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BY HIROKI MANABE

Introduction

Harmonic Gauss sections are critical points of the vertical energy through
arbitrary vertical variations with respect to some fixed tangential splitting of
a target Grassmann manifold bundle (definition in [11], [12]). On the other
hand, Yang-Mills connections are critical points of the square norm of curvature
form through arbitrary variations in the connection forms. There is a rela-
tionship between these variational solutions which is previously observed by
C. M. Wood in [1],

Let G be a Lie group which admits a bi-invariant Riemannian metric and
P be a right principal G-bundle over a Riemannian manifold M. The hori-
zontally lifted metric on P by a right connection form ω makes the fibration
πP: P-^M into a Riemannian submersion with totally geodesic fibers [10]. The
Yang-Mills equation for a single connection form ω is translated into the har-
monic section equation for the Gauss section τ>=[.P3M>->Ker (dπP)uc.TuP~] on
P with the ω-horizontally lifted metric [12]. In fact, C. M. Wood obtained:

THEOREM. Let ω be a right connection form on P. Then
( i ) ω is flat (resp. Yang-Mills) if and only if

γp is a horizontal (resp. harmonic) section with respect to PV,
(ii) ω is parallel if γP is a covariantly horizontal section with respect to PV,

where PV is the Riemannian connection of P.

In this paper we study several characterizations of Yang-Mills connections
in terms of harmonic Gauss sections, each of which is a generalization of the
theorem of C. M. Wood. Our results extend the lists of similarities between
theories of harmonic maps and Yang-Mills connections by J. P. Bourguignon [1].

Let Q be a left principal G-bundle over a Riemannian manifold N and η
be a left connection form on Q, where the left G-action in the definition of
left--- is the reciprocal of the right G-action in that of right-". The joint
space P-Q (definition in §1) also has the horizontally lifted metric by the joint
form ωOη (definition in §1) which makes the fibration πP.Q: P-Q-^MxN into
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a Riemannian submersion with totally geodesic fibers.
A pair of the Yang-Mills equations for ω and η is translated into the har-

monic section equation for the Gauss section γP.Q=[P Q^u v*-*K.Qr (dπP.Q)u.vd
TWP C?)] on P Q with the ωO^-horizontally lifted metric:

THEOREM A. Let ω, η be a right connection form on P and a left connection
form on Q, respectively. Then

( i ) ω and η are both flat (resp. Yang-Mills) if and only if
γP.Q is a horizontal (resp. harmonic) section with respect to P'QV,

(ii) ω and η are both parallel if
γP.Q is a covariantly horizontal section with respect to P'QV,
where P'QV is the Riemannian connection of P-Q.

In the case of N—M, Q — P~l and Ί]—ω~l, where P~l (resp. ω"1) is the
inverse of P (resp. ω) [5], we have immediately the following:

COROLLARY B. Let ω be a right connection form on P. Then
( i ) ω is flat (resp. Yang-Mills) if and only if

Tfp.p-i is a horizontal (resp. harmonic) section with respect to PΦF"1V.
(ii) ω is parallel if

f p . p - ι is a covariantly horizontal section with respect to P'P~V.

By pulling-back fP.P-ι along the object inclusion map s(definition in §1), the
Gauss section εγP.P-ι=[M^>x>->Ker (dπP.P-ι)ε(x)dTε(x)(P P~'ί)~] is induced and
the above relation (ii) is improved (Theorems 4.7, 4.14, 4.16):

THEOREM C. Let ω be a right connection form on P. Then ω is flat, par-
allel or Yang-Mills if and only if
εϊp-p-ι is a horizontal, covariantly horizontal or harmonic section with respect to
£(P'P~1V), respectively,
where ε(p p~"V) is the induced connection from p p~ ]V via ε.

ε(M) is a totally geodesic submanifold of P P~l (Proposition 2.16) so that
*(P P~1Y) splits into the Riemannian connection MV of M and the normal con-
nection V (~ } with respect to ε. On the other hand, εγP.P-ι can be reduced to
εTp~p-ι—lM^x^KQτ(dπP.P-ι)ε(X)C:E(

ε^X)'], where E&) is the —1-eigenspace of
the differential of the inversion of P P~l, which is also the orthogonal comple-
ment of (dε)xTxM in TS(X}(P-P~l).

THEOREM D (Theorem 5.12). Let ω be a right connection form on P. Then
ω is flat, parallel or Yang-Mills if and only if
εfp7p-ι is a horizontal, covariantly horizontal or harmonic section
with respect to V(~\ respectively.
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§ 1. Joints of Principal Bundles and Connection Forms

TίP πQ
Let G be a Lie group and P^ M (resp. Q -» N) be a right (resp. left)

principal G-bundle over a C°°-manifold M (resp. N). G acts on PxQ as fol-
lows; PXQR: PxQxG-^ PχQ;((u, v\ g)^(ug, g~lv) (resp. pxQL:GxPxQ-^
PxQ] (g, (u, v))>->(ug~l, gυ\) We denote the quotient topological space of the
right (resp. left) G-space (PxQ,pxQR) (resp. (PxQ, FxρL)) by P-Q and the
quotient map by jP.Q: PxQ->P Q; (u, v)>->u v. The map πP.Q : P Q-*MχN;
u v^(πP(u), πQ(v)) is well-defined. By [3, Chapter 5, Section 2, Proposition 1],
P-Q is given a C°°-manifold structure (which is called the joint space of P
and Q).

(PχQ,pxQR)J-^> P>Q (resp. (PxQ, pxQL) ̂ i P Q) is a right (resp. left)

principal G-bundle. P-Q*-^->MxN is a C°°-fiber bundle. The canonical pro-
jection pP:(PxQ, PXQR)-^ P\(u,υ)^nL (resp. pQ : (PxQ, pxQL)-^ Q (u, υ)*-*v)
is a right (resp. left) principal G-bundle homomorphism. Throughout the follow-
ing sections, (PxQ, pxQR) will be simply abbreviated to PxQ. Let (G, AdG, g)
be the adjoint representation of G. Ker dπP (resp. Ker dπQ) is isomorphic to
the trivial vector bundle PXQ (resp. gχ£?). Similarly we observe the fol-
lowing :

PROPOSITION 1.1.

Kerdjp.Q — > P x ( ? X g ; A f U l V ) = ( A t , -Άi)^>((u, v\ A) and

Ker dπP.Q — > (PxQ)AdG 9 (djP.Q^u.^(Aίf A^ ̂  [(M, v\ A]

are both vector bundle isomorphisms,
where Ai = d/dt\t=*u(exvtA), A*v=d/dt\t=0(exptA)v CAe0) e.t.c..

Let ω (resp. η) be a right (resp. left) connection from on P (resp. Q).
Then from Proposition 1.1, ppω and — p%η are both right connection forms on
PxQ and therefore a tensorial form of type (G, AάG, g) (c. f . [6]).

PROPOSITION 1.2. Let
(i) (l-θ)ppω-θpQη is a right connection form on PxQ.
(ii) (l—θϊpfru+θpξi) is a tensorial l-form on PxQ of type (G, AdG, g) if

and only if 0 = 1/2.

We write shortly ω*)? instead of l/2(p$ω—p%η). On the other hand, from
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the above proposition, l/2(p%ω-{- p%ιη) can be reduced to a 1-form on P Q taking
values in (PxQ)XAdG 8, which is denoted by ωOη (which is called the joint form
of ω and η).

For any u<=P, vtΞQ, Ker(ω*^)(w,υ)=(Kerωw00υ)0{04*, ΛJ)|Λe=g}0(O t t0
Ker^i), where (KerωM00v)0(Ow0Ker τ?υ) is the ω* ^-horizontal l ift of
Ker (ωOη)u.v and {G4S, ^)|^4eg} is the α>*^-horizontal l i ft of Ker (dπP.Q)u.v.
On the other hand, KerωO?? is a horizontal distribution relative to πP.Q :

PROPOSITION 1.3. T(P Q)=Ker dπP.Q@KerωOη.

Proof. For each weP, ?;<ΞQ, the restriction of surjective linear map
(ωOη}u.v\ Tu.v(P Q)-*((PxQ)XAdGQ)u.v to Ker (dπp.Q)u.v coincides with the linear
isomorphism in Proposition 1.1.

The above proposition implies that ωOη plays the same role of a connec-
tion form. Let ωif1ίd (resp. ω**Z)) be the exterior covariant differentiation on
P Q (resp. PxQ) with respect to

PROPOSITION 1.4. For any u<=P, v<=Q, X, FeKer (ωOη}u.v,

^X9 7)=[(M, v),

where ωΩ (resp. iQ) is the curvature form of ω (resp. η} and ω*iH(

uy : Tu.υ(P Q)

( V ) is the ω+η -horizontal lifting.

Proof. By the structure equations for ω and η (c. f . [6]),

is a tensorial 2-form on PxQ so that ω

COROLLARY 1.5. ω and -η are both flat if and only if KerωOo? is an involu-
tive distribution on P Q.

In the case of N—M, Q = P~l = pχ^G which is called the inverse of P in
[5] defined by the left G-action λ : GxG->G (glt gj^gigl1, for the diffeo-
morphism i: P-*P~l; u^>u~l — \_u, e~], we denote — (i~l)*ω by ω'1 which is a left
connection form on P~\ where e is the identity element of G. Note that
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COROLLARY 1.6. ω is flat if and only if KerωOαΓ1 is an involutive distri-
bution on P'P'1.

P P~l is the Lie groupoid associated to P-»M and πP.P-ι : P-P~1-^MxM is
the anchor of P-P~l [8, Chapter 1, Example 1.10]. Let AM : M^MxM be the
diagonal map of M and A^P P'1) be the pull-back fiber bundle over M via
AM which is the inner subgroupoid of P P'1.

AMI(P- P'1) is isomorphic to the automorphism bundle PX&dG. In fact,
because Δ^P P"1) can be identified with {(#, u-v~l)^MxP P~1\πP(u)=x =
KP(V)}, therefore, the following map is well-defined and gives a fiber bundle
isomorphism; A^P-P'1)— ̂ XAd G (*, M iΓ1)-^, £] (V=M£, ge=G).

Let ΔM : PXAd G^P-P'1 be the induced fiber bundle homomorphism from
AM and e: M— >Px A dG be the canonical section which assigns % to the identity
element ex of the fiber over x, then their composite ε=AM°e: M-+P-P'1 is a
C°°-map, which is called the object inclusion map of P P~l and πP.P-ι°ε=Δjtf.

Let ε~l(PxP~l) be the pull-back principal G-bundle over M via e e'^PxP"1)
is isomorphic to P. Actually we have a principal bundle homomorphism
έ : P^PXP'1; u*-*(u, u~l) such that jp.P-ι°έ—ε°πP and ε*(ω*ft>~1)=ω. Because
for *<ΞM, M, t eP, ε(x)—u-v~l if and only if u = v<=πpl(x), then ε'^PxP"1)
can be identified with {(*, (M, w~1))eMxPxP"1 | weπpX^:)} so that the map
ε~1(PxP~ί)-^P; (x, (u, u~l)}^u is well-defined and gives a right principal G-
bundle isomorphism.

PROPOSITION 1.7. ε~~l(PxP~l}X&άG§ is isomorphic to the adjoint bundle

The notion of general groupoid includes its inversion. In the case of
P-P'1, its inversion is c : P P~l-^P P~ί u v'^v-u"1, which is obviously well-
defined and e*c=iά.p.p-ι. ε is also given by ε(x}=u u~l (u^π~pl(x)) so that
;°ε = ε, therefore, the differential dc : T(P p-l)-*T(P P~l) induces a vector
bundle involutive automorphism of ε~lT(P P~l) and a splitting (ε~1T(P P~1))x

= T£(X)(p.p-l)=E(

£U)®E&), for each x(ΞM, where Eft}) is the ± 1-eigenspace
of (dc\(x}. ε-lE(±^= Π Eίtt> is a vector subbundleof ε^

Let ωHl (resp. ω~lHu

x~
l): TxM->Kerωu (resp. Kerω^1) be the ω-(resp.

horizontal lifting. Note that for u&πp\x), g<^G, X<=TXM,

We write shortly "O^xw instead of (djP.P-,}(u,u-^(ωHu

xX, ±ω'lHu

x~
lX).
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PROPOSITION 1.8. For any
( i ) (dε^X^o^X^ for all X^TXM, therefore,

( i i )
(iii)

COROLLARY 1.9. For any ω, ε*(ft>Oω~1)=0, therefore, ε zs an ω<$ω~l-hori-
zontal lift of AM.

§2. Horizontally Lifted Metrics by the Joint Forms

In this section, we assume that a Lie group G admits a bi-invariant Rie-
mannian metric < , >. Let M (resp. TV) be a Riemannian manifold with a Rie-
mannian metric Mg (resp. Ng). For a right (resp. left) principal G-bundle

P-^M (resp. Q — > N) with a right (resp. left) connection form ω (resp. η\ the
ω-(resp. ^horizontally lifted metric pg (resp. J^g) is defined as follows :

> (resp. ^g=(πy)ίr

πp .' (P, £#)— »(M, ^g) (resp. πQ : (Q, %g)->(N, Ng)) is a Riemannian submersion
with totally geodesic fibers since the α>-(resp. η-) parallel translations between
fibers are isometries in the above metric [10, Theorem 3.5]. We denote the
canonical projection by pM (resp. pN): MxΛ/-*M(resρ. A / ) ; (x, y)*->ω (resp. y).
The joint form ω<>η lifts the Riemannian product metric MxNg=(pM)Mg+(PN)Ng
to the metric *$ηg on P Q defined by S^=(π?.ρ)

Mx^-f2<o>O^, ft>O^>. From
[10, Theorem 3.5], we have π%\ (P Q, S^gMM, M^); u v^πP(u\ π%:
(P-Q, ^g)-(N, Ng); u-v^πQ(v) and πP.q:(P.Q, £^H(MxΛ/, ^x^) are Rie-
mannian submersions with totally geodesic fibers.

Let p*Qg=(p$%g+(p$$g be the Riemannian product metric on PxQ. Then
pxQg coincides with the ^^-horizontally lifted metric from ^g:

PROPOSITION 2.1. p*Qg=(jt.Q)p

a3lg+2<w+i), co*^).

Throughout the following sections, the ω*)?-horizontally lifted vector
ω<>^H(

u

u.^U will be abbreviated to Π or (UΓ for U^Tu.υ(P-Q). Let F'Q7 be
the Riemannian connection of ω'oQ

ηg We denote the associated projections in
Proposition 1.3 by p : T(P Q)-» Ker dπP.Q X^X\ pL : T(P Q)-^ KerωO^
X^X±. p'*Jl=l(X, Y)^(P QVX±YΎ)±+(P'QVX±Y±)Ύ'] is called the O'Neill's tensor
A on (P Q, ω'<$g) [9, Lemma 2], and we have immediately the following:

PROPOSITION 2.2. For any u<=P, v^Q, X,

, F)] .
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Let ω°r'V be the covariant differentiation on P Q with respect to ω+η in
(jPχ<2)X A d G 9 and p*|V be the induced differentiation on P Q with respect to
ω*^V and P'QV in T*(P <3)(g)(Px<3)XAdc 9 The Riemannian connection of pg,
Qg or pxQg is denoted by FV, «V or PX«V, respectively.

COROLLARY 2.3. For αn y u^P, υtΞQ, X, Y, Zς=Tu.υ(P Q),

ΐ*$V((ωOη)°p'VΛ))u.υ(X, Y, Z)=[(w, v), -i((/)?)pVωβ+(^)^β)(l, F, Z)].

Proposition 1.4 implies the following lemma :

LEMMA 2.4.

r**d(ακ>ϊ))u.,(*, n=o
/or α// weP, i^eO, X<=TU.Ό(P Q), FeKer (dπP.Q)u.υ.

LEMMA 2.5. For αn μ X,

Proof. Since each fiber of P Q is totally geodesic and the decomposition
in Proposition 1.3 is orthogonal with respect to the lifted metric,

therefore (ωOηXP'QVχj.YΎ)=(ωOηXlX±, Fτ]). By Lemma 2.4,

0=r**d(ωOι?))(A'1, rτ)

= γ

Hence (ωO^)(p ρ

LEMMA 2.6. For any u^P, v<=Q, X, Y, ZeKer (ωOη)u.v,

((ωO η}«(p QVp'QΛ))u.v(X, Y, Z)=(&φ((ω<>η) p'QJl»u.,(X, Y, Z').

From Corollary 2.3 and Lemma 2.6, we have

PROPOSITION 2.7. For any weP, i eQ, ^f, r, ZeKer (ωO>?;u,

QVp ^)M.υ(^, r, Z) = [(M,V), -y((ί?)/Vββ+(ίί)«^fl)(-Ϋ, F, Z)].

(resp. 77) is called a parallel connection if FVωβ(Kerα>, Kerω,
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(resp. ρV?£?(Ker η, Ker η, Ker )y)=0). For instance, in the canonical fibration
over a Riemannian symmetric space, the canonical invariant connection with
respect to its symmetric pair is a parallel connection [4].

COROLLARY 2.8. ω and η are both parallel if and only if

u.υ(X, Y, Z)=Q for all u<ΞP, v^Qf X, Y, ZeKer (ωOη)u.v.

Let ωD (resp. ^D) be the exterior covariant differentiation on P (resp. Q)
with respect to ω (resp. η) and ωD* (resp. ?£>*) be the exterior covariant co-
differentiation on P (resp. Q) of ωD (resp. ηD\

PROPOSITION 2.9. For any u<=P, v^Q, ZeKer (ω<>η}u.v,

Trace ((ωOη)*p QVp'QΛ)u.v(p\ p\ Z)=(κ, v\

ω (resp. η) is called a Yang-Mills connection if ω (resp. 77) satisfies the
Yang-Mills equation : ωD*ωΩ=Q (resp. */}**£ =0) (c. f. [2]). For instance, parallel
connections are Yang-Mills connections.

COROLLARY 2.10. ω and η are both Yang-Mills if and only if

Trace ((ωOη)°p'QVp'QJl)u v(ρ\ ρ\ Z)=Q for all weP, veQ, Z GΞ Ker (α>O ??)„.<,.

Notice that we can describe a pair of the Yang-Mills equations for ω and
f] in terms of the Ricci curvature tensor p'QRic of (P Q, ζ'<^g).

PROPOSITION 2.11. For any weP, v<^Q, ZeKer (ω<>η)u.υ,

A pair of the Yang-Mills equations for ω and η is a necessary condition
for the Einstein equation with respect to (P Q, ̂ g) as an analog to the relation
between the Yang-Mills equation for ω and the Einstein with respect to (P, pg)
[12, Corollary 2.19].

COROLLARY 2.12.
( i ) ω and η are both Yang-Mills if and only if

dπP.Q,

(ii) // (P Q, ω'^g) is an Einstein space, then ω and η are both Yang-Mills.

In the case of N—M, Q — P~l and η=ω~ί

> the inversion i : (P, pg)-^(P~l,
P-ig) is an isometry. Therefore we have immediately the followings :

COROLLARY 2.13. ω is parallel if and only if



HARMONIC GAUSS SECTIONS 23

p p-1Vp p-1Jl)ίt.9-ι(X, Y, Z)=0

for all u, v^P, X, Y, ZeKer (ωOαΓ1)*.,,-!.

COROLLARY 2.14. ω is Yang-Mills if and only if

Ύrwz((ω<>ω-l}*p p-lVp'p-lJΐ)u.υ-ι(()\ p\ Z)=0

for all u, v^P, ZeKer (ω<^ω~l)u.v-ι .

COROLLARY 2.15.
(i) ω is Yang-Mills if and only if p'p~lRιc (Ker dπP.P-ι, KerωOα>-1)=0.
(ii) // (P P~l, p^p-\g) is an Einstein space, then ω is Yang-Mills.

The diagonal map ΔM : (Λf, 2Mg)-+(MxM, MxMg) is a totally geodesic iso-
metric embedding so that Corollary 1.19 implies the following:

PROPOSITION 2.16. ε : (Λf, 2Mg)-+(P P~\ p^>-\g} is a totally geodesic isometric
embedding for any connection form ω on P.

COROLLARY 2.17.
(i) ε*p p"1J=0, equivalently, for any x(ΞM, X, FeTxM,

(ii) For any x<=M, X, Y£ΞTXM,

Under the identification ζ~l(PxP~l)^P, we observe the following:

PROPOSITION 2.18. For any κ^M, X, Y<^TXM, u^πpl(x),

((ωOω-l)«p'p~lJl)(ω<>ω~lX(+\ e><>e'"1r(-))=[M, -ωΩu(
ωHu

xX, ωHu

xY)~].

COROLLARY 2.19. ω is flat if and only if

for all x<^M, X, Y^TXM, u^πpl(x), equivalently ,

((ωOω-l)°p'p-lJiX(de)xTxM} Ker (ωOω-^uO^O, for all

By using the fact that the inversion i is an isometry, we get

LEMMA 2.20. For any xeM, X, Y, ZeT^M,
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)op jp~1Vp p~1cJ)(ω<>α>"1^(~), "ov-iYw, ω<>ω"1Z("))— 0,

= [u, -eVQ)u(*HZX, "HϊY, a>

((ωO<0-l)°P P~1VP P~1Jί)(a":>a'~1X<-\ "Offl-'j^-^

= [>, -(FVωΩ)u(
ωHu

xX, ωHu

xY)

 ωHu

xZ)~\ .

Proposition 1.16 and the above lemma imply the folio wings:

PROPOSITION 2.21. For αn y teM, ueπp J(Λ:), the following three conditions
are equivalent

( i ) ((ω<>ω-ιyp'p'lVp'p'lJi)((d&)xTxM9 (dε)xTxM, Ker (ωOω-1)£(χ))-:0,

( i i ) ((ωOω-^o^^-V^-UXKeΓζωOω-O c*), Ker(ωOω"1).(*),

=0,

(iii) (pVωΩ)u(Keτ ωu, Kerωw, Kerα>tt)=0.

COROLLARY 2.22. ω is parallel if and only if

)*T*M, (dε)xTxM,

Let {Ei\f=l be an orthonormal basis for (TxM,2Mg)y then {»O»-IJE;(+

ωo ί y-ι jg(-)jm ι js an orthonormal basis for (KerCωOαΓO.u), pόS:ί^) where m
dim M. The following lemma is obtained from Lemma 2.20 :

LEMMA 2.23. For any x<=M, Z(ΞTXM,
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=[u, γ

Proposition 1.9 and the above lemma imply the following:

PROPOSITION 2.24. ω ^s Yang-Mills if ana only if

m
Σ,((ωOω~l)°p p-lvp p-1Jl)((d!ί)xει, (<*«),£„

1=1

for all

§ 3. Gauss Sections on the Joint Spaces

Let Gr(T(P-Q))^ P-Q be the Grassmann bundle associated to T(P Q)
which typical fiber is the real Grassmann manifold of the r-dimensional planes,
where r= d imG. When we choose the Riemannian metric p'^ηg, Gr(T(P-Q))
can be identified with the O(r)xO(ra+n)-quotient space O(T(P Q\ %>$ηg)/O(r)
Xθ(m+n) of the orthonormal frame bundle O(T(P Q\ p$g) of T(P Q) with re-
spect to ω'<%g, where m=:dim M, n=dim N. The quotient map of 0(T(P Q), %'^g)
onto Gr(T(P'Q)) is denoted by ζ, which is a right principal 0(r)Xθ(ra-f n)-
fibration. Since the structure group of π~lT(P Q) is reduced to 0(r)X0(ra-fn),
the 0(r)Xθ(m + n)-submodule splitting Λ r + m + n=(/2 r, Om+n)0(0r, R

m+n) induces
the vector subbundle splitting π~1T(P'Q)=K®K± where

ζ
K=10(T(P.Q), p^g)—^Gr(T(P'Qmxσ(Rr

} 0T O + n),
ζ

Rm+n) and

σ: 0(r)Xθ(m+n)c:GL(Rr+m+n) is the natural linear
representation of 0(r)xO(ra-j-n) .

On the other hand, the Riemannian connection P'QV of %'^g induces the splitting
T(Gr(T(P'Q)))=^KQrdπ®(Kerdπ)1- so that the differential dγ of r=Tp Q splits
into (dγ)v and (dγ)H where the former is the vertical differential of γ with re-
spect to P'QV [11], [12]. γ is called a horizontal section with respect to p<ρV
if (dτ )ΓΞΞθ. The vertical energy density of γ is the C°°-function eF(^) : P-Q-+R
defined by e | r(r)(M-v)=||(d7)F | |2.1, (weP, veQ).

Let JC be the vector subbundle {(/c, — ArOkeHomCAΓ, AΓ^)} of Hom(A:, K^®
Hom(/ί-L, /ί) where tf is the adjoint of K. C. M. Wood has introduced in [11] an
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isomorphism l=(κ, -*') : Kerdττ^JC; (dζ)^|^£o^lβj£;-ι (E€Ξθ(T(P Q\p$g),
^4eo(r+ra+tt)) where ^4f is the ϊ-component of ^4 and ϊ is the orthogonal com-
plement of o(r)Xo(ra-hft) in o(r -f m-fft) with respect to the Killing-Cartan form
of O(r+ra+n) which is denoted by l/2«,». K: Ker dπ-*Hom(K, K^) and
/cτ : Ker dπ— » Horn (A"1, AT) are vector bundle isomorphisms. The metric is taken
to be that derived from l/2{{,» under the 0(r)Xθ(w+w)-quotient map
0(r+m+n)-^Gr(βr + rΛ+n). Thus / is 2-homothetic and tf is an isometry [12].
Note that γ~lK^Ker dπP.Q, γ^K^

γ-lHom(K, K ^) = Horn (Ker dπP.Q, Ker ωOη) and

Γ1 Horn (ft1, /O = Horn (Ker aK>)?, Kerί/ττP.ρ).

We denote also the induced vector bundle isomorphisms via γ by /: γ~1Kerdπ
-* T-'1^, / e : 7"1 Ker ύίπ-> Horn (Ker dπP.Q, KerωOη) and A;! : '1 Ker dπ — >
Horn (Ker ω<>η, Ker dπP.Q) for convenience of notation. (df)F is evaluated in
Horn (Ker ω<>9, Ker dπP.Q) as the O'Neill's tensor P'Q<J :

PROPOSITION 3.1.
(i) I((dγ)v Y)=p'QJίY=[W^>p'QJl(Y, Wϊ], for any u<ΞP, vε^Q, Y^TU.V(P-Q).
(ii) 2ev(γ)(u v)=\\p'QJl\\Lv, for any utΞP,

Proof, (i) By the Gauss's and the Weingarten's formulas,

(P^VYW
ΊY^(P^VYLWΊY, (P'^VYW

LY^(P^VYLWLY

since each fiber is totally geodesic. From [12, Corollary 1.9],

) WO]

(ii) It follows from (i).

COROLLARY 3.2.
(i) κ\(dγYY)^p^p'^JlY^p\ for any utΞP, v^Q, Y^TU.Ό(P-Q).
(ii) ev(rXu v)=\\p p «Jlpj. p±\\L9, for any u^P, υ^Q.

PROPOSITION 3.3.
(i) For any u^P, v^Qy Y^TU.V(P'Q)} W^Ker (ωOη)u.v,

(ii) ev(γ)(u v)=l/2(\\ωΩ\\l+\\vΩ\\ΐ), for any u^P,

Proof, (i) It follows from Proposition 2.2 and Corollary 3.2. (ii) Let
{MEt}?=1, Γ£ΛJU be orthonormal bases for (TXM, Mg\ (TyN, N g), respectively,
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we set

p'(ίEl^(d]P.Q}(Ut^Hu

x

MEly Oβ), F ρ£τ7^=(^P.ρ)cw,»)(0M, *#«"£,).

Γρ£«}^Y is an orthonormal basis for (Ker(α>O)?)w.t>, p>ρ^).
=0 so that

ra+ft 771+TZ

THEOREM 3.4. (w αnύί η are both flat if and only if γP.Q is a horizontal sec-
tion with respect to P'QV.

COROLLARY 3.5. ω /s flat if and only if fp.p-\ is a horizontal section with
respect to p'p'17.

PROPOSITION 3.6.
( i ) For any

T^-lY(^)^\_u, ωΩ(ωHu

xX, ωHu

xY}~],

(ϋ) ll(irp.p-ι)Γ ω 0 β"1-ϊ ( +Ίlί(*) = ll(drp.p-ι) | r β '< > β '"1^ ("ΊIΪ(χ) for any
TXM.

(iii) eF(rp.P-ι)(ε(%)) = 2Σ^MI(^rp.p-ιfω 0 ω"1^+ )ll'(.)-irβίlS for any

Proof, (i) It follows from Corollary 2.17. (ίi) From (i), we get

771

\\( A y NFωOω" 1 V ( +\\(aϊp.p-ι) Λ '

1 m 1 77i
_ V II ^Oίωfjuy ωΊJuΈ? V ! 2 _ "SΠ \\oOfa>HuY ω JJ u I? M l 2

— -77 2j II — M( n XΛ, n χJ^ι)\\£(x) — -^ 2 j \ \ M( n XΛ, n x£l)\\ε(Δ 1=1 Δ 1=1

= Σ l
t=ι

(iii) It follows from (ii).
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Let Vv be the induced connection in Ker dπ from P'^V and π(p'QV) be the
induced connection in π~lT(P-Q) from P'QV and JίV be the induced connection
in J( from π(p'QV). Notice that /: (Ker dπ, VV)^(JC, *V) is not connection-
preserving but /: (γ~l Ker dπ, rVv)^(γ~lJ<, r~1J(V) is connection-preserving, where
rVv (resp. r~lJ{V) is the induced connection via γ in γ~l Ker dπ (resp. γ~lJ() from
Vv (resp. *7) [12, Theorem 1.5, Corollary 1.6].

PROPOSITION 3.7. For any X, Y(ΞT(P Q),
( i )
(ϋ)

LEMMA 3.8. For any X, Y, W<Ξ3ε(P Q),

):̂

Let rVv(dγ)v be the vertical second fundamental form of 7* with respect to
F'ρV (definition in [11]). T will be called a covariantly horizontal section with
respect to F'«V if >V(dr)7=0.

PROPOSITION 3.9. For αn^ weP, veQ, X, F, W^TU.V(P-Q\
, r, w^γ,

Proof, (i) From Proposition 3.7 and Lemma 3.8,

(ii) It follows from (i) and [9, Lemma 4].
Notice that ^Vv(dγ)v(X\ Y^ and ?Ψ(dγ}v ( X L , F τ) de not vanish, in general.

COROLLARY 3.10. For any u^P, v^Q, X, Y(ΞTU.V(P Q), PFeKer (ωOη)u.υ,

F,

Proof. It follows from Propositions 2.7 and 3.9.

THEOREM 3.11.
( i ) ω and η are both parallel if and only if
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rV(dγ)v(Ker(ωOη)u.v, Ker (ωOη)u.v)=Q, for all weP, v^Q.

(ii) // γP.Q is a covariantly horizontal section with respect to P*Q7, then ω
and η are both parallel.

COROLLARY 3.12.
( i ) ω is parallel if and only if

rp'p~\v(dγP.P-ι)v(KQr(ωOω-1)u.Ό-^ Ker (ωOω-1)M.v-ι)=0 for all u,v^P.

(ii) // fp.p-i is a covariantly horizontal section with respect to p'p~iV, then
ω is parallel.

Let τv(γ)=TracerVv(dγ)v be the vertical tension field of γ with respect to
p*ρV. γ is called a harmonic section (or vertical harmonic map] with respect to
P<ρ7 if γ satisfies the harmonic section equation: τv(γ)=Q.

PROPOSITION 3.13. For any u^P, v<^Q, W^Ker(ωOη)u.v,

=(u, v\

Proof. From Proposition 3.9 (ii),

«t(rr(r))(^r)=Trace κψVv(dγ)v(ρ, /o))(WO+Trace κ

-Trace κKr

so that

THEOREM 3.14. ω and η are both Yang-Mills if and only if )>.ρ is a har-
monic section with respect to P'QV.

COROLLARY 3.15. ω is Yang-Mills if and only if γP.P-ι is a harmonic section
with respect to P'P~'V.

§4. Gauss Sections along Object Inclusion Map

In this section, we prepare a general argument on the pull-back Gauss sec-
tions via a C°°-map and an application to the object inclusion map ε : M-^P P"1.

Let M and L be C°°-manifolds and φ: M-+L be a C°°-map. For a real C°°-
πβ

vector bundle 8— »L of rank r-fs-f-/« + c*D), we denote the induced vector
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ψ*e
bundle from S via φ by φ 1G — > M. The Grassmann bundle of the r-dimen-

πGr(€)
sional planes associated to β is denoted by Gr(<?) — > L. Let £F be a vector
subbundle with rank r of <? and ^^CLB^^c:^] be the corresponding Gauss
section into Gr(β).

V*Gr(€)
The induced fiber bundle φ~lGr(€) - >M is naturally identified with

πGr(φ-l€)
Gr(φ~l€} - > M. Let φ : Gr(φ-le)-*Gr(€} be the induced fiber bundle homo-
morphism with πεoφ=φo<fπε-φ~13 is naturally identified with a vector sub-
bundle of φ~l€ so that γφ-i3 maps M into Gr(φ~lβ) and φ°Tφ-i3=ΐ3°φ.

πe
Let (<?, /z<?) — » L be a real C°°-vector bundle with a fiber metric /ι5 and

π θ ( 8 , /*£)
O(βy hε) - > L be the orthonormal frame bundle of (€, hε). For the induced

VπS

vector bundle (φ~l€, ψhe) — > M, the orthonormal frame bundle O(φ~lβ, ψhε) is
ψπθ(C,h)

naturally identified with φ~lO(β, he) - > M. Let £ζ (resp. φ €ζ) be the
quotient map O(β, he}-*Gr(€) (resp. O(φ~le, vhε)-*Gr(φ~le)), which is a right
principal O(r)xO(s-K)-fibration. The pull-back vector bundle (πGr(ε)Ylε— >
Gr(<?) (resp. (7ΓGr(ί0-ι(?))~1(^"1^)^C:r(^~1^)) splits via πGr((?) (resp. πσr(?)-ι ί )) into

1 (resp. ^"1^e^"1^1) where

= , e r , , + t , , ^-

(resp. ^- le/f

and σ : 0(r)Xθ(s+t)c:GL(Rr+s+t) is the natural linear representation of O(r)
X0(s+0 There are natural vector bundle isomorphisms;
φ-\εK^v-lεK\ φ-i End ((πGr(ε

As in §3, we set εX={(ιt, -

Under the natural identification φ~\€J()^φ l ε J C , there is no confusion when
we write φ: v~leJC-+€JC. εl and φ~ίεl are defined by

el: Ker dπβ,e}ε*€JC (deQsA% -> E°At*E-1,

, hε\ E<=O(φ-le, φhε), ^4eo(r+s+ί)X respectively, where Al is the ϊ-
component of A and f is the orthogonal complement of o(r)Xo(s+0 in o(r+s+ί)
with respect to the Killing-Cartan form of O(r-\-s+i). C°°-fiber bundle homo-
morphism φ: Gr(φ~lβ}-*Gr(£) maps each fiber of Gr(φ~l£) onto that of Gr(<?)
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so that the differential dφ : TGr(φ~lg)-^TGr(<S)mapsKerdπr(φ-ι^ toKerdπGr(ε).
Let (dφ)^ ' : KerdπGr(φ-ιe)-^Ker dπGγ(£) be the restriction of dψ to KerdπGr(φ-ίε).
Then €I (dφΓ=φ*°φ~ίεI

The induced linear homomorphisms between C°°-sections are denoted by el,
*-1€I, φκ and (dφΓ

Let (8, he, £V, ε^ω) be a system of a C°°-vector bundle with a fiber metric
he, a covariant differentiation £V compatible to h and the connection form ε^ω
of €V. The induced system via ψ is denoted by (φ~lβ, ψhe,

 φ(εV), ψ

Notice that

for

and (dφΓ (drφ-ιsy=(dγs)r dφ.

PROPOSITION 4.1.

(drff)£(*>(W*T,M)=0 for all

if and only if γφ-\<ι is a horizontal section with respect to ψ(εV).

In the case of L = P P~l, ^—KerdπP.P-ι and φ— ε, we have

COROLLARY 4.2.

(rfrp p-ι)Γ(*)((rfe)*T,M)=0 for all x^M

if and only if εγP.P-\ is a horizontal section with respect to S(P'P~V).

From Proposition 3.6 and the above corollary, we have

THEOREM 4.3. ω is flat if and only if εγP.P-ι is a horizontal section with
respect to ε(p'p~lV).

Henceforth let (M, 2Mg) be a Riemannian manifold. Proposition 3.6 implies
that:

PROPOSITION 4.4.

for any x<=M.

Let Lg be a Riemmanian metric on L. Gr(β} (resp. Gr(φ~lβy) has the
horizontally lifted metric by ε^ω (resp. ψ(G^)ω) and its Riemannian connection
V (resp. ^V). Let Vv (resp. ΨVV) be the induced connection in Ker dπGr(e) (resp.
KerdπGr(φ-ιε)) from V (resp. ^V) and ^Ψ (resp. rφ-&Vv) be the pull-back con-
nection via fcf (resp. 7^-19:) from Vv (resp. Vφ\

Note that ^(^(εl))=^-^(^(εl)) is connection-preserving [12, Theorem 8(2)].
Let ϊ(p-'^(dφ)cv be the induced linear isomorphism between C°°-sections via γφ-ιg.
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LEMMA 4.5. ^ψ-

By a straightforward computation using the above lemma, we have the
following formulas analogous to [2, Proposition 2.20] :

PROPOSITION 4.6.

(i) ^-^(dφΓ(r^Vv(dfφ-^v(X, F))

= (dγci)v(v(LV}dφ}x(X, Y))+r*Vv(dr37((dφ)xX, (dφ}xY)

for any x<^M, X, Y^.TXM, where LV is the Riemmanian connection of Lg.

(ii) ^-

for any xeM, where {£t}?Lι is an orthonormal basis for (TXM, 2Mg).

Proof, (i) Extend X and Y to local vector fields. The above lemma im-
plies that

(ii) It follows from (i).

COROLLARY 4.7. // φ is totally geodesic, then

( i ) ^-^(dψ)cv(^-^Vv(dγφ-lc!Y(X, Y} )^^Vv(dγsY((dψ)xX, (dψ)xY))

for any x<=M, X, Y^TXM,

m

(ii) ^-^(dφΓ(rr(rv-ι^= Σ ^Vr(dr3Y((dφ)xEt, (dφ),E3
1 = 1

for any x<=M.

Even if φ is totally geodesic, vertical harmonicity of γψ-\3 generally fails
to inherit from that of γg. But an exceptional success lies in the case of φ=ε,



HARMONIC GAUSS SECTIONS 33

PROPOSITION 4.8.

( i ) rp r-\dS)cV( rp'r-Vr(d rp.P-ι')v(X, Y»=rp'p~1Vv(drp.p-ιnde),X, ( d ε ) x Y )

for any x<=M, X, Y<=TXM.

(ii) '^^-1(rfeHrϊr( rp.p-ι),)= Σ rp'p-lVv(dγP.P-ιY((dε)xEt, (de)xEt)
t = l

for any x^M where \El}ΐlί is an orthonormal basis for (TXM, 2Mg).

COROLLARY 4.9.

rr r-1Vv(dγP.p-1)
v((dέ)xTxM, (dε)xTxM)=Q for all x^M

if and only if slfp.p-\ is a covariantly horizontal section with respect to ε(p'p~lV).

THEOREM 4.10. ω is parallel if and only if εγp.p-ι is a covariantly hori-
zontal section with respect to *(P'P~1V).

COROLLARY 4.11.

f j rp p-1Vv(dTp.p-1)
r((de)*Et, (dβ),Et))=0 for all x^M

ι-ι

if and only if *ΐp.p-ι is a harmonic section with respect to ε(p'p~1V).

THEOREM 4.12. ω is Yang-Mills if and only if £TP-P-I is a harmonic section
with respect to S(P'P~1V).

§5. Reduction of Target Fibers

Let H be a Lie group which admits a bi-invariant metric and HQ be a closed
subgroup of H. We consider a right principal //-bundle <P over a Riemannian
manifold M, a principal //0-subbundle β, a reduction map of structure group
I : Q-^& and a right connection form ω which is reducible with respect to I.
The ω- (resp. ι*ω-) horizontally lifted metric on £P (resp. β) is denoted by s$g

(resp. &sg).

PROPOSITION 5.1.

( i ) (dι),Sv=(di%S, (dι)υS
H=(dϊ)$S for any v£ΞQ, S^TVQ.

( i i ) I : (β, ι*sg)-»(&, ίg) is an isometric embedding.

(iii) (lVdi(S, TF))F=0, for all v^Q, S, TeTυβ.

Proof, (i), (ii) trivial, (iii) Extend S and T to local vector fields. The
restriction of I to each fiber of β is a totally geodesic embedding into a fiber
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of & so that (lVdί(Sv, Tv))v=0. On the other hand, from (i) and [12, Lemma
1.4],

ω(lVdϊ(SH, Tv))=ω^

r)=l(*d

Let Hi, be another closed subgroup of //and β///0Π//ι, 3V//ι be the
orbit spase of Q, the //rorbit space of £P, respectively. The canonical quotient
maps are denoted by π/HQΓΛHί : Q-*Q/H*Γ\Hι, π/Hl : &-+£/Hι. I is right H0-
(therefore #0n#ι-) equivariant so that there uniquely exists i: Q/H*Γ\Hι-*&/Hι
such that i°π/HΰnHl~π/Hl<>L

Note that Q/H^H^ ®IHI is associated to Q, 5>, and let ?~l?°^Hίg, ?/Hlg be

the horizontally lifted metrics on Q/H0Γ\Hίf &/Hι by ί*ω, ω, respectively.

PROPOSITION 5.2.

( Ϊ ) (dfyjt/HQKH^rtZ ==:(di)π/HQr\H1(v)^) (dίjit/H^H^v^Z ==(dl)π/ΪI0^H1(v)^)

for any vtΞQ, ZeTπ/Honίf1(υ)(C///oΠ//ι).

(ii) i: (β///0Π//ι, %s

ff°"Hlg)-+(&/H1, %/H*g) is an isometric embedding.

These metrics make π,H^Hl : (Q, f^)->(0///oΠ^ι, %£*•«* *g) and W / F I :

(5», f ̂  )->(5>///ι, §/Hίg) into Riemannian submersions with totally geodesic fibers.
We write the associated orthogonal splittings as follows:

PROPOSITION 5.3.

(rfι)t,Sq;=((rfι)(,S)cι;, (dl)^sc=((dl\S)^t for all

We denote the horizontal lifts of ZeT(£///0n//ι), U^T^/HJ, by
, respectively.

PROPOSITION 5.4.

( i ) ^ΓZΓ-(^Z)F, ^Z^=(JfZ)H, /or all v

( i i ) MV=(MUY, MUH=(MU)V, for all

(iii)
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PROPOSITION 5.5.

(lVdί(Z, WV}Y=V, for all v^Q, Z,

Proof. Extend Z, W to local vector fields. From Propositions 5.1, 5.3, 5.4
and [9, Lemma 1],

Let TO : M^Q/HQr\Hl be a C°°-section (if exists). ΐι=i°γ0 : M-+&/HI is also
a C°°-section.

PROPOSITION 5.6.

(i) (drι)vY=(di)7o<X)((droyY\ for all x*=M, Yt=TtM.

(iii) ^Vv(dγιY(X) Y}=(dί)r^«Vv(dγ«Y(X, Y)) for all

(iv) τv(yl}x^(dΐ)γM(τv(γ,}x) for all x^M.

Proof, (i) It follows from Proposition 5.2 (i). (ii) From (i) and Proposi-
tion 5.2 (ii). (iii) Extend X, Y to local vector fields. From (i) and Proposi-
tion 5.5,

v(dγ<Y(X, Y)).

(iv) It follows from (iii).

COROLLARY 5.7. TO is a horizontal, covanantly horizontal or harmonic section
if and only if γt is a horizontal, covariantly horizontal or harmonic section, re-
spectively.

Let (<?, hε), O(β, hε) be a system of a C°°-vector bundle of rank r+s+t
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and the orthonormal frame bundle of (β, he), whose structure group is
O(r+s+t). For a vector subbundle S of rank r + s, the inclusion is denoted
by iεs : S-*£. The orthogonal splitting β— S@SL induces the adapted (c. f. [7])
orthonormal frame bundle O(S®SL

t hs®hs±), whose structure group is O(r+s)
Xθ(t), where hs, hs± are the restrictions of he to S, cS1, respectively. The
inclusion °ie

s : O(<S®S\ hs®hSL)-+ O(£, hε} is right O(r+s)Xθ(ί)-equi-variant.

so that °is is reduced to the inclusion Griε

s: Gr(S}-*Gr(£} which assigns r-plane
£FΛ in Sx to is<3x in βx for x^M. A vector subbundle £F of <S (if exists) defines
the Gauss sections:

Let ^V be a connection in <f? compatible with Λ^, which preserves all C°°-
sections of cS (therefore SL\

PROPOSITION 5.8.

PROPOSITION 5.9.
fg is a horizontal, covariantly horizontal or harmonic section with respect to

SV if and only if
fg is a horizontal, covariantly horizontal or harmonic section with respect to

εV, respectively.

In the case of r=p, s=f=m, £^$
ε'1 Ker dπP.P-ι, rl^^pTp-i and ΪS='TP.P-I, from Proposition 2.16 and [7, Chapter
VII], we have the followings :

PROPOSITION 5.10. ev(εγ^P-ι)=ev(εγp.P~ι).

PROPOSITION 5.11.
εΐp~p-ι is a horizontal, covariantly horizontal or harmonic section with respect

to V ( - ) if and only if
εfp.p-ι is a horizontal, covariantly horizontal or harmonic section with respect

to *(P'P~1V), respectively.

By combining Theorems 4.3, 4.10, 4.12 and the above proposition and corol-
lary, we obtain the main theorem :

THEOREM 5.12 (THEOREM D).

(i) -ί|rfl||ί=βϊr(r(-))(x) for all xeM, u<ΞπP\x).

(ii) ω is flat, parallel or Yang-Mills if and only if *fp?P-\ is a horizontal,
covariantly horizontal or harmonic section with respect to V (~ }, respectively.
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