β
JίΓ(*0Mo=0, which is absurd. If #=2, then there

is the smallest index s for which

with an odd s and a non-zero constant As*. Then we have

Hence from the coefficient of (z— ZQ)S

{3A0

z-2xίA0 +
which gives

3A0*-2x1A0

The coefficient of z— ZQ is
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Hence xQeHwειAQ=Q, which is absurd. Hence

Then from the coefficient of Cε-z0)
1/2 of y^-

Hence

We shall make use of this relation later.
Similarly for the one-valued branch yz we have

Assume that Fi=/i+/8^i + /8^i2 and F2— fι+fιyι+ftyS are pole-free at
Then put

an'1 i ...
- 7 1 - 1 '

f —/ 2

with (αn, j8n, rn)^(0, 0, 0).
Then we have

-̂ r + -

Then

Similarly for F2— /ι+/2^2+/33'22 we have



THREE-SHEETED ALGEBROID SURFACES 113

Hence {βn+γn(A0-}-B0)}(A0-BQ)=Q. If AQ*B0, then βn+rn(A0+B0)=Q. On
the other hand we have βn+2γnA0=Q. And if γn^Q, we have AQ=B0, which
is absurd. If γn~ 0 then we have βn—an—^f which is absurd. Therefore AQ

= BQ. By 3>2

3— Xιy22+(^oeH(z)-\-x2)y2— *3=0 we have

Hence we have an absurdity relation xQeHwειA0= 0.
Case 2). There is only one point of RA over z0. Then

If /)^4, then the coefficient of z— z0 of y* — x1y
2+(x0e

H^ + X2)y — xs=Q is equal
to x0e

H<*Q>ειA0. Hence this vanishes, which is impossible. If />=3, then there
is the smallest index s for which

with s^O mod3 and non-zero As*. Then the coefficient of (z— zϋ)
s/* in the

Puisseux expansion of y3— x1y
2-\-(xoeH(z)-Jτx2)y — x*= 0 is equal to

Hence
3^0

2-2j1^o + ̂ oe

On the other hand the coefficient of z— z0 is equal to

This is evidently impossible. Therefore p=2 or p=l.
Suppose that p=l and further that y=

^o)4/3+ "-with A, =£0. Then

. a n-i ,
71-1

Since F is pole-free at z0,

and
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Then γn=Q implies βn=Q and an— 0. This holds for all n ̂  1. Hence we
arrive at a contradiction.

Suppose that p=l and further that y=Ao+A1(z-zQ)1/3+A2(z-z0)
2ί*+As(z-

£0)-f ••• with AιAz ^0. Similarly we have

and

These relations contain a contradiction similarly.
Suppose that />=2. Then ;y^A+ACz-2o)2/3+A(2-2o)+ , ΛΛ^O. In

this case

•)

^

Hence we have

and

Therefore we have a contradiction.
Case 3). There are three ordinary points of RA over z0. Then there are

three different branches of y around these points. Suppose that

with p^2, Λ o ^ i ^ O . Then by y1

3-x1y1

2+(x0e
H(z>+x2)y1- x* = Q we have

x0e
H(ZQ)ε1A0^= 0, which is absurd. Hence yl =AQ+Aί(z— z0)+A2(z— zQ)2 + ••• .

Similarly

and

Let us put

(«-«,)«



THREE-SHEETED ALGEBROID SURFACES 115

_ ϊn __ I __ Tn-l __ -

"""
Then P^f^fzy+fsy2 should be pole-free at z0 for any branch of y. Hence

Then

and

If A0ΦB0 and Λ^C0, then ]8n+7n(Λ+50)=]8n+7 n(Λ+Cβ)=0. Hence τ n(J30-
C0)=0. If BQΦCO, then ?•„— 0 and βn=Q, αn=0. This gives a contradiction.
Hence B0=C0. Therefore we have either A0=B0 or AQ=C0 or B0=C0. Sup-
pose now ^0=^0.

Then by ^i3— x1y1

2^-(x0e
H<iz)-{-Xz)yι — ̂ 3— 0 we have

Similarly for yz we have

(3B0

2-2Λ:ι

By ^40=β0 we have

Suppose that A^B^ Then 3^0

2 — 2^!^40 + x0e
H(z^ + %2 = 0, whence follows

xQeH(g^ε1AQ=Qf which is impossible. Hence Aι=Blf In general

A0, A,, •••, Am.lf ε l f εz, -, εm)=0

and

{3A^-2x1Aΰ+x0e
H^ + x2}Bm+Pm(A0f Al9 -, ^TO_!, ej, ε2, -, εm)=0,

if ^4o=^o, Λl=Blf •••, Am^— βm_ι, where ε,, /— 1, - , m are defined by

Since 3^0

2— 2%1^40H-^oβ/ru°) + ̂ 2:^0, we have Am—Bm. Thus we have yι=yz,
which is absurd.

Similar lemma hold for the surfaces X ί f RB and RE. Proofs are quite
similar. Further it is sufficient to prove Lemma for the surfaces RA, RB and
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RE. in § 7 we show that, when eH is commonly appeared, RD^RA, Rc^Rs and
RF^RG^RH^RE, where ~ means the conformal equivalence by a suitable linear
transformation Y=ay+β. Evidently X^X2 too, if eL is common.

§ 5. Transformation formula of discriminants

Let R be the surface RA: y^-S^+S^-S^Q with S^y^ S2=y0e
H+y2,

S3=yz, where y0 is a non-zero constant and y1=a2+a^+atf y2=a2as+aBa4+
#2^4, ;vs= 020804 and H is an entire function.

From now on we shall assume that the surface is of finite order, that is,

H is a polynomial.

The same assumption holds in §6 too.
Now suppose that P(R)=6. Then there exists an entire function / on R

with P(/)— 6. We can make use of Lemma in §4. Then / is representable as

as in Lemma.
For simplicity's sake we put F=f1—f. Then

F+f*y+f9y*=Q,

By eliminating y and y* we have

where

This gives

with

Ulf U2 and U2 are all entire, since / is a three-valued entire algebroid function.
Let g be /-ί/ι/3. Then g*+Ag+B=Q with
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= i(-tV+3tf,),

= -

Then the discriminant D is equal to 4Λ3+27β2. Hence

For simplicity's sake we put

α2=-2S1

3+7S1S2-9S8,

Oίz—— oi τ~4ύι ύ2 ΌOI JS o2

and

Then

/31=-2S1

3+9S1S2-27S3,

βt=-6S1

4+30S1

2S2-54S1S8-18S2

2,

jgs=-6S1

5+33S,3S2-45S1

2S3-33S1S2

2+27S2S3,

^4=-251

6+12S1

4S2-18S1

3S3-15S1

2S2

2+36S1S2S3-2S2

3-2759

k

1

+/2

4/3

2(12α1

2«3+12α1α2

2+2/31/33+/32

2)

+ /2

2/3

4(12α: α3

2 + 12«2

2

4 + j8,f)

=Δ{/2

6+4S1/2

5/3+2(3S1

2+S2)/2

4/3

2+(4S1

3+6S1S2-2S3)/2

3/3

3

+(S1

4+6S1

2S2-4S1S3+S2

2)/2

2/3

4+2(S1

3S2-S1

2S3+S1S2

2-S2S3)/2/8

6

+(S1

2S2

2-2S1S2S3+S8

2)/,6}

=Δ{/2

3+2S1/2

2/3+(51

2+S2)/2/3

2+(S1S2-S3)/33}2,
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where Δ is the discriminant of y3— Sίy
2jτS2y — S3— 0, that is,

A _ 4 „ 3 I •*• Q 2
Δ~27αι + 27*

Let us put the above formula as

(3) D=Δ G*.

G may have poles at most at zeros of H'.
We need more precise result on D=Δ G2. Evidently the poles of G are

finite in number. Let us put

and

Case 1). The counting function of simple zeros of Δ satisfies

N2(r, 0, Δ)~3T(r, **),

that is, diφδi for iΦL Then

N2(r, 0, Δ)=Λ/,(r, 0, D)^mT(r, eL)

with m=l, 2, 4. Then L should be a polynomial, whose degree coincides with
the one of H. In this case we can return back y from /. Then we have

Δ=D K2.

The number of poles of K is finite again. This gives that the zeros of G is
finite in number. Hence

(4) D=Δ β2 e2M

with a rational function β. In this case we have fjΦγk for jφk.
Case 2). _/V2(r, 0, Δ)~T(r, O, that is, d^d2=d,. Then

A/2(r, 0, Δ)=Λ/a(r, 0, D)^mT(r, eL)

with m=l, 2, 4. Then L should be a polynomial. Again we can return back
3; from /. Then Δ—D K2. Similarly we have a finite number of zeros of G.
Hence

Then the counting function of double zeros of Δ satisfies Λ/ι(r, 0, Δ)~2T(r, eH)
and M(r, 0, D) ~ 2T(r, ^L). Hence T(r, eH) ~ T(r, eL). On the other hand
T(r, g f f) ~ 2T(r, ^L), because that Λ/2(r, 0, Δ) = Λ/2(r, 0, J9) and N,(rf 0, Z>) ~
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2T(r, eL). This is a contradiction.
Case 3). Δ has no simple zero. Then

This is a contradiction.

§ 6. Theorems

We shall prove the following

THEOREM 1. Let RA be the Riemann surface defined in § 2. Assume that
its discriminant ARA satisfies

Δ^=43>oV*K2V*2*+ζι3>o0*-Ko

with either ζ2^0 or ζ^O, where ^=l2y2-y,\ ζ1=12y2

2-lSy1yz-2yί

2y2. Then

THEOREM 2. Let RB be the Riemann surface defined in §2. Assume that
its discriminant ΔRβ has the form

with either ζ2=12yιy3- y2

2^Q or ζί = l2yί

zyz-2yiy2

2-lSy2yz^Q. Then P(RB)=5.

THEOREM 3. Let Re be the Riemann surface defined in § 2. Assume that
its discriminant ΔRc has the form

with either f2=8α2

2^1

2— 36α2

3j>ι-f27α2

4— 8α23;ι;y2+30α2

2j>2— j>2

2^0 or ξi—^a^y^—
4a2y1

2y2-18a2

2yίy2-2yίy2

2+24:a2y2

2^Q. Then P(RC)=5.

THEOREM 4. Let RD be the Riemann surface defined in § 2. Assume that
its discriminant ARD has the form

with either ξ2^l2y2+21a2

2-l^a2yl-yl

2^ or ξ1=12y2

2-6yί

2y2-lSa2y1y2+4,a2yί

z

^0. Then

Proof of Theorem 1. Suppose that P(RA)—6. Then on RA there is an
entire algebroid function / for which P(/)=6. Suppose that / defines the
surface Xlt Then by (4)
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which is just the following identity:

Now we shall make use of the unicity theorem of Borel, which plays the de-
cisive role in our proof. Evidently we have

4Γ(r, eL)~N2(r, 0, J5)=Λ?,(r, 0, 4*J

We already proved that it is enough to consider this case. Hence

T(r, e")^~T(r, eL).

This relation makes our discussion simpler. Firstly assume that M=Q. Then

There remains only one possibility: ι?o=j82ζo, —b1

2x0*=4tβ
zy0

3, 4L—3H and
η9=ηz=ηl=ζz=:ζ1=Q. However at least one of d, ζ2 does not vanish by our
assumption. Thus we arrive at a contradiction.

Next assume that M^O. Then

Now suppose that 3#-{-2M^O. Then

There remains only one possible case:

This is again a contradiction. Still there are several subcases to be discussed.
However all of them lead to contradictions easily.

Suppose that / defines the surface X2. Then we have

by (4), which is just the following identity :
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There appear only two possible cases: Either ηQ=β2ζo, —(b1—b2)
2x0*=4β2yo3,

MΞΞO, 4LΞΞ3Ή and 1?8=ι?2=?1=ζ2=ζ1=θ or η^ψy^-^-b^x.^β2^ 2M~
—3H, 4Z,ΞΞ— 3# and η^=ηz=ηl = ζ2— ζi— 0. These two cases give the same
contradiction ζz^ζί=Q. Therefore P(RA)=5.

Proofs of Theorems 2, 3 and 4 are quite similar as in the one of Theorem 1.
So we shall omit their proofs.

THEOREM 5. Let RE be the Riemann surface defined in § 2. Assume that
its discriminant ΔRE has the form

where either ^2=:4α1

3-2(2α2+α3)α1

2-2(α2+2α3)α2α1+4β2

2α3 Φ 0 or A.^Sa^ i-
20α2α3-α3

2)α1

2-(8α2

3+38α2

2α3+8α2α3

2)α1-fl2

4+20α2

3α3+8α2

2α3^0. Then P(RE)
=5.

THEOREM 6. Let RF be the Riemann surface defined in §2. Assume that
its discriminant ARF has the form

with either A2 = 4α1

3-2(α2+2α3)α1

2-2(2α2+α3)α3αι+4α2α3

2 ^0 or .4!^(8α3

2+
20α2α3-α2

2)α1

2-(8α3

3+38α3

2β2+8α3α2

2)α1-α3

4+20α3

3α2+8α2

2α3

2^0. Then P(RF}
=5.

THEOREM 7. Let RG be the Riemann surface defined in § 2. Assume that
its discriminant ΔRG has the form

with either

or

Then P(RG)=5.

THEOREM 8. Let RH be the Riemann surface defined in §2. Assume that
its discriminant ΔRlί has the form

with either
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or

Then P(Ra)=5.

Proof of Theorem 5. Suppose that P(RE)=6. Then on RE there is an
entire algebroid function / for which P(/)=6. Suppose that / defines the
surface Xlt Then we have

by (4). This is just the following identity :

There remain only two possible cases: Either 2M——H, 3//ΞΞ4L, ηz=η2=η1 =
^8=^=0 or 2M=Ξ— 4#, 4LΞΞ-3Ή, η3=η2=η1=A2=A1=0. These contradict
our assuption: Either A2^Q or A^ΰ.

Similarly we have a contradiction, when / defines the surface Xz.

Proofs of Theorems 6, 7 and 8 are quite similar as in the one of Theorem 5.

§ 7. Unsolved problems and Remarks

i ) Let RA be the Riemann surface defined in § 2. Assume that its dis-
criminant ARA has the following form :

Is P(RA) still five?
Of course there are corresponding unsolved problems for Rx (x=B, C, D,

E, F, G, H}.
ii) Let RX and Rγ be the surfaces P(/?jr)= 5 and P(RY)=5. Can we list

up all the analytic mappings of Rx into RY?
iii) Let R and S be the surfaces of P(R)=6 and P(S)=5. Is there any

analytic mapping of R into S?
We shall now give some remarks. Let

F(z, y)=y*-Sι

and

α*G(z, Y}=F(z, αY+β)
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with Λ2a= — α4, Aza=a2— a4, A^a—a^—a^ and β—a^.
RA is defined by F(z, ;y)=0 with

Then

with FO— 3Ό/#2. Then G(e, F)=0 defines the surface RD. Evidently inverse
process is possible. Hence RA coincides with RD.

Similarly we can show that RB coincides with Rc.
Next we put

RE is defined by F(z, y}=Q with

Then

with Y0=y0/a. G(zy Y)=Q defines the surface RH. Hence RE and RH are
coincident with each other.

Similarly we can show that RF and RG are coincident with each other.
Next we put A^a— — a^t A2a—a3—aίf Aza^=a2— «ι and j8=θι. ^ is defined
by F(z, 3^)=0 with

Then



124 MITSURU OZAWA AND KAZUNARI SAWADΛ

T1=Ytβ
a+At+2At,

1 s—AzAs

with Y0—y0/a. Hence G(z, F)=0 defines the surface RF. This shows that RE

coincides with RF.
Therefore there are three types of Riemann surfaces of five Picard constant.
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