THREE-SHEETED ALGEBROID SURFACES WHOSE PICARD CONSTANTS ARE FIVE

Dedicated to Professor Nobuyuki Suita on his 60th birthday

BY MITSURU OZAWA AND KAZUNARI SAWADA

§1. Introduction

The notion of Picard constant of a Riemann surface R was introduced in [3]. Let $\mathcal{M}(R)$ be the family of non-constant meromorphic functions on R. Let P(f) be the number of values which are not taken by f in $\mathcal{M}(R)$. Now put

$$P(R) = \sup_{f \in \mathcal{M}(R)} P(f).$$

This P(R) is called the Picard constant of R. If R is open, then $P(R) \ge 2$. Further if R is an *n*-sheeted algebroid surface, which is the proper existence domain of an *n*-valued algebroid function, then $P(R) \le 2n$ by Selberg's theory of algebroid functions [7].

We now list up two results for the case of three-sheeted algebroid surfaces. The first one is the following: Let R be a regularly branched three-sheeted algebroid surface, that is, R is defined by $y^3 = g(x)$, where g(x) is an entire function with infinitely many simple or double zeros. Then P(R)=6, if and only if $g(x)=(e^H-\alpha)(e^H-\beta)^2$, $\alpha\beta(\alpha-\beta)\neq 0$, where H is a non-constant entire function with H(0)=0 and α , β are constants. Further there is no regularly branched three-sheeted surface R with P(R)=5 [1].

The second one is the following: Let R be a general three-sheeted algebroid surface. Then there are two kinds of surfaces R with P(R)=6. One is defined by

(1)
$$y^{3} - (x_{0}e^{H} + x_{1})y^{2} + (a_{1}x_{0}e^{H} + x_{2})y - x_{3} = 0$$
,

where x_0 is a non-zero constant, $x_1=a_2+a_3+a_4$, $x_2=a_2a_3+a_3a_4+a_2a_4$ and $x_3=a_2a_3a_4$ with non-zero different complex numbers a_1 , a_2 , a_3 , a_4 and H is a non-constant entire function with H(0)=0. The other is defined by

(2)
$$y^{3} - (x_{0}e^{H} + x_{1})y^{2} + \{(a_{1} + a_{2})x_{0}e^{H} + x_{2}\}y - a_{1}a_{2}x_{0}e^{H} = 0,$$

where x_0 is a non-zero constant, $x_1=a_3+a_4$, $x_2=a_3a_4$ with non-zero different complex numbers a_1 , a_2 , a_3 , a_4 and H is a non-constant entire function with H(0)=0 [5].

Received July 15, 1992; revised August 23, 1993.

In general it is very difficult to decide the exact value of P(R) of any given surface R. Our problem is the following one: Is there any method to prove P(R)=5 for three-sheeted algebroid surfaces? In the first place we shall determine several three-sheeted algebroid surfaces R:

$$y^{3}-S_{1}y^{2}+S_{2}y-S_{3}=0$$

with P(y)=5. Then we shall give a method to prove really P(R)=5.

§2. Surfaces with P(y)=5

Let us put

$$F(z, y) \equiv y^3 - S_1 y^2 + S_2 y - S_3$$

By Rémoundos' theorem [6] we may consider firstly

$$\begin{pmatrix} F(z, 0) \\ F(z, a_2) \\ F(z, a_3) \\ F(z, a_4) \end{pmatrix} = \begin{pmatrix} c_1 \\ \beta_1 e^{H_1} \\ \beta_2 e^{H_2} \\ \beta_3 e^{H_3} \end{pmatrix} \text{ or } \begin{pmatrix} \beta_1 e^{H_1} \\ c_1 \\ \beta_2 e^{H_2} \\ \beta_3 e^{H_3} \end{pmatrix},$$

where c_1 , β_1 , β_2 , β_3 are non-zero constants and H_1 , H_2 , H_3 are non-constant entire functions satisfying $H_1(0) = H_2(0) = H_3(0) = 0$. The first one is the same as the following simultaneous equation:

$$\begin{array}{c} -S_3 = c_1, \\ a_2^3 - S_1 a_2^2 + S_2 a_2 - S_3 = \beta_1 e^{H_1}, \\ a_3^3 - S_1 a_3^2 + S_2 a_3 - S_3 = \beta_2 e^{H_2}, \\ a_4^3 - S_1 a_4^2 + S_2 a_4 - S_3 = \beta_3 e^{H_3}. \end{array}$$

Then by Borel's unicity theorem [2]

$$c_1 = -a_2 a_3 a_4, \quad H_1 = H_2 = H_3 \equiv H$$

and

$$a_2a_4(a_4-a_2)\beta_2-a_2a_3(a_3-a_2)\beta_3+a_3a_4(a_3-a_4)\beta_1=0.$$

Further

$$\begin{cases} S_1 = \frac{a_4\beta_2 - a_3\beta_3}{a_3a_4(a_4 - a_3)}e^H + a_2 + a_3 + a_4, \\ S_2 = \frac{a_4^2\beta_2 - a_3^2\beta_3}{a_3a_4(a_4 - a_3)}e^H + a_2a_3 + a_3a_4 + a_2a_4, \\ S_3 = -c_1 = a_2a_3a_4. \end{cases}$$

Let us compute F(z, A). Then

$$F(z, A) = A^{3} - A^{2}S_{1} + AS_{2} - S_{3} = \frac{A\{(-Aa_{4} + a_{4}^{2})\beta_{2} - (a_{3}^{2} - Aa_{3})\beta_{3}\}}{a_{3}a_{4}(a_{4} - a_{3})}e^{Aa_{3}a_{4}(a_{4} - a_{3})} + (A - a_{2})(A - a_{3})(A - a_{4}).$$

Suppose that F(z, A) does not reduce to a non-zero constant for any non-zero constant A. Then there is no non-zero constant A for which $A(a_3\beta_3-a_4\beta_2)=a_3{}^2\beta_3-a_4{}^2\beta_2$. Hence we have either $a_3\beta_3=a_4\beta_2$ or $a_3{}^2\beta_3=a_4{}^2\beta_2$. In the former case

(A)
$$\frac{\beta_3}{a_4} = \frac{\beta_2}{a_3} = \frac{\beta_1}{a_2}$$

and in the latter case

(B)
$$\frac{\beta_3}{a_4^2} = \frac{\beta_2}{a_3^2} = \frac{\beta_1}{a_2^2}.$$

Case (A). Then

$$\begin{cases} S_1 = a_2 + a_3 + a_4 \equiv y_1, \\ S_2 = y_0 e^H + a_2 a_3 + a_3 a_4 + a_2 a_4 \equiv y_0 e^H + y_2, \\ S_3 = a_2 a_3 a_4 \equiv y_3 \end{cases}$$

with $y_0 = \beta_2/a_3$. Let us consider the discriminant of $R: y^3 - S_1y^2 + S_2y - S_3 = 0$. Let us denote it by Δ , then

$$\Delta = 4S_1{}^3S_3 - S_1{}^2S_2{}^2 - 18S_1S_2S_3 + 4S_2{}^3 + 27S_3{}^2$$

= 4y_0{}^3e^{3H} + \zeta_2y_0{}^2e^{2H} + \zeta_1y_0e^H + \zeta_0,

where $\zeta_2 = 12y_2 - y_1^2$, $\zeta_1 = 12y_2^2 - 18y_1y_3 - 2y_1^2y_2$ and $\zeta_0 = 4y_1^3y_3 - y_1^2y_2^2 - 18y_1y_2y_3 + 4y_2^3 + 27y_3^2$, which is equal to $-(a_2 - a_3)^2(a_3 - a_4)^2(a_2 - a_4)^2 \neq 0$. We denote this surface by R_4 .

Case (B). Then with the same notations y_1 , y_2 , y_3 as in (A)

$$\begin{cases} S_1 = y_0 e^H + y_1, & y_0 = -\beta_2 / a_3^2, \\ S_2 = y_2, \\ S_3 = y_3. \end{cases}$$

In this case the discriminant Δ of R is

$$\Delta = 4 y_0^{3} e^{3H} y_3 + \zeta_2 y_0^{2} e^{2H} + \zeta_1 y_0 e^{H} + \zeta_0,$$

where $\zeta_2 = 12y_1y_3 - y_2^2$, $\zeta_1 = 12y_1^2y_3 - 2y_1y_2^2 - 18y_2y_3$ and $\zeta_0 = 4y_1^3y_3 - y_1^2y_2^2 - 18y_1y_2y_3 + 4y_2^3 + 27y_3^2$, which is equal to $-(a_2 - a_3)^2(a_3 - a_4)^2(a_2 - a_4)^2 \neq 0$. We

denote this surface by R_B .

The second one is the same as the following simultaneous equation:

$$\begin{cases} -S_3 = \beta_1 e^{H_1}, \\ a_2^3 - S_1 a_2^2 + S_2 a_2 - S_3 = c_1, \\ a_3^3 - S_1 a_3^2 + S_2 a_3 - S_3 = \beta_2 e^{H_2}, \\ a_4^3 - S_1 a_4^2 + S_2 a_4 - S_3 = \beta_3 e^{H_3}. \end{cases}$$

By Borel's unicity theorem

$$c_1 = a_2(a_2 - a_3)(a_2 - a_4)$$

 $H_1 = H_2 = H_3 \equiv H$

and

$$a_2a_4(a_4-a_2)\beta_2+(a_2-a_3)(a_4-a_2)(a_3-a_4)\beta_1+a_2a_3(a_2-a_3)\beta_3=0.$$

Then we have

$$\begin{cases} S_1 = \frac{e^H}{a_2 a_3 (a_2 - a_3)} (a_2 \beta_2 - (a_2 - a_3) \beta_1) + a_3 + a_4, \\ S_2 = \frac{e^H}{a_2 a_3 (a_2 - a_3)} (a_2^2 \beta_2 - (a_2^2 - a_3^2) \beta_1) + a_3 a_4, \\ S_3 = -\beta_1 e^H. \end{cases}$$

Now we pose the following condition: There is no non-zero constant A, being different from a_2 , such that F(z, A) reduces to a non-zero constant. In this case

$$F(z, A) = \frac{e^{H}}{a_{2}a_{3}(a_{2}-a_{3})} \{-A^{2}(a_{2}\beta_{2}-(a_{2}-a_{3})\beta_{1}) + A(a_{2}^{2}\beta_{2}-(a_{2}^{2}-a_{3}^{2})\beta_{1}) + a_{2}a_{3}(a_{2}-a_{3})\beta_{1}\} + A(A-a_{3})(A-a_{4})$$

dose not reduce to a non-zero constant excepting $A=a_2$.

Case (C). $-A^2(a_2\beta_2-(a_2-a_3)\beta_1) + A(a_2^2\beta_2-(a_2^2-a_3^2)\beta_1) + a_2a_3(a_2-a_3)\beta_1 = \alpha(A-a_2)^2$ with some constant $\alpha \neq 0$. Then

$$\{a_2^2\beta_2 - (a_2^2 - a_3^2)\beta_1\}^2 = -4\{a_2\beta_2 - (a_2 - a_3)\beta_1\}a_2a_3(a_2 - a_3)\beta_1,$$

which implies

$$a_{2}^{2}\beta_{2} = (a_{2} - a_{3})^{2}\beta_{1}.$$

Then

$$F(z, A) = \frac{\beta_1 e^H}{a_2^2} (A - a_2)^2 + A(A - a_3)(A - a_4).$$

In this case we have

THREE-SHEETED ALGEBROID SURFACES

$$\begin{cases} S_1 = y_0 e^H + y_1, & y_0 = -\beta_1 / a_2^2, \\ S_2 = 2a_2 y_0 e^H + y_2, & y_1 = a_3 + a_4, & y_2 = a_3 a_4, \\ S_3 = a_2^2 y_0 e^H. \end{cases}$$

Then the discriminant Δ of $y^3 - S_1 y^2 + S_2 y - S_3 = 0$ is

$$\Delta = \xi_3 y_0^3 e^{3H} + \xi_2 y_0^2 e^{2H} + \xi_1 y_0 e^H + \xi_0,$$

where

$$\begin{split} \xi_3 &= 4(a_2{}^2y_1 - a_2{}^3 - a_2y_2) = -4a_2(a_2 - a_3)(a_2 - a_4) \neq 0, \\ \xi_2 &= 8a_2{}^2y_1{}^2 - 36a_2{}^3y_1 + 27a_2{}^4 - 8a_2y_1y_2 + 30a_2{}^2y_2 - y_2{}^2, \\ \xi_1 &= 4a_2{}^2y_1{}^3 - 4a_2y_1{}^2y_2 - 18a_2{}^2y_1y_2 - 2y_1y_2{}^2 + 24a_2y_2{}^2, \\ \xi_0 &= -y_2{}^2(y_1{}^2 - 2y_2) = -a_3{}^2a_4{}^2(a_3 - a_4)^2 \neq 0. \end{split}$$

We denote this surface by R_c .

Case (D). $-A^2(a_2\beta_2-(a_2-a_3)\beta_1) + A(a_2^2\beta_2-(a_2^2-a_3^2)\beta_1) + a_2a_3(a_2-a_3)\beta_1 = \alpha(A-a_2)$ with some non-zero constant α being independent of A. Then $a_2\beta_2 = (a_2-a_3)\beta_1$ firstly and hence the above expression is equal to $-a_3(a_2-a_3)\beta_1(A-a_2)$. Then we have

$$F(z, A) = \frac{a_2 - A}{a_2} \beta_1 e^H + A(A - a_3)(A - a_4).$$

In this case we have

$$\begin{cases} S_1 = y_1, & y_0 = -\beta_1/a_2, \\ S_2 = y_0 e^H + y_2, & y_1 = a_3 + a_4, & y_2 = a_3 a_4, \\ S_3 = a_2 y_0 e^H. \end{cases}$$

Then the discriminant Δ of $y^3 - S_1 y^2 + S_2 y - S_3 = 0$ is

$$\Delta = 4 y_0^3 e^{3H} + \xi_2 y_0^2 e^{2H} + \xi_1 y_0 e^H + \xi_0,$$

where

$$\begin{aligned} \xi_2 &= 12y_2 + 27a_2^2 - 18a_2y_1 - y_1^2, \\ \xi_1 &= 12y_2^2 - 18a_2y_1y_2 - 6y_1^2y_2 + 4a_2y_1^3, \\ \xi_0 &= y_2^2(4y_2 - y_1^2) = -a_3^2a_4^2(a_3 - a_4)^2 \neq 0. \end{aligned}$$

We denote this surface by R_D .

We now consider

$$\begin{pmatrix} F(z, 0) \\ F(z, a_1) \\ F(z, a_2) \\ F(z, a_3) \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ \beta_1 e^{H_1} \\ \beta_2 e^{H_2} \end{pmatrix} \text{ or } \begin{pmatrix} \beta_1 e^{H_1} \\ c_1 \\ c_2 \\ \beta_2 e^{H_2} \end{pmatrix}$$

The first one is the following simultaneous equation:

$$\begin{cases} -S_3 = c_1, \\ a_1^3 - S_1 a_1^2 + S_2 a_1 - S_3 = c_2, \\ a_2^3 - S_1 a_2^2 + S_2 a_2 - S_3 = \beta_1 e^{H_1}, \\ a_3^3 - S_1 a_3^2 + S_2 a_3 - S_3 = \beta_2 e^{H_2}. \end{cases}$$

By Borel's unicity theorem $H_1 = H_2 \equiv H$, $a_3(a_3 - a_1)\beta_1 = a_2(a_2 - a_1)\beta_2$ and

$$c_1(a_3-a_1)(a_2-a_1)-c_2a_2a_3+a_1a_2a_3(a_3-a_1)(a_2-a_1)=0.$$

Then

$$\begin{cases} S_1 = -\frac{c_1}{a_2 a_3} + a_2 + a_3 - \frac{\beta_1 e^H}{a_2 (a_2 - a_1)}, \\ S_1 = -\frac{(a_2 + a_3)c_1}{a_2 a_3} + a_2 a_3 - \frac{a_1 \beta_1 e^H}{a_2 (a_2 - a_1)}, \\ S_3 = -c_1. \end{cases}$$

Now we pose the following condition: There is no non-zero constant B, being different from a_2 and a_3 , such that F(z, B) reduces to the form αe^X , where $\alpha \neq 0$ and X: non-constant entire function.

$$F(z, B) = \frac{B(B-a_1)}{a_2(a_2-a_1)} \beta_1 e^H + \frac{(B-a_2)(B-a_3)}{a_2a_3} (c_1 + Ba_2a_3).$$

Case (E). $c_1 + Ba_2a_3 = a_2a_3(B-a_2)$. Then $c_1 = -a_2^2a_3$ and $c_2 = -(a_3-a_1)(a_2-a_1)^2$. Further

$$\begin{cases} S_1 = 2a_2 + a_3 + y_0 e^H, & y_0 = -\frac{\beta_1}{a_2(a_2 - a_1)}, \\ S_2 = a_2^2 + 2a_2a_3 + a_1y_0e^H, \\ S_3 = -c_1 = a_2^2a_3. \end{cases}$$

In this case the discriminant Δ of $y^3 - S_1 y^2 + S_2 y - S_3 = 0$ is

$$\Delta = y_0 e^H (-a_1^2 y_0^3 e^{3H} + A_2 y_0^2 e^{2H} + A_1 y_0 e^H + A_0),$$

where

$$A_2 = 4a_1^3 - 2(2a_2 + a_3)a_1^2 - 2(a_2 + 2a_3)a_2a_1 + 4a_2^2a_3$$

$$\begin{split} A_1 &= (8a_2^2 + 20a_2a_3 - a_3^2)a_1^2 - (8a_2^3 + 38a_2^2a_3 + 8a_2a_3^2)a_1 \\ &- a_2^4 + 20a_2^3a_3 + 8a_2^2a_3^2, \\ A_0 &= 4a_2(a_1 - a_2)(a_2 - a_3)^3 \neq 0. \end{split}$$

We denote this surface by R_E .

Case (F). $c_1 + Ba_2a_3 = a_2a_3(B-a_3)$. Then $c_1 = -a_2a_3^2$ and $c_2 = -(a_3-a_1)^2(a_2-a_3)$. Further

$$\begin{cases} S_1 = a_2 + 2a_3 + y_0 e^H, & y_0 = -\frac{\beta_1}{a_2(a_2 - a_1)}, \\ S_2 = 2a_2a_3 + a_3^2 + a_1y_0e^H, \\ S_3 = -c_1 = a_2a_3^2. \end{cases}$$

In this case the discriminant Δ of $y^3 - S_1 y^2 + S_2 y - S_3 = 0$ is

$$\Delta = y_0 e^H (-a_1^2 y_0^3 e^{3H} + A_2 y_0^2 e^{2H} + A_1 y_0 e^H + A_0),$$

where

$$\begin{aligned} A_2 &= 4a_1{}^3 - 2(a_2 + 2a_3)a_1{}^2 - 2(2a_2 + a_3)a_3a_1 + 4a_2a_3{}^2, \\ A_1 &= (8a_3{}^2 + 20a_2a_3 - a_2{}^2)a_1{}^2 - (8a_3{}^3 + 38a_3{}^2a_2 + 8a_3a_2{}^2)a_1 \\ &- a_3{}^4 + 20a_3{}^3a_2 + 8a_2{}^2a_3{}^2, \\ A_0 &= -4a_3(a_1 - a_3)(a_2 - a_3){}^3 \neq 0. \end{aligned}$$

We denote this surface by R_F .

The second one is the following simultaneous equation:

$$\begin{cases} -S_3 = \beta_1 e^{H_1}, \\ a_1^3 - S_1 a_1^2 + S_2 a_1 - S_3 = c_1, \\ a_2^3 - S_1 a_2^2 + S_2 a_2 - S_3 = c_2, \\ a_3^3 - S_1 a_3^2 + S_2 a_3 - S_3 = \beta_2 e^{H_2}. \end{cases}$$

By Borel's unicity theorem we have $H_1 = H_2 \equiv H$, $\beta_2 a_1 a_2 = \beta_1 (a_3 - a_1)(a_3 - a_2)$ and

$$c_1a_2(a_3-a_2)-c_2a_1(a_3-a_1)=a_1a_2(a_2-a_1)(a_3-a_1)(a_3-a_2).$$

Then

$$\begin{cases} S_1 = \frac{c_1}{a_1(a_3 - a_1)} + a_1 + a_3 - \frac{\beta_1 e^H}{a_1 a_2}, \\ S_2 = \frac{c_1 a_3}{a_1(a_3 - a_1)} + a_1 a_3 - \frac{(a_1 + a_2)\beta_1 e^H}{a_1 a_2}, \\ S_3 = -\beta_1 e^H. \end{cases}$$

107

Now we pose the following condition: There is no non-zero constant B, being different from a_3 , such that F(z, B) reduces to the form αe^x , where $\alpha \neq 0$ and X: non-constant entire function. We have

$$F(z, B) = \frac{\beta_1 e^H}{a_1 a_2} (B - a_1)(B - a_2) + \frac{B(B - a_3)}{a_1(a_3 - a_1)} ((B - a_1)a_1(a_3 - a_1) - c_1).$$

Case (G). $(B-a_1)a_1(a_3-a_1)-c_1=\gamma B$ with a non-zero constant γ , which is independent of B. Then $c_1=-a_1^2(a_3-a_1)$ and $c_2=-a_2^2(a_3-a_2)$. Further

$$\begin{cases} S_1 = a_3 - \frac{\beta_1}{a_1 a_2} e^H \equiv a_3 + y_0 e^H, \\ S_2 = -\frac{a_1 + a_2}{a_1 a_2} \beta_1 e^H \equiv (a_1 + a_2) y_0 e^H, \\ S_3 = -\beta_1 e^H \equiv a_1 a_2 y_0 e^H. \end{cases}$$

Then the discriminant Δ of R is

$$\Delta = y_0 e^H (A_3 y_0^3 e^{3H} + A_2 y_0^2 e^{2H} + A_1 y_0 e^H + A_0),$$

where

108

$$\begin{aligned} A_{3} &= 4a_{1}a_{2} - (a_{1} + a_{2})^{2} = -(a_{1} - a_{2})^{2} \neq 0, \\ A_{2} &= -2(a_{1}^{2} - 4a_{1}a_{2} + a_{2}^{2})a_{3} - 2(a_{1} + a_{2})(2a_{1} - a_{2})(a_{1} - 2a_{2}) \\ A_{1} &= -(a_{1}^{2} - 10a_{1}a_{2} + a_{2}^{2})a_{3}^{2} - 18a_{1}a_{2}(a_{1} + a_{2})a_{3} + 27a_{1}^{2}a_{2}^{2}, \\ A_{0} &= 4a_{1}a_{2}a_{3}^{3} \neq 0. \end{aligned}$$

We denote this surface by R_G .

Case (H). $(B-a_1)a_1(a_3-a_1)-c_1=\gamma(B-a_3)$. Then $c_1=a_1(a_3-a_1)^2$ and $c_2=a_2(a_3-a_2)^2$. Further

$$\begin{cases} S_1 = 2a_3 + y_0 e^H, & y_0 = \frac{-\beta_1}{a_1 a_2}, \\ S_2 = a_3^2 + (a_1 + a_2) y_0 e^H, \\ S_3 = a_1 a_2 y_0 e^H. \end{cases}$$

The discriminant Δ of R is

$$\Delta = y_0 e^H (A_3 y_0^3 e^{3H} + A_2 y_0^2 e^{2H} + A_1 y_0 e^H + A_0),$$

where

$$A_{3} = -(a_{1} - a_{2})^{2} \neq 0,$$

$$A_{2} = -2a_{3}^{2}(a_{1} + a_{2}) - 4a_{3}(a_{1}^{2} + 4a_{1}a_{2} + a_{2}^{2})$$

$$+2(a_{1} + a_{2})(2a_{1} - a_{2})(a_{1} - 2a_{2}),$$

$$A_{1} = -a_{3}^{4} - 8a_{3}^{3}(a_{1} + a_{2}) + a_{3}^{2}(8a_{1}^{2} + 46a_{1}a_{2} + 8a_{2}^{2})$$
$$-36a_{1}a_{2}(a_{1} + a_{2})a_{3} + 27a_{1}^{2}a_{2}^{2},$$
$$A_{0} = -4a_{3}^{3}(a_{3} - a_{1})(a_{3} - a_{2}) \neq 0.$$

We denote this surface by R_H .

§3. Riemann surfaces of P(R)=6

In introduction we have listed up two kinds of Riemann surfaces of six Picard constant. We briefly introduce how to construct them. Let R be the Riemann surface defined by

$$F(z, y) \equiv y^3 - S_1 y^2 + S_2 y - S_3 = 0$$
,

where S_1 , S_2 , S_3 are entire functions. Suppose that P(R)=6. By Rémoundos' theorem [6] we may consider the following two cases:

(i)
$$\begin{pmatrix} F(z, 0) \\ F(z, b_1) \\ F(z, b_2) \\ F(z, b_3) \\ F(z, b_4) \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ \beta_1 e^{L_1} \\ \beta_2 e^{L_2} \\ \beta_3 e^{L_3} \end{pmatrix}, \quad (ii) \begin{pmatrix} \beta_1 e^{L_1} \\ c_1 \\ c_2 \\ \beta_2 e^{L_2} \\ \beta_3 e^{L_3} \end{pmatrix}.$$

Here c_1 , c_2 , β_1 , β_2 , β_3 are non-zero constants. L_j are non-constant entire functions with $L_j(0)=0$ for j=1, 2, 3. Further b_1 , b_2 , b_3 , b_4 are different non-zero complex numbers.

Case (i). $L_1 = L_2 = L_3 = L$ follows easily. Then

$$\begin{cases} S_1 = x_0 e^L + x_1, \\ S_2 = b_1 x_0 e^L + x_2, \\ S_3 = x_3 \end{cases}$$

with $x_0 = \beta_1/b_2(b_1-b_2)$, $x_1 = b_2 + b_3 + b_4$, $x_2 = b_2b_3 + b_3b_4 + b_2b_4$ and $x_3 = b_2b_3b_4$. Hence the surface is defined by

$$y^{3} - (x_{0}e^{L} + x_{1})y^{2} + (b_{1}x_{0}e^{L} + x_{2})y - x_{3} = 0.$$

Its discriminant D is

$$D = -b_1^2 x_0^4 e^{4L} + \eta_2 x_0^3 e^{3L} + \eta_2 x_0^2 e^{2L} + \eta_1 x_0 e^L + \eta_0,$$

where

$$\eta_3 = 4b_1^3 - 2b_1^2 x_1 - 2b_1 x_2 + 4x_3$$

MITSURU OZAWA AND KAZUNARI SAWADA

$$\begin{aligned} \eta_2 &= 12x_1x_3 - 18b_1x_3 - x_2^2 - 4b_1x_1x_2 + 12b_1^2x_2 - b_1^2x_1^2, \\ \eta_1 &= 12x_1^2x_3 - 18b_1x_1x_3 - 18x_2x_3 - 2x_1x_2^2 + 12b_1x_2^2 - 2b_1x_1^2x_2, \\ \eta_0 &= 4x_1^3x_3 - x_1^2x_2^2 + 27x_3^2 - 18x_1x_2x_3 + 4x_2^3 \\ &= -(b_2 - b_3)^2(b_2 - b_4)^2(b_3 - b_4)^2 \neq 0. \end{aligned}$$

This surface is denoted by X_1 .

Case (ii). $L_1 = L_2 = L_3 = L$ follows easily. Then

$$\begin{cases} S_1 = x_0 e^L + x_1, \\ S_2 = (b_1 + b_2) x_0 e^L + x_2, \\ S_3 = b_1 b_2 x_0 e^L \end{cases}$$

with $x_0 = -\beta_1/b_1b_2$, $x_1 = b_3 + b_4$, $x_2 = b_3b_4$. Hence the surface is defined by

$$y^{3} - (x_{0}e^{L} + x_{1})y^{2} + \{(b_{1} + b_{2})x_{0}e^{L} + x_{2}\}y - b_{1}b_{2}x_{0}e^{L} = 0.$$

Its discriminant D is

$$D = (b_1 - b_2)^2 x_0^4 e^{4L} + \eta_3 x_0^3 e^{3L} + \eta_2 x_0^2 e^{2L} + \eta_1 x_0 e^L + \eta_0,$$

where

$$\begin{split} \eta_3 &= (2b_1^2 - 8b_1b_2 + 2b_2^2)x_1 + 2(b_1 + b_2)x_2 \\ &- 2(b_1 + b_2)(2b_1^2 - 5b_1b_2 + 2b_2^2), \\ \eta_2 &= (b_1^2 - 10b_1b_2 + b_2^2)x_1^2 + 4(b_1 + b_2)x_1x_2 + x_2^2 \\ &+ 18(b_1 + b_2)b_1b_2x_1 - (12b_1^2 + 6b_1b_2 + 12b_2^2)x_2 - 27b_1^2b_2^2, \\ \eta_1 &= -4b_1b_2x_1^3 + 2(b_1 + b_2)x_1^2x_2 + 2x_1x_2^2 + 18b_1b_2x_1x_2 \\ &- 12(b_1 + b_2)x_2^2, \\ \eta_0 &= x_1^2x_2^2 - 4x_2^3 = b_3^2b_4^2(b_3 - b_4)^2 \neq 0. \end{split}$$

This surface is denoted by X_2 .

§4. A lemma

It is necessary to give an explicit proof of the following.

LEMMA. Let R be the Riemann surface R_A defined by

$$y^{3}-S_{1}y^{2}+S_{2}y-S_{3}=0$$

with $S_1 = x_1$, $S_2 = x_0 e^H + x_2$, $S_3 = x_3$, where x_0 , x_1 , x_2 and x_3 are constants, $x_0 \neq 0$,

110

111

 $x_1=a_2+a_3+a_4$, $x_2=a_2a_3+a_3a_4+a_2a_4$, $x_3=a_2a_3a_4$. Let F be a regular function on R_A . Then F is representable as

$$F = f_1 + f_2 y + f_3 y^2$$
,

where f_1 , f_2 and f_3 are meromorphic functions in $|z| < \infty$, all of which are regular at any points z satisfying $H'(z) \neq 0$.

Proof. Let z_0 be a point satisfying $H'(z_0) \neq 0$.

Case 1). There are two different points of R_A over z_0 . Of course one is a branch point and the other is an ordinary point. Then y has two branches y_1 and y_2 for which

$$y_1 = A_0 + A_1(z - z_0)^{p/2} + A_2(z - z_0)^{(p+1/2)} + \cdots$$

with $A_0A_1 \neq 0$ and

$$y_2 = B_0 + B_1(z - z_0)^q + B_2(z - z_0)^{q+1} + \cdots$$

with $B_0B_1 \neq 0$. $A_0B_0 \neq 0$, since y does not vanish. If $p \ge 3$, then $y_1^3 - x_1y_1^2 + (x_0e^{H(z)} + x_2)y_1 - x_3 = 0$ gives

$$A_0^3 + 3A_0^2 A_1(z-z_0)^{p/2} + \dots - x_1(A_0^2 + 2A_0A_1(z-z_0)^{p/2} + \dots)$$

+ $[x_0e^{H(z_0)} \{1 + \varepsilon_1(z-z_0) + \dots\} + x_2](A_0 + A_1(z-z_0)^{p/2} + \dots) - x_3 = 0$

with $\varepsilon_1 \neq 0$. This gives $\varepsilon_1 x_0 e^{H(\varepsilon_0)} A_0 = 0$, which is absurd. If p=2, then there is the smallest index s for which

 $y_1 = A_0 + A_1(z - z_0) + \dots + A_s^*(z - z_0)^{s/2} + \dots$

with an odd s and a non-zero constant A_s^* . Then we have

$$\begin{aligned} A_0^3 + 3A_0^2 A_1(z-z_0) + \cdots + 3A_0^2 A_s^*(z-z_0)^{s/2} + \cdots \\ &- x_1(A_0^2 + 2A_0A_1(z-z_0) + \cdots + 2A_0A_s^*(z-z_0)^{s/2} + \cdots) \\ &+ [x_0e^{H(z_0)} \{1 + \varepsilon_1(z-z_0) + \cdots \} + x_2](A_0 + A_1(z-z_0) + \cdots + A_s^*(z-z_0)^{s/2} \\ &+ \cdots - x_3 = 0. \end{aligned}$$

Hence from the coefficient of $(z-z_0)^{s/2}$,

$$\{3A_0^2 - 2x_1A_0 + x_0e^{H(z_0)} + x_2\}A_s^* = 0$$
,

which gives

$$3A_0^2 - 2x_1A_0 + x_0e^{H(z_0)} + x_2 = 0.$$

The coefficient of $z-z_0$ is

$$\{3A_0^2 - 2x_1A_0 + x_0e^{H(z_0)} + x_2\}A_1 + x_0e^{H(z_0)}\varepsilon_1A_0 = 0.$$

Hence $x_0 e^{H(z_0)} \varepsilon_1 A_0 = 0$, which is absurd. Hence

 $y_1 = A_0 + A_1(z - z_0)^{1/2} + A_2(z - z_0) + \cdots$

Then from the coefficient of $(z-z_0)^{1/2}$ of $y_1^3 - x_1y_1^2 + (x_0e^{H(z)} + x_2)y_1 - x_3 = 0$.

$$\{3A_0^2 - 2x_1A_0 + x_0e^{H(z_0)} + x_2\}A_1 = 0.$$

Hence

 $3A_0^2 - 2x_1A_0 + x_0e^{H(z_0)} + x_2 = 0.$

We shall make use of this relation later.

Similarly for the one-valued branch y_2 we have

$$y_2 = B_0 + B_1(z - z_0) + \cdots$$

Assume that $F_1 = f_1 + f_2 y_1 + f_3 y_1^2$ and $F_2 = f_1 + f_2 y_2 + f_3 y_2^2$ are pole-free at z_0 . Then put

$$f_{1} = \frac{\alpha_{n}}{(z - z_{0})^{n}} + \frac{\alpha_{n-1}}{(z - z_{0})^{n-1}} + \cdots,$$

$$f_{2} = \frac{\beta_{n}}{(z - z_{0})^{n}} + \frac{\beta_{n-1}}{(z - z_{0})^{n-1}} + \cdots,$$

$$f_{3} = \frac{\gamma_{n}}{(z - z_{0})^{n}} + \frac{\gamma_{n-1}}{(z - z_{0})^{n-1}} + \cdots.$$

with $(\alpha_n, \beta_n, \gamma_n) \neq (0, 0, 0)$. Then we have

$$F_{1} = f_{1} + f_{2}y_{1} + f_{3}y_{1}^{2}$$

$$= \frac{\alpha_{n}}{(z-z_{0})^{n}} + \frac{\alpha_{n-1}}{(z-z_{0})^{n-1}} + \cdots$$

$$+ \left\{ \frac{\beta_{n}}{(z-z_{0})^{n}} + \frac{\beta_{n-1}}{(z-z_{0})^{n-1}} + \cdots \right\} \left\{ A_{0} + A_{1}(z-z_{0})^{1/2} + A_{2}(z-z_{0}) + \cdots \right\}$$

$$+ \left\{ \frac{\gamma_{n}}{(z-z_{0})^{n}} + \frac{\gamma_{n-1}}{(z-z_{0})^{n-1}} + \cdots \right\} \left\{ A_{0}^{2} + 2A_{0}A_{1}(z-z_{0})^{1/2} + (A_{1}^{2} + 2A_{0}A_{2})(z-z_{0}) + \cdots \right\}.$$

Then

$$\alpha_n + \beta_n A_0 + \gamma_n A_0^2 = 0,$$

$$\beta_n A_1 + \gamma_n 2 A_0 A_1 = 0.$$

Similarly for $F_2 = f_1 + f_2 y_2 + f_3 y_2^2$ we have

$$\alpha_n+\beta_nB_0+\gamma_nB_0^2=0.$$

Hence $\{\beta_n + \gamma_n(A_0 + B_0)\}(A_0 - B_0) = 0$. If $A_0 \neq B_0$, then $\beta_n + \gamma_n(A_0 + B_0) = 0$. On the other hand we have $\beta_n + 2\gamma_n A_0 = 0$. And if $\gamma_n \neq 0$, we have $A_0 = B_0$, which is absurd. If $\gamma_n = 0$ then we have $\beta_n = \alpha_n = 0$, which is absurd. Therefore $A_0 = B_0$. By $y_2^3 - x_1 y_2^2 + (x_0 e^{H(z)} + x_2) y_2 - x_3 = 0$ we have

$$\{3A_0^2 - 2x_1A_0 + x_0e^{H(z_0)} + x_2\}B_1 + x_0e^{H(z_0)}\varepsilon_1A_0 = 0.$$

Hence we have an absurdity relation $x_0 e^{H(z_0)} \varepsilon_1 A_0 = 0$.

Case 2). There is only one point of R_A over z_0 . Then

$$y(z) = A_0 + A_p(z - z_0)^{p/3} + \cdots$$

If $p \ge 4$, then the coefficient of $z-z_0$ of $y^3 - x_1y^2 + (x_0e^{H(z)} + x_2)y - x_3 = 0$ is equal to $x_0e^{H(z_0)}\varepsilon_1A_0$. Hence this vanishes, which is impossible. If p=3, then there is the smallest index s for which

$$y = A_0 + A_3(z - z_0) + \dots + A_s^*(z - z_0)^{s/3} + \dots$$

with $s \not\equiv 0 \mod 3$ and non-zero A_s^* . Then the coefficient of $(z-z_0)^{s/3}$ in the Puisseux expansion of $y^3 - x_1 y^2 + (x_0 e^{H(z)} + x_2) y - x_3 = 0$ is equal to

$$3A_0^2A_s^* - 2x_1A_0A_s^* + (x_0e^{H(z_0)} + x_2)A_s^* = 0.$$

Hence

$$3A_0^2 - 2x_1A_0 + x_0e^{H(z_0)} + x_2 = 0.$$

On the other hand the coefficient of $z-z_0$ is equal to

$$(3A_0^2 - 2x_1A_0 + x_0e^{H(z_0)} + x_2)A_1 + x_0e^{H(z_0)}\varepsilon_1A_0 = 0.$$

This is evidently impossible. Therefore p=2 or p=1.

Suppose that p=1 and further that $y=A_0+A_1(z-z_0)^{1/3}+A_3(z-z_0)+A_4(z-z_0)^{4/3}+\cdots$ with $A_1\neq 0$. Then

$$F = f_1 + f_2 y + f_3 y^2$$

$$= \frac{\alpha_n}{(z-z_0)^n} + \frac{\alpha_{n-1}}{(z-z_0)^{n-1}} + \cdots$$

$$+ \left\{ \frac{\beta_n}{(z-z_0)^n} + \frac{\beta_{n-1}}{(z-z_0)^{n-1}} + \cdots \right\} \left\{ A_0 + A_1 (z-z_0)^{1/3} + A_3 (z-z_0) + \cdots \right\}$$

$$+ \left\{ \frac{\gamma_n}{(z-z_0)^n} + \frac{\gamma_{n-1}}{(z-z_0)^{n-1}} + \cdots \right\} \left\{ A_0^2 + 2A_0 A_1 (z-z_0)^{1/3} + A_1^2 (z-z_0)^{2/3} + \cdots \right\}.$$

Since F is pole-free at z_0 ,

$$\alpha_n + \beta_n A_0 + \gamma_n A_0^2 = 0,$$

$$\beta_n A_1 + 2\gamma_n A_0 A_1 = 0.$$

$$\gamma_n A_1^2 = 0.$$

and

Then $\gamma_n=0$ implies $\beta_n=0$ and $\alpha_n=0$. This holds for all $n \ge 1$. Hence we arrive at a contradiction.

Suppose that p=1 and further that $y=A_0+A_1(z-z_0)^{1/3}+A_2(z-z_0)^{2/3}+A_3(z-z_0)+\cdots$ with $A_1A_2\neq 0$. Similarly we have

$$\alpha_n + \beta_n A_0 + \gamma_n A_0^2 = 0,$$

$$(\beta_n + 2\gamma_n A_0)A_1 = 0$$

$$\beta_n A_2 + \gamma_n (2A_0 A_2 + A_1^2) = 0$$

and

These relations contain a contradiction similarly.

Suppose that p=2. Then $y=A_0+A_2(z-z_0)^{2/3}+A_3(z-z_0)+\cdots$, $A_0A_2\neq 0$. In this case

$$\begin{split} 0 &= y^{3} - x_{1}y^{2} + (x_{0}e^{H(z)} + x_{2})y - x_{3} \\ &= A_{0}^{3} + 3A_{0}^{2}A_{2}(z - z_{0})^{2/3} + 3A_{0}^{2}A_{3}(z - z_{0}) + \cdots \\ &- x_{1}(A_{0}^{2} + 2A_{0}A_{2}(z - z_{0})^{2/3} + 2A_{0}A_{3}(z - z_{0}) + \cdots) \\ &+ \{x_{0}e^{H(z_{0})}(1 + \varepsilon_{1}(z - z_{0}) + \cdots) + x_{2}\}(A_{0} + A_{2}(z - z_{0})^{2/3} + A_{3}(z - z_{0}) + \cdots) - x_{3}. \end{split}$$

Hence we have

$$(3A_0^2 - 2x_1A_0 + x_0e^{H(z_0)} + x_2)A_2 = 0$$

$$(3A_0^2 - 2x_1A_0 + x_0e^{H(z_0)} + x_2)A_3 + x_0e^{H(z_0)}\varepsilon_1A_0 = 0.$$

Therefore we have a contradiction.

Case 3). There are three ordinary points of R_A over z_0 . Then there are three different branches of y around these points. Suppose that

 $y_1 = A_0 + A_1(z - z_0)^p + \cdots$

with $p \ge 2$, $A_0A_1 \ne 0$. Then by $y_1^3 - x_1y_1^2 + (x_0e^{H(z)} + x_2)y_1 - x_3 = 0$ we have $x_0e^{H(z_0)}\varepsilon_1A_0 = 0$, which is absurd. Hence $y_1 = A_0 + A_1(z-z_0) + A_2(z-z_0)^2 + \cdots$. Similarly

$$y_2 = B_0 + B_2(z - z_0) + B_2(z - z_0)^2 + \cdots, \qquad B_0 B_1 \neq 0$$

and

and

$$y_3 = C_0 + C_1(z - z_0) + C_2(z - z_0)^2 + \cdots, \quad C_0 C_1 \neq 0.$$

Let us put

$$f_{1} = \frac{\alpha_{n}}{(z - z_{0})^{n}} + \frac{\alpha_{n-1}}{(z - z_{0})^{n-1}} + \cdots,$$

$$f_{2} = \frac{\beta_{n}}{(z - z_{0})^{n}} + \frac{\beta_{n-1}}{(z - z_{0})^{n-1}} + \cdots,$$

$$f_{3} = \frac{\gamma_{n}}{(z-z_{0})^{n}} + \frac{\gamma_{n-1}}{(z-z_{0})^{n-1}} + \cdots.$$

Then $F=f_1+f_2y+f_3y^2$ should be pole-free at z_0 for any branch of y. Hence

$$\alpha_n + \beta_n A_0 + \gamma_n A_0^2 = 0,$$

$$\alpha_n + \beta_n B_0 + \gamma_n B_0^2 = 0,$$

$$\alpha_n + \beta_n C_0 + \gamma_n C_0^2 = 0.$$

Then

and

$$(\beta_n + \gamma_n (A_0 + B_0))(A_0 - B_0) = 0$$

$$(\beta_n + \gamma_n (A_0 + C_0))(A_0 - C_0) = 0.$$

If $A_0 \neq B_0$ and $A_0 \neq C_0$, then $\beta_n + \gamma_n (A_0 + B_0) = \beta_n + \gamma_n (A_0 + C_0) = 0$. Hence $\gamma_n (B_0 - C_0) = 0$. If $B_0 \neq C_0$, then $\gamma_n = 0$ and $\beta_n = 0$, $\alpha_n = 0$. This gives a contradiction. Hence $B_0 = C_0$. Therefore we have either $A_0 = B_0$ or $A_0 = C_0$ or $B_0 = C_0$. Suppose now $A_0 = B_0$.

Then by $y_1^3 - x_1 y_1^2 + (x_0 e^{H(z)} + x_2) y_1 - x_3 = 0$ we have

$$A_0^3 - x_1 A_0^2 + (x_0 e^{H(z_0)} + x_2) A_0 - x_3 = 0,$$

$$(3A_0^2 - 2x_1 A_0 + x_0 e^{H(z_0)} + x_2) A_1 + x_0 e^{H(z_0)} \varepsilon_1 A_0 = 0$$

Similarly for y_2 we have

$$(3B_0^2 - 2x_1B_0 + x_0e^{H(z_0)} + x_2)B_1 + x_0e^{H(z_0)}\varepsilon_1B_0 = 0.$$

By $A_0 = B_0$ we have

$$(3A_0^2 - 2x_1A_0 + x_0e^{H(z_0)} + x_2)(A_1 - B_1) = 0.$$

Suppose that $A_1 \neq B_1$. Then $3A_0^2 - 2x_1A_0 + x_0e^{H(z_0)} + x_2 = 0$, whence follows $x_0e^{H(z_0)}\varepsilon_1A_0=0$, which is impossible. Hence $A_1=B_1$. In general

$$\{3A_0^2 - 2x_1A_0 + x_0e^{H(\varepsilon_0)} + x_2\}A_m + P_m(A_0, A_1, \cdots, A_{m-1}, \varepsilon_1, \varepsilon_2, \cdots, \varepsilon_m) = 0$$

and

$$\{3A_0^2 - 2x_1A_0 + x_0e^{H(z_0)} + x_2\}B_m + P_m(A_0, A_1, \cdots, A_{m-1}, \varepsilon_1, \varepsilon_2, \cdots, \varepsilon_m) = 0,$$

if $A_0 = B_0$, $A_1 = B_1$, \cdots , $A_{m-1} = B_{m-1}$, where ε_j , $j = 1, \cdots, m$ are defined by

$$x_0 e^{H(z_0)} + x_2 = x_0 e^{H(z_0)} + x_2 + x_0 e^{H(z_0)} \sum_{j=1}^{\infty} \varepsilon_j (z - z_0)^j$$

Since $3A_0^2 - 2x_1A_0 + x_0e^{H(z_0)} + x_2 \neq 0$, we have $A_m = B_m$. Thus we have $y_1 \equiv y_2$, which is absurd.

Similar lemma hold for the surfaces X_1 , R_B and R_E . Proofs are quite similar. Further it is sufficient to prove Lemma for the surfaces R_A , R_B and

 R_E . In §7 we show that, when e^H is commonly appeared, $R_D \sim R_A$, $R_C \sim R_B$ and $R_F \sim R_G \sim R_H \sim R_E$, where \sim means the conformal equivalence by a suitable linear transformation $Y = \alpha y + \beta$. Evidently $X_1 \sim X_2$ too, if e^L is common.

§5. Transformation formula of discriminants

Let R be the surface R_A : $y^3 - S_1y^2 + S_2y - S_3 = 0$ with $S_1 = y_1$, $S_2 = y_0e^H + y_2$, $S_3 = y_3$, where y_0 is a non-zero constant and $y_1 = a_2 + a_3 + a_4$, $y_2 = a_2a_3 + a_3a_4 + a_2a_4$, $y_3 = a_2a_3a_4$ and H is an entire function.

From now on we shall assume that the surface is of finite order, that is,

H is a polynomial.

The same assumption holds in §6 too.

Now suppose that P(R)=6. Then there exists an entire function f on R with P(f)=6. We can make use of Lemma in §4. Then f is representable as

$$f = f_1 + f_2 y + f_3 y^2$$

as in Lemma.

For simplicity's sake we put $F=f_1-f$. Then

$$\begin{split} F+f_2y+f_3y^2=&0\,,\\ f_3S_3+(F-f_3S_2)y+(f_2+f_3S_1)y^2=&0\,,\\ (f_2+f_3S_1)S_3+(f_3S_3-f_3S_1S_2-f_2S_2)y+(F+f_2S_1+f_3(S_1^2-S_2))y^2=&0\,. \end{split}$$

By eliminating y and y^2 we have

$$F^{3}+Y_{0}F^{2}+Y_{1}F+Y_{2}=0$$
,

where

$$\begin{cases} Y_0 = f_2 S_1 + f_3 (S_1^2 - 2S_2), \\ Y_1 = f_2^2 S_2 + f_2 f_3 (S_1 S_2 - 3S_3) + f_3^2 (S_2^2 - 2S_1 S_3), \\ Y_2 = f_2^3 S_3 + f_2^2 f_3 S_1 S_3 + f_2 f_3^2 S_2 S_3 + f_3^3 S_3^2. \end{cases}$$

This gives

$$f^{3}-f^{2}U_{1}+fU_{2}-U_{3}=0$$

with

$$\begin{cases} U_1 = 3f_1 + Y_0, \\ U_2 = 3f_1^2 + 2f_1Y_0 + Y_1, \\ U_3 = f_1^3 + f_1^2Y_0 + f_1Y_1 + Y_2, \end{cases}$$

 U_1 , U_2 and U_2 are all entire, since f is a three-valued entire algebroid function. Let g be $f-U_1/3$. Then $g^3+Ag+B=0$ with THREE-SHEETED ALGEBROID SURFACES

$$A = \frac{1}{3} (-U_1^2 + 3U_2),$$

$$B = \frac{1}{27} (-2U_1^3 + 9U_1U_2 - 27U_3).$$

Then the discriminant D is equal to $4A^3+27B^2$. Hence

$$D = 4U_1^{3}U_3 - U_1^{2}U_2^{2} - 18U_1U_2U_3 + 4U_2^{3} + 27U_3^{2}.$$

For simplicity's sake we put

$$A = \frac{1}{3} (\alpha_1 f_2^2 + \alpha_2 f_2 f_3 + \alpha_3 f_3^2),$$

$$(\alpha_1 = 3S_2 - S_1^2,$$

$$\alpha_2 = -2S_1^3 + 7S_1S_2 - 9S_3,$$

$$(\alpha_3 = -S_1^4 + 4S_1^2S_2 - 6S_1S_3 - S_2^2)$$

and

$$B = \frac{1}{27} (\beta_1 f_2^3 + \beta_2 f_2^2 f_3 + \beta_3 f_2 f_3^2 + \beta_4 f_3^3),$$

$$\begin{split} \beta_{1} &= -2S_{1}^{3} + 9S_{1}S_{2} - 27S_{3}, \\ \beta_{2} &= -6S_{1}^{4} + 30S_{1}^{2}S_{2} - 54S_{1}S_{3} - 18S_{2}^{2}, \\ \beta_{3} &= -6S_{1}^{5} + 33S_{1}^{3}S_{2} - 45S_{1}^{2}S_{3} - 33S_{1}S_{2}^{2} + 27S_{2}S_{3}, \\ \beta_{4} &= -2S_{1}^{6} + 12S_{1}^{4}S_{2} - 18S_{1}^{3}S_{3} - 15S_{1}^{2}S_{2}^{2} + 36S_{1}S_{2}S_{3} - 2S_{2}^{3} - 27S_{3}^{2} \end{split}$$

Then

$$\begin{split} D = & 4A^3 + 27B^2 = \frac{1}{27} \left\{ f_2^{\ 6} (4\alpha_1^{\ 3} + \beta_1^{\ 2}) + f_2^{\ 5} f_3 (12\alpha_1^{\ 2}\alpha_2 + 2\beta_1\beta_2) \right. \\ & + f_2^{\ 4} f_3^{\ 2} (12\alpha_1^{\ 2}\alpha_3 + 12\alpha_1\alpha_2^{\ 2} + 2\beta_1\beta_3 + \beta_2^{\ 2}) \\ & + f_2^{\ 3} f_3^{\ 3} (24\alpha_1\alpha_2\alpha_3 + 4\alpha_2^{\ 3} + 2\beta_1\beta_4 + 2\beta_2\beta_3) \\ & + f_2^{\ 2} f_3^{\ 4} (12\alpha_1\alpha_3^{\ 2} + 12\alpha_2^{\ 2}\alpha_3 + 2\beta_2\beta_4 + \beta_3^{\ 2}) \\ & + f_2^{\ 5} f_3^{\ 5} (12\alpha_2\alpha_3^{\ 2} + 2\beta_3\beta_4) + f_3^{\ 6} (4\alpha_3^{\ 3} + \beta_4^{\ 2}) \right\} \\ = & \Delta \{ f_2^{\ 6} + 4S_1 f_2^{\ 5} f_3 + 2(3S_1^{\ 2} + S_2) f_2^{\ 4} f_3^{\ 2} + (4S_1^{\ 3} + 6S_1S_2 - 2S_3) f_2^{\ 3} f_3^{\ 3} \\ & + (S_1^{\ 4} + 6S_1^{\ 2}S_2 - 4S_1S_3 + S_2^{\ 2}) f_2^{\ 2} f_3^{\ 4} + 2(S_1^{\ 3}S_2 - S_1^{\ 2}S_3 + S_1S_2^{\ 2} - S_2S_3) f_2 f_3^{\ 5} \\ & + (S_1^{\ 2}S_2^{\ 2} - 2S_1S_2S_3 + S_3^{\ 2}) f_3^{\ 6} \} \\ = & \Delta \{ f_2^{\ 3} + 2S_1 f_2^{\ 2} f_3 + (S_1^{\ 2} + S_2) f_2 f_3^{\ 2} + (S_1S_2 - S_3) f_3^{\ 3} \}^{\ 2}, \end{split}$$

where Δ is the discriminant of $y^3 - S_1 y^2 + S_2 y - S_3 = 0$, that is,

$$\Delta = \frac{4}{27} \alpha_1^3 + \frac{1}{27} \beta_1^2$$

=4S₁³S₃-S₁²S₂²-18S₁S₂S₃+4S₂³+27S₃².

Let us put the above formula as

$$(3) D=\Delta \cdot G^2.$$

G may have poles at most at zeros of H'.

We need more precise result on $D=\Delta \cdot G^2$. Evidently the poles of G are finite in number. Let us put

$$D = -b_1^2(x_0e^L - \gamma_1)(x_0e^L - \gamma_2)(x_0e^L - \gamma_3)(x_0e^L - \gamma_4)$$

and

$$\Delta = 4(y_0 e^H - \delta_1)(y_0 e^H - \delta_2)(y_0 e^H - \delta_3).$$

Case 1). The counting function of simple zeros of Δ satisfies

 $N_2(r, 0, \Delta) \sim 3T(r, e^H)$,

that is, $\delta_i \neq \delta_l$ for $i \neq l$. Then

$$N_2(r, 0, \Delta) = N_2(r, 0, D) \sim mT(r, e^L)$$

with m=1, 2, 4. Then L should be a polynomial, whose degree coincides with the one of H. In this case we can return back y from f. Then we have

$$\Delta = D \cdot K^2$$

The number of poles of K is finite again. This gives that the zeros of G is finite in number. Hence

$$(4) D = \Delta \cdot \beta^2 \cdot e^{2M}$$

with a rational function β . In this case we have $\gamma_j \neq \gamma_k$ for $j \neq k$. Case 2). $N_2(r, 0, \Delta) \sim T(r, e^H)$, that is, $\delta_1 \neq \delta_2 = \delta_3$. Then

$$N_2(r, 0, \Delta) = N_2(r, 0, D) \sim mT(r, e^L)$$

with m=1, 2, 4. Then L should be a polynomial. Again we can return back y from f. Then $\Delta = D \cdot K^2$. Similarly we have a finite number of zeros of G. Hence

$$D = \Delta \beta^2 e^{2M}$$

Then the counting function of double zeros of Δ satisfies $N_1(r, 0, \Delta) \sim 2T(r, e^H)$ and $N_1(r, 0, D) \sim 2T(r, e^L)$. Hence $T(r, e^H) \sim T(r, e^L)$. On the other hand $T(r, e^H) \sim 2T(r, e^L)$, because that $N_2(r, 0, \Delta) = N_2(r, 0, D)$ and $N_1(r, 0, D) \sim$ $2T(r, e^L)$. This is a contradiction.

Case 3). Δ has no simple zero. Then

$$\begin{aligned} &-b_1^2(x_0e^L-\gamma_1)(x_0e^L-\gamma_2)(x_0e^L-\gamma_3)(x_0e^L-\gamma_4)\\ &=&4(y_0e^H-\gamma_1)^3\cdot G^2\,. \end{aligned}$$

This is a contradiction.

§6. Theorems

We shall prove the following

THEOREM 1. Let R_A be the Riemann surface defined in §2. Assume that its discriminant Δ_{R_A} satisfies

$$\Delta_{R_{A}} = 4y_{0}^{3}e^{3H} + \zeta_{2}y_{0}^{2}e^{2H} + \zeta_{1}y_{0}e^{H} + \zeta_{0}$$

with either $\zeta_2 \neq 0$ or $\zeta_1 \neq 0$, where $\zeta_2 = 12y_2 - y_1^2$, $\zeta_1 = 12y_2^2 - 18y_1y_3 - 2y_1^2y_2$. Then $P(R_4) = 5$.

THEOREM 2. Let R_B be the Riemann surface defined in § 2. Assume that its discriminant Δ_{R_B} has the form

$$\Delta_{R_B} = 4 y_3 y_0^3 e^{3H} + \zeta_2 y_0^2 e^{2H} + \zeta_1 y_0 e^H + \zeta_0$$

with either $\zeta_2 = 12 y_1 y_3 - y_2^2 \neq 0$ or $\zeta_1 = 12 y_1^2 y_3 - 2 y_1 y_2^2 - 18 y_2 y_3 \neq 0$. Then $P(R_B) = 5$.

THEOREM 3. Let R_c be the Riemann surface defined in §2. Assume that its discriminant Δ_{R_c} has the form

$$\Delta_{R_{C}} = \xi_{3} y_{0}^{3} e^{3H} + \xi_{2} y_{0}^{2} e^{2H} + \xi_{1} y_{0} e^{H} + \xi_{0}$$

with either $\xi_2 = 8a_2^2 y_1^2 - 36a_2^3 y_1 + 27a_2^4 - 8a_2 y_1 y_2 + 30a_2^2 y_2 - y_2^2 \neq 0$ or $\xi_1 = 4a_2^2 y_1^3 - 4a_2 y_1^2 y_2 - 18a_2^2 y_1 y_2 - 2y_1 y_2^2 + 24a_2 y_2^2 \neq 0$. Then $P(R_c) = 5$.

THEOREM 4. Let R_D be the Riemann surface defined in §2. Assume that its discriminant Δ_{R_D} has the form

$$\Delta_{R_D} = 4y_0^3 e^{3H} + \xi_2 y_0^2 e^{2H} + \xi_1 y_0 e^H + \xi_0$$

with either $\xi_2 = 12y_2 + 27a_2^2 - 18a_2y_1 - y_1^2 \pm 0$ or $\xi_1 = 12y_2^2 - 6y_1^2y_2 - 18a_2y_1y_2 + 4a_2y_1^3 \pm 0$. Then $P(R_D) = 5$.

Proof of Theorem 1. Suppose that $P(R_A)=6$. Then on R_A there is an entire algebroid function f for which P(f)=6. Suppose that f defines the surface X_1 . Then by (4)

$$D = \Delta_{R_A} \cdot \beta^2 e^{2M}$$

which is just the following identity:

$$\begin{aligned} &-b_1{}^2x_0{}^4e^{4L} + \eta_3x_0{}^3e^{3L} + \eta_2x_0{}^2e^{2L} + \eta_1x_0e^L + \eta_0 \\ = &(4y_0{}^3e^{3H} + \zeta_2y_0{}^2e^{2H} + \zeta_1y_0e^H + \zeta_0)\beta^2e^{2H} \,. \end{aligned}$$

Now we shall make use of the unicity theorem of Borel, which plays the decisive role in our proof. Evidently we have

$$4T(r, e^L) \sim N_2(r, 0, D) = N_2(r, 0, \Delta_{R_A}) \sim 3T(r, e^H).$$

We already proved that it is enough to consider this case. Hence

$$T(r, e^H) \sim \frac{4}{3} T(r, e^L).$$

This relation makes our discussion simpler. Firstly assume that $M \equiv 0$. Then

$$\begin{aligned} &-b_1{}^2x_0{}^4e^{4L} + \eta_3x_0{}^3e^{3L} + \eta_2x_0{}^2e^{2L} + \eta_1x_0e^L + \eta_0 \\ &= 4\beta^2y_0{}^3e^{3H} + \beta^2\zeta_2y_0{}^2e^{2H} + \beta^2\zeta_1y_0e^H + \beta^2\zeta_0 \,. \end{aligned}$$

There remains only one possibility: $\eta_0 = \beta^2 \zeta_0$, $-b_1^2 x_0^4 = 4\beta^2 y_0^3$, $4L \equiv 3H$ and $\eta_3 = \eta_2 = \eta_1 = \zeta_2 = \zeta_1 = 0$. However at least one of ζ_1 , ζ_2 does not vanish by our assumption. Thus we arrive at a contradiction.

Next assume that $M \not\equiv 0$. Then

$$\begin{aligned} &-b_1{}^2 x_0{}^4 e^{4L} + \eta_3 x_0{}^3 e^{3L} + \eta_2 x_0{}^2 e^{2L} + \eta_1 x_0 e^L + \eta_0 \\ &= 4\beta^2 y_0{}^3 e^{3H+2M} + \beta^2 \zeta_2 y_0{}^2 e^{2H+2M} + \beta^2 \zeta_1 y_0 e^{H+2M} + \beta^2 \zeta_0 e^{2M} \,. \end{aligned}$$

Now suppose that 3H+2M=0. Then

$$\begin{aligned} &-b_1{}^2x_0{}^4e^{4L} + \eta_3x_0{}^3e^{3L} + \eta_2x_0{}^2e^{2L} + \eta_1x_0e^L + \eta_0 \\ &= 4\beta^2y_0{}^3 + \beta^2\zeta_2y_0{}^2e^{-H} + \beta^2\zeta_1y_0e^{-2H} + \beta^2\zeta_0e^{-3H} \,. \end{aligned}$$

There remains only one possible case:

$$\eta_0 = 4\beta^2 y_0^3, \quad -b_1^2 x_0^4 = \beta^2 \zeta_0, \quad 4L = -3H, \quad \eta_3 = \eta_2 = \eta_1 = \zeta_2 = \zeta_1 = 0$$

This is again a contradiction. Still there are several subcases to be discussed. However all of them lead to contradictions easily.

Suppose that f defines the surface X_2 . Then we have

$$D = \Delta_{R_A} \cdot \beta^2 e^{2M}$$

by (4), which is just the following identity:

$$\begin{aligned} &-(b_1-b_2)^2 x_0^4 e^{4L} + \eta_3 x_0^3 e^{3L} + \eta_2 x_0^2 e^{2L} + \eta_1 x_0 e^L + \eta_0 \\ &= (4y_0^3 e^{3H} + \zeta_2 y_0^2 e^{2H} + \zeta_1 y_0 e^H + \zeta_0) \beta^2 e^{2M} \,. \end{aligned}$$

120

There appear only two possible cases: Either $\eta_0 = \beta^2 \zeta_0$, $-(b_1 - b_2)^2 x_0^4 = 4\beta^2 y_0^3$, $M \equiv 0$, $4L \equiv 3H$ and $\eta_3 = \eta_2 = \eta_1 = \zeta_2 = \zeta_1 = 0$ or $\eta_0 = 4\beta^2 y_0^3 - (b_1 - b_2)^2 x_0^4 = \beta^2 \zeta_0$, $2M \equiv -3H$, $4L \equiv -3H$ and $\eta_3 = \eta_2 = \eta_1 = \zeta_2 = \zeta_1 = 0$. These two cases give the same contradiction $\zeta_2 = \zeta_1 = 0$. Therefore $P(R_A) = 5$.

Proofs of Theorems 2, 3 and 4 are quite similar as in the one of Theorem 1. So we shall omit their proofs.

THEOREM 5. Let R_E be the Riemann surface defined in §2. Assume that its discriminant Δ_{R_E} has the form

$$\Delta_{R_E} = y_0 e^H (-a_1^2 y_0^3 e^{3H} + A_2 y_0^2 e^{2H} + A_1 y_0 e^H + A_0),$$

where either $A_2 = 4a_1^3 - 2(2a_2 + a_3)a_1^2 - 2(a_2 + 2a_3)a_2a_1 + 4a_2^2a_3 \neq 0$ or $A_1 = (8a_2^2 + 20a_2a_3 - a_3^2)a_1^2 - (8a_2^3 + 38a_2^2a_3 + 8a_2a_3^2)a_1 - a_2^4 + 20a_2^3a_3 + 8a_2^2a_3 \neq 0$. Then $P(R_E) = 5$.

THEOREM 6. Let R_F be the Riemann surface defined in §2. Assume that its discriminant Δ_{R_F} has the form

$$\Delta_{R_F} = y_0 e^H (-a_1^2 y_0^3 e^{3H} + A_2 y_0^2 e^{2H} + A_1 y_0 e^H + A_0)$$

with either $A_2 = 4a_1^3 - 2(a_2 + 2a_3)a_1^2 - 2(2a_2 + a_3)a_3a_1 + 4a_2a_3^2 \neq 0$ or $A_1 = (8a_3^2 + 20a_2a_3 - a_2^2)a_1^2 - (8a_3^3 + 38a_3^2a_2 + 8a_3a_2^2)a_1 - a_3^4 + 20a_3^3a_2 + 8a_2^2a_3^2 \neq 0$. Then $P(R_F) = 5$.

THEOREM 7. Let R_G be the Riemann surface defined in §2. Assume that its discriminant Δ_{R_G} has the form

$$\Delta_{R_G} = y_0 e^H (-(a_1 - a_2)^2 y_0^3 e^{3H} + A_2 y_0^2 e^{2H} + A_1 y_0 e^H + A_0)$$

with either

or

$$A_2 = -2(a_1^2 - 4a_1a_2 + a_2^2)a_3 - 2(a_1 + a_2)(2a_1^2 - 5a_1a_2 + 2a_2^2) \neq 0$$

$$A_1 = -(a_1^2 - 10a_1a_2 + a_2^2)a_3^2 - 18a_1a_2(a_1 + a_2)a_3 + 27a_1^2a_2^2 \neq 0$$

Then $P(R_G)=5$.

THEOREM 8. Let R_H be the Riemann surface defined in §2. Assume that its discriminant Δ_{R_H} has the form

$$\Delta_{R_H} = y_0 e^H (-(a_1 - a_2)^2 y_0^3 e^{3H} + A_2 y_0^2 e^{2H} + A_1 y_0 e^H + A_0)$$

with either

$$A_{2} = -2a_{3}^{2}(a_{1}+a_{2}) - 4a_{3}(a_{1}^{2}+4a_{1}a_{2}+a_{2}^{2})$$
$$+2(a_{1}+a_{2})(2a_{1}^{2}-5a_{1}a_{2}+2a_{2}^{2})$$
$$\neq 0$$

or

$$A_{1} = -a_{3}^{4} - 8a_{3}^{3}(a_{1} + a_{2}) + a_{3}^{2}(8a_{1}^{2} + 46a_{1}a_{2} + 8a_{2}^{2})$$
$$-36a_{1}a_{2}(a_{1} + a_{2})a_{3} + 27a_{1}^{2}a_{2}^{2}$$
$$\neq 0.$$

Then $P(R_H)=5$.

Proof of Theorem 5. Suppose that $P(R_E)=6$. Then on R_E there is an entire algebroid function f for which P(f)=6. Suppose that f defines the surface X_1 . Then we have

$$D = \Delta_{R_F} \cdot \beta^2 e^{2M}$$

by (4). This is just the following identity:

$$-b_{1}^{2}x_{0}^{4}e^{4L} + \eta_{3}x_{0}^{3}e^{3L} + \eta_{2}x_{0}^{2}e^{2L} + \eta_{1}x_{0}e^{L} + \eta_{0}$$

= $y_{0}e^{H}(-a_{1}^{2}y_{0}^{3}e^{3H} + A_{2}y_{0}^{2}e^{2H} + A_{1}y_{0}e^{H} + A_{0})\beta^{2}e^{2M}$

There remain only two possible cases: Either $2M \equiv -H$, $3H \equiv 4L$, $\eta_3 = \eta_2 = \eta_1 = A_2 = A_1 = 0$ or $2M \equiv -4H$, $4L \equiv -3H$, $\eta_3 = \eta_2 = \eta_1 = A_2 = A_1 = 0$. These contradict our assuption: Either $A_2 \neq 0$ or $A_1 \neq 0$.

Similarly we have a contradiction, when f defines the surface X_2 .

Proofs of Theorems 6, 7 and 8 are quite similar as in the one of Theorem 5.

§7. Unsolved problems and Remarks

i) Let R_A be the Riemann surface defined in §2. Assume that its discriminant Δ_{R_A} has the following form:

$$\Delta_{R_A} = 4 y_0^3 e^{3H} + \zeta_0.$$

Is $P(R_A)$ still five?

Of course there are corresponding unsolved problems for R_x (x=B, C, D, E, F, G, H).

ii) Let R_x and R_y be the surfaces $P(R_x)=5$ and $P(R_y)=5$. Can we list up all the analytic mappings of R_x into R_y ?

iii) Let R and S be the surfaces of P(R)=6 and P(S)=5. Is there any analytic mapping of R into S?

We shall now give some remarks. Let

$$F(z, y) \equiv y^3 - S_1 y^2 + S_2 y - S_3 = 0$$

and

$$\alpha^{3}G(z, Y) \equiv F(z, \alpha Y + \beta)$$

$$=\alpha^{3}[Y^{3}-T_{1}Y^{2}+T_{2}Y-T_{3}]=0$$

with $A_2\alpha = -a_4$, $A_3\alpha = a_2 - a_4$, $A_4\alpha = a_3 - a_4$ and $\beta = a_4$. R_A is defined by F(z, y) = 0 with

$$S_{1} = a_{2} + a_{3} + a_{4},$$

$$S_{2} = y_{0}e^{H} + a_{2}a_{3} + a_{3}a_{4} + a_{2}a_{4},$$

$$S_{3} = a_{2}a_{3}a_{4}.$$

Then

$$T_1 = A_3 + A_4,$$

 $T_2 = Y_0 e^H + A_3 A_4,$
 $T_3 = A_2 Y_0 e^H$

with $Y_0 = y_0/\alpha^2$. Then G(z, Y) = 0 defines the surface R_D . Evidently inverse process is possible. Hence R_A coincides with R_D .

Similarly we can show that R_B coincides with R_C . Next we put

$$A_1 \alpha = -a_3, \quad A_2 \alpha = a_1 - a_3, \quad A_3 \alpha = a_2 - a_3, \quad \beta = a_3$$

 R_E is defined by F(z, y)=0 with

$$\begin{cases} S_1 = 2a_2 + a_3 + y_0 e^H, \\ S_2 = a_2^2 + 2a_2a_3 + a_1y_0 e^H, \\ S_3 = a_2^2a_3. \end{cases}$$

Then

$$T_{1} = Y_{0}e^{H} + 2A_{3},$$

$$T_{2} = (A_{1} + A_{2})Y_{0}e^{H} + A_{3}^{2},$$

$$T_{3} = A_{1}A_{2}Y_{0}e^{H}$$

with $Y_0 = y_0/\alpha$. G(z, Y) = 0 defines the surface R_H . Hence R_E and R_H are coincident with each other.

Similarly we can show that R_F and R_G are coincident with each other. Next we put $A_1\alpha = -a_1$, $A_2\alpha = a_3 - a_1$, $A_3\alpha = a_2 - \alpha_1$ and $\beta = a_1$. R_E is defined by F(z, y)=0 with

$$S_{1} = 2a_{2} + a_{3} + y_{0}e^{H},$$

$$S_{2} = a_{2}^{2} + 2a_{2}a_{3} + a_{1}y_{0}e^{H},$$

$$S_{3} = a_{2}^{2}a_{3}.$$

Then

$$\begin{cases} T_1 = Y_0 e^H + A_2 + 2A_3, \\ T_2 = A_1 Y_0 e^H + 2A_2 A_3 + A_3^2, \\ T_3 = A_2 A_3^2 \end{cases}$$

with $Y_0 = y_0/\alpha$. Hence G(z, Y) = 0 defines the surface R_F . This shows that R_E coincides with R_F .

Therefore there are three types of Riemann surfaces of five Picard constant.

Acknowledgement. The authors wish to thank the referee for many valuable comments and suggestions.

References

- [1] G. HIROMI AND K. NIINO, On a characterization of regularly branched threesheeted covering Riemann surfaces, Ködai Math. Sem. Rep., 17 (1965), 250-260.
- [2] K. NIINO AND M. OZAWA, Deficiencies of an entire algebroid function, Ködai Math. Sem. Rep., 22 (1970), 98-113.
- [3] M. Ozawa, On complex analytic mappings, Ködai Math. Sem. Rep., 17 (1965), 93-102.
- [4] M. Ozawa, On ultrahyperelliptic surfaces, Kōdai Math. Sem. Rep., 17 (1965), 103-108.
- [5] M. Ozawa, Analytic mappings between three-sheeted algebroid surfaces of maximal Picard constant, in preparation.
- [6] G. RÉMOUNDOS, Extension aux fonctions algébroides multiformes du théorème de M. Picard et de ses généralisations, Mém. Sci. Math. Paris 1927.
- [7] H.L. SELBERG, Algebroide Funktionen und Umkehrfunktionen Abelscher Integrale, Avh. Norske Vid. Akad. Oslo, 8 (1934), 1-72.

Department of Mathematics Science University of Tokyo Noda, Chiba, Japan